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Abstract

Differential invariants of curves and surfaces such as curvatures and
their derivatives play a central role in Geometry Processing. They
are, however, sensitive to noise and minor perturbations and do not
exhibit the desired multi-scale behaviour. Recently, the relation-
ships between differential invariants and certain integrals over small
neighborhoods have been used to define efficiently computable in-
tegral invariants which have both a geometric meaning and useful
stability properties. This paper considers integral invariants defined
via distance functions, and the stability analysis of integral invari-
ants in general. Such invariants proved useful for many tasks where
the computation of shape characteristics is important. A prominent
and recent example is the automatic reassembling of broken objects
based on correspondences between fracture surfaces.

Keywords: geometry processing, curvature, integral invariant, sta-
bility, 3D shape understanding

1 Introduction

Local shape analysis of curves and surfaces usually employs con-
cepts of elementary differential geometry like curvatures (see e.g.
[do Carmo 1976; Porteous 2001]). Likewise, global shape under-
standing benefits from differential geometry concepts like principal
curvature lines or crest lines (see for instance [Alliez et al. 2003;
Hildebrandt et al. 2005; Kim and Kim 2005; Ohtake et al. 2004;
Yokoya and Levine 1989]). However, the actual computation of
curvatures for real data, given as triangle meshes or voxel grids, is
a nontrivial task, because numerical differentiation is sensitive to
noise. A standard method to deal with rough data is denoising and
smoothing prior to numeric computation. These techniques come
in two categories: Global methods which employ appropriate geo-
metric flows (cf. [Bajaj and Xu 2003; Clarenz et al. 2004b; Osher
and Fedkiw 2002]) and local ones, which use approximation by
smooth surfaces (cf. [Taubin 1995; Cazals and Pouget 2003; Gold-
feather and Interrante 2004; Ohtake et al. 2004; Razdan and Bae
2005]). We especially want to mention the method of tensor voting
(cf. [Tong and Tang 2005]). Semi-differential invariants in the sense
of [Van Gool et al. 1992] are a way of avoiding higher derivatives
by combining reference points with first order derivatives.

An alternative approach to differential geometry for meshes is to
employ an exact theory of discrete analogues of differential quanti-
ties, instead of numerically approximating the smooth theory. This
area of research, which could be called discrete differential geom-
etry in a narrower sense, has been investigated for a long time, and
many results have been achieved – see e.g. work by [Aleksandrov
and Zalgaller 1967], [Cheeger et al. 1984], [Pinkall and Polthier
1993], [Bobenko and Pinkall 1996], [Polthier 2002], [Meyer et al.
2002], [Cohen-Steiner and Morvan 2003], [Bobenko and Schröder
2005]. It is possible to deal with noisy data using such discrete
theories, as shown by [Hildebrandt and Polthier 2004], [Rugis and
Klette 2006], and [Rusinkiewicz 2004]. However, handling noisy
data appears to be neither the main strength nor the original intent
of an entirely discrete theory.

Typically a discrete theory of curvatures associates them to vertices
or edges or faces in a mesh, and such a discrete curvature often
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has an interpretation, e.g. as ‘curvature concentrated in a vertex’,
or ‘integral of curvature over a face’. This measure-theoretic in-
terpretation of curvatures should not be confused with the integral
invariants of the present paper.

Our approach to the numerical problems inherent in the computa-
tion of higher order differential invariants of noisy geometry is the
following: For given 3D data, we integrate various functions over
suitable small kernel domains like balls and spheres, which yields
integral invariantsassociated with each kernel location. These in-
variants turn out to have a geometric meaning and can be used as
curvature estimators. This method has been initiated by [Manay
et al. 2004] and [Connolly 1986] and is also the topic of [Yang
et al. 2006; Pottmann et al. 2007].

The following properties of curvature estimators are important:

• Robustness with respect to noise, including discretization ar-
tifacts;

• Multi-scale behaviour, i.e., adaptability to the choice of reso-
lution.

Integration, which is an essential ingredient in the definition of in-
tegral invariants, has a smoothing effect and achieves stability and
robustness without the need for preprocessing.

The present paper studies robustness aspects of integral invariants,
as well as integral invariants related to distance functions. Thus
we establish the theoretical explanation of robustness properties en-
countered in numerical experiments and geometry processing algo-
rithms. For the volume descriptor and similar invariants the rela-
tion to shape (i.e., curvatures) have already been established; we
here present this analysis for geometry descriptors based on dis-
tance functions.

1A Prior Work

The first to introduce integral invariants were [Manay et al. 2004].
One example is thearea invariantsuitable for estimating the curva-
ture of a curvec at a pointp, wherec is assumed to be the boundary
of a planar domainD (see Fig. 1, left): Consider the circular disk
Br(p) of radiusr and centerp, and compute the areaAr(p) of the
intersectionBr(p)∩D. The relation betweenAr(p) and the curva-
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Figure 1: Examples of simple integral invariants for planar curves
which are defined by means of disksp + rB and circlesp + rS
centered in a pointp. The area invariant (left) is the surface area of
the intersection of the diskp+rB with the domainD, whereas the
Connolly function (right) is the perimeter of the arc(p + rS) ∩D
divided byr.



ture yields a way to estimate curvatureat scaler, because features
smaller thanr hardly influence the result of computation. Manay
et al. show the superior performance of this and other integral in-
variants on noisy data, especially for the reliable retrieval of shapes
from geometric databases.

A similar invariant appears in earlier work (see Fig. 1, right): The
angle of the circular arc∂Br(p) ∩D has been used by [Connolly
1986] for molecular shape analysis. If we multiply this so-called
Connolly function by the kernel radiusr, we obtain the length of the
circular arc, which happens to be the derivative of the area invariant
with respect to the kernel radius.

The extensions of area invariant and Connolly function to surfaces
in three-space are straightforward. One arrives at the volume de-
scriptor, whose relation to mean curvature is derived by [Hulin and
Troyanov 2003], and which is used by [Gelfand et al. 2005] for
global surface matching. Its derivative with respect tor is the sur-
face area of the spherical patch∂Br(p)∩D (see [Connolly 1986]).
The precise relation between these integral invariants on the one
hand, and the curvature of planar curves and the mean curvature on
surfaces on the other hand, has been derived by [Cazals et al. 2003].

Principal component analysis of the domainBr(p) ∩ D is done
by integrating coordinate functions and their products over that do-
main. Therefore also principal moments of inertia and principal
directions ofBr(p) ∩ D are integral invariants. A discussion of
their relation to principal curvatures and of computational issues is
given by [Pottmann et al. 2007], while [Yang et al. 2006] shows
applications and compares this method with other ways of estimat-
ing principal curvatures. We also point to [Clarenz et al. 2004b;
Clarenz et al. 2004a], who use principal component analysis of sur-
face patches for feature detection.

Results of a similar flavour, without the emphasis on computability
and robustness, are the formulae of J. Bertrand and V. A. Puiseux
(1848) which relate Gaussian curvature to perimeter and area of
geodesic disks (cf. p. 127 of [Strubecker 1969]).

1B Organization and main contributions of the present
paper

Our paper is organized as follows: After introducing notation and
some basic facts in sections 2 and 3, we briefly discuss integral in-
variants for planar curves in Section 4. Those are mainly thearea
invariantand its derivatives with respect to kernel radius and kernel
center, respectively. The analogous but slightly more involved dis-
cussion of the 3D counterparts, namely the volume descriptor and
its derivatives, is performed in Section 5. Section 6 studies invari-
ants for curves in surfaces and shows how to obtain the geodesic
curvature by integration. Invariants based on distance functions
are the topic of Section 7 – both for surfaces and for space curves.
Section 8 analyzes the stability of some important integral invari-
ants in the presence of noise or surface perturbations. Section 9
is concerned with efficient computation and implementation issues.
Applications are briefly surveyed in Section 10. We conclude our
paper with Section 11, which contains pointers to future research.

The main contributions of the present paper are (i) new facts about
asymptotics expansion of integral invariants and their relations to
curvature, notably those computed from distance functions (ii) a
thorough theoretical stability and robustness analysis of integral in-
variants, with a focus on the volume descriptor; (iii) methods for
computing integral invariants, especially the octree-based approach
of Section 9B.

2 Basics

2A Notation and definition of integral invariants

In this paper we assume that a curve inR2 or a surface inR3 is the
boundary∂D of a domainD in Rn, with n = 2, 3, respectively
(locally, this is always the case, so this is no actual restriction). We
write 1D for the indicator function of that domain:1D(x) = 1 if
the pointx is contained inD, and1D(x) = 0 otherwise.

B denotes the unit ball, andp + rB denotes the ball with radiusr
and centerp. In R2, such a ball is actually a disk, but we use the
same notation regardless of dimension. Further, the unit circle of
R2 and the unit sphere ofR3 are denoted byS. S is the boundary
of B. The symbolp + rS denotes the sphere or circle with center
p and radiusr.

In many cases, integral invariants, evaluated at the boundary point
p of a domainD, have the form of one of the two following convo-
lution integrals:

Ir(p) =

Z
p+rB

g(x)w(p−x)dx, I ′r(p) =

Z
p+rS

g(x)w(p−x)dx, (1)

whereg is a function associated with the domain (e.g., its indica-
tor function or the distance from the boundary), andw is a weight
function (e.g., a constant). The symboldx has various meanings,
depending on the domain of integration. E.g. in dimensionn = 3,
when integrating over the domainp + rB, it means a volume inte-
gral. In dimensionn = 2, when integrating overp + rS, it means
an arc length integral. In the remaining cases (n = 3, integral over
a sphere, andn = 2, integral over a disk)dx means an area integral.

As an example, both the area invariant and the Connolly function
(cf. Fig. 1) have the general form of Equation (1): we letg(x) =
1D(x) andw(x) = 1.

2B Integral invariants as functions of the kernel radius

For geometry processing applications, the multi-scale behaviour of
an integral invariant defined by (1) is important, which means the
change of its value, if the kernel radiusr varies. This leads us to
consider integral invariants as univariate functions of the kernel ra-
dius. A useful piece of information on these functions is the general
relation

d

dr
Ir(p) = I ′r(p), (2)

which follows immediately from the product formula for integrals:
Ir(p) =

R r

0
I ′ρ(p)dρ (see [Pottmann et al. 2007]). Another im-

portant topic is the asymptotic behaviour when the kernel radius
r tends to zero. [Pottmann et al. 2007] give a general recipe for
computing the first few terms in the Taylor expansion ofIr(p). In-
variants which are of this type are the area and volume functionals
(see below), geometry descriptors based on the distance function
(introduced in the present paper), and quantities used in principal
component analysis (cf. [Yang et al. 2006; Pottmann et al. 2007]).

2C Integral invariants as functions of the kernel center

When the radius used in the definition of an integral invariantIr(p)
or I ′r(p) is kept constant, then this invariant is a function of the
point p. Usually we are interested in the values of the invariant
when the pointp is situated on the surface under investigation. The
relations between integral invariants and geometric characteristics
of the surface (mostly curvatures), which one is interested in, are
no longer valid ifp is not contained in the surface.



Nevertheless we are interested in the behaviour of the invariant
whenp leaves the surface. The main reason for this is that in ac-
tual computations we are often concerned with imprecise or quan-
tized data, and the point for which integral invariants are eval-
uated may actually lie at some distance from the hypothetical
smooth surface under consideration. In order to estimate the ef-
fect of these perturbations, we compute the gradient vector∇Ir

= ( ∂
∂p1

, ∂
∂p2

, ∂
∂p3

) ·
R
p+rB

g(x)dx, and the same forI ′r(p). The
magnitude of perturbation is then measured byIr(p + ∆p) =
Ir(p) + 〈∆p,∇Ir(p)〉 + O(2), whereO(2) denotes second or-
der terms and〈 , 〉 is the scalar product of vectors. Consequently,
we can give a simple estimate for the change∆Ir in the integral
invariant in terms of the change in the pointp: Approximately,
‖∆Ir‖ / ‖∆p‖ · ‖∇Ir‖.

3 Facts about curves and surfaces

This material is found e.g. in the monographs by [do Carmo 1976]
or [Spivak 1975]. References for the facts on distance functions
quoted below are [Ambrosio and Mantegazza 1998] and [Pottmann
and Hofer 2003].

3A Planar curves

For every pointp of a sufficiently smooth curvec we can choose
a Cartesian coordinate system withp as origin, such that thex1

axis is tangent to the curve (the Frenet frame). With respect to such
coordinates, the curve may be written as the graph of a function
x2 = f(x1), with f(x1) = αx2

1 + βx3
1 + γx4

1 + O(x5
1). With

the well known formulaκ = f ′′(1 + (f ′)2)−3/2 for the curva-
ture we can relate the coefficients in the Taylor expansion with the
derivatives of the curvatures; the result is

x2 =
κ

2
x2

1 +
κ′

6
x3

1 +
κ′′ − 3κ3

24
x4

1 + O(x5
1). (3)

Here the derivativesκ′ and κ′′ of the curvature are with respect
to x1. For x1 = 0 this is also the derivative with respect to arc
length. If the curve is of lesser smoothness, this Taylor expansion
terminates not withO(x5

1), but earlier. Because we need it later, we
record in this place the coordinate of the intersection pointsc+

r and
c−r of this curve with the circlex2

1 + x2
2 = r2 (see Fig. 2):c+

r =

(r, κ
2
r2)+(−κ2

8
, κ′

6
)r3 +(−κκ′

12
, κ′′

24
)r4 +O(r5). The coordinates

of c−r are found by substituting−r for r in the previous formula.

3B Surfaces

Next, we discuss coordinate systems for surfaces. For every point
p of a sufficiently smooth surfaceΦ there is a coordinate system
with p as origin, such that the surface can be written as the graph
of a function

x3 =
1

2
(κ1x

2
1 + κ2x

2
2) + R(x1, x2), (4)

whereκ1, κ2 are the principal curvatures of the surface in the point
p, and the remainder termR(x1, x2) is bounded by|R(x1, x2)| ≤
C · (

p
x2

1 + x2
2)

3, i.e., it is of third order. Mean curvatureH and
Gaussian curvatureK are defined byH = κ1+κ2

2
, K = κ1κ2. If

the surface is the boundary of the domainD, we assume that the
positivex3 axis points to the inside ofD, so that a convex domain
gets nonnegative curvatures. Thedistanceof a pointx ∈ R3 from
the surface can be given a sign, depending on whetherx is insideD
or outside:dist(x, Φ) > 0 ⇐⇒ x 6∈ D. Recall that the distance,
signed or not, fulfills the eikonal equation‖∇dist(x, Φ)‖ = 1. A

Taylor approximation of the signed distance function is given by

dist(x, Φ) =
1

2
(κ1x

2
1 + κ2x

2
2)− x3 + O(3), (5)

whereO(3) means a third order remainder term (we usef(x) =
O(k) as an abbreviation off(x) = O(‖x‖k) as‖x‖ → 0). Note
that this Taylor expansion does not contain any quadratic terms
which involvex3 (cf. [Ambrosio and Mantegazza 1998; Pottmann
and Hofer 2003]).

3C Space curves

A space curvec(u) has several orthonormal frames associated with
it. For the purposes of this paragraph, we assume thatu is an arc
length parameter, and a dot indicates differentiation with respect to
u. Then the Frenet frame{t,h,b} is defined byt = ċ, ṫ = κh,
andb = t × h. Hereκ is the curvature. Further,̇b = −τh,
whereτ is the torsion of the curve. By rotation of the Frenet frame
about the unit tangent vectort we get the class of frames{t, e1, e2}
with e1 = cos φh + sin φb ande2 = − sin φh + cos φb. If we
choose the functionφ such thatφ̇ = −τ , then bothė1 andė2 are
proportional tot, and{t, e1, e2} is called a rotation-minimizing
frame.

Now consider the ruled surfaceΨ1 parametrized byg1(u, v) =
c(u) + ve1(u). By differentiation we see that the partial deriva-
tivesg1,u, g1,v and therefore the tangent plane ofΨ1 in the point
g1(u, v) is spanned byt(u) ande1(u). As there is no dependence
on v, the surface is developable. An analogous result is true for
the surfaceΨ2 which is defined viae2. It follows that the planes
orthogonal toc are orthogonal to bothΨ1 andΨ2, and therefore

dist(x, c)2 = dist(x, Ψ1)
2 + dist(x, Ψ2)

2. (6)

As the surfaceΨ1 is developable, its principal frame in the point
c(u) = g1(u, 0) is {t, e1, e2}, with e2 as normal vector. By
Meusnier’s theorem, the principal curvatures have the valuesκ1 =
κ cos ^(h, e2) = κ cos(φ + π/2) andκ2 = 0. For the surface
Ψ2, the principal frame is{−t, e2, e1}, and the principal curva-
tures have the valuesκ1 = κ cos ^(h, e1) = κ cos φ andκ2 = 0.
This information will be useful when computing distance functions.

3D Curves in surfaces

A curvec contained in a surfaceΦ has an associatedDarboux frame
{t, e2,n}, wheret is the unit tangent vector ofc, n is the sur-
face normal vector, ande2 = n × t. If the curve is traversed
with unit speed, theṅt = κge2 + κnn, ė2 = −κgt + τgn,
and ṅ = −κnt − τge2. The coefficient functionsκg, κn, τg

which occur here are the geodesic curvature, normal curvature,
and geodesic torsion of the curvec w.r.t. Φ, respectively. In this
place we would like to mention the famous Gauss-Bonnet formula:
For a closed curvec with interior D ⊂ Φ, we have the identityH

c
κg = 2π −

R
D

K(x) dx, with K as the Gaussian curvature of
the surfaceΦ.

4 Simple invariants for planar curves

4A Area invariant and Connolly function

Given a planar curvec which occurs as the boundary of the planar
domainD, and a pointp ∈ c, [Manay et al. 2004] define thearea
invariantas the invariantIr according to Equation (1) withg = 1D

andw(x) = 1 = const., i.e.,

Ar(p) :=

Z
p+rB

1D(x) dx. (7)
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Figure 2: Deriving the gradient of the area invariant. (a) The pointp
is moved towardsp+d. (b) This is equivalent to moving the curve
c in the opposite direction. (c) The area difference is highlighted.
(d) The apparent lengthLd of the chordc+

r − c−r when viewed in
directiond contributes to the area difference.

Ar is the area of the intersectionD ∩Br(p) of the curve’s interior
and the kernel diskBr(p). The perimeter of the circular arcD ∩
(p + rS) defines the invariant

CAr(p) :=

Z
p+rS

1D(x) dx =
d

dr
Ar(p), (8)

(see Fig. 1). The differential relation follows from (2). The name
“Connolly function” is given toCAr(p)/r. It has been shown by
[Cazals et al. 2003] that there is the Taylor expansion

CAr = πr − κr2 + O(r3). (9)

By integrating (9), we get

Ar =
π

2
r2 − κ

3
r3 + O(r4). (10)

This is a more precise estimate thanAr ≈ r3 arccos(rκ/2), which
was given by [Manay et al. 2004], in the sense that these two ex-
pressions have different Taylor expansions asr → 0.

It is worth noting how the behaviour of both the area invariant and
the Connolly function changes if the curve under consideration is
not smooth. Of course, formulas (9) and (10) are useless. Sup-
pose that the curvec is still smooth, but consists of two curvature
continuous pieces joined together at the pointp. If left and right
limit curvatures have valuesκ− andκ+, then Equation (9) is obvi-
ously still valid, with the arithmetic mean of the left and right hand
curvature instead ofκ. If the curve is not even smooth, but piece-
wise smooth with an opening angleα different from 180 degrees,
then the perimeter of the circular arc which lies inside the curve is
shortened or lengthened accordingly, and we arrive at

CAr = αr − κ− + κ+

2
r2 + O(r3), (11)

Ar =
α

2
r2 − κ− + κ+

6
r3 + O(r4), (12)

where the second equation is found by integrating the first one. The
caseα = π andκ− = κ+ = κ yields the smooth case.

4B The gradient of the area functional

Following the general discussion of Section 2C, we are interested
in the change of the area invariantAr(p), if the pointp varies. We

pick a directiond and considerAr(p+d). Figures 2.(a)–(d) show
the change in area inflicted by the change inp: We have

Ar(p + d)−Ar(p) = Ld · ‖d‖+ O(‖d‖2), (13)

whereLd is the apparent length of the curve segmentc∩ (p+ rB)
when viewed from directiond (see Fig. 2).

Denote the two points of intersection of the circlep + rS with the
curvec by c−r , c+

r , and consider thechord vector

cr(p) = c+
r − c−r . (14)

With the symbolc⊥ for a rotation about 90 degrees, the apparent
lengthLd of the curve segment visible in Fig. 2 is now expressed
asLd = 〈c⊥r , d

‖d‖ 〉. This leads to the following theorem:

Theorem 1 The gradient of the area invariantAr(p) with respect
to p is obtained by rotating the chord vector about 90 degrees. The
gradient and its norm are expressed by

∇pAr = c⊥r = (c+
r − c−r )⊥, (15)

‖∇Ar(p)‖ = 2r − κ2

4
r3 + O(r4). (16)

Proof. The discussion preceding the theorem implies that the
change in area is∆Ar(p) = 〈c⊥r ,d〉+ O(2), so the area gradient
equalsc⊥r . For the computation of‖∇Ar‖ = ‖c+

r − c−r ‖ we use
the Frenet frame associated with the pointp and the coordinates of
c+

r andc−r given by Section 3A: We get

cr = (2r − κ2r3/4 + O(r4), O(r3))T (17)

and compute the norm of the gradient:‖c⊥r ‖ = ‖c‖ = [(2r −
κ2r3/4 + O(r4))2 + O(r6)]1/2 = 2r[1− κ2r2/4 + O(r4)]1/2 =
2r(1− κ2r2/8 + O(r4)), by the binomial series. �

The proof of Theorem 1 shows a phenomenon which occurs often
when computing with Taylor expansions: Thex1 coordinate of the
vectorcr is known up to third order, whereas thex2 coordinate
has only the general termO(r3) there. It would appear that we
cannot compute the norm up to third order at all. Nevertheless, the
computation shows that the third order term in thex2 coordinate is
irrelevant.

5 Simple invariants for surfaces

5A The volume and surface area descriptors

3D counterparts of the invariantsAr(p), CAr(p) are thevolume
descriptorVr(p) and thesurface area descriptorSAr(p) of a point
p on the boundary surface of a domainD:

Vr(p) =

Z
p+rB

1D(x) dx, (18)

SAr(p) =

Z
p+rS

1D(x) dx =
dVr(p)

dr
. (19)

The relation of these quantities to mean curvature is discussed in
[Hulin and Troyanov 2003] and [Pottmann et al. 2007]:

Vr =
2π

3
r3 − πH

4
r4 + O(r5), SAr = 2πr2 − πHr3 + O(r4).

(20)
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Figure 3: The apparent areaAr,d enclosed by a space curve(p +
rS) ∩ Φ when seen in direction of the vectord is found as area
enclosed by the planar curve which arises when projecting the given
space curve onto a reference plane orthogonal tod. The area is
endowed with a sign, depending on the orientation of the boundary
curve. With the area vectorar, we haveAr,d = 〈ar,d/‖d‖〉.

The normalized sphere area descriptorSAr/r2 has been introduced
by Connolly [Connolly 1986] for molecular shape analysis. For an
application in the same field it has been studied by [Cazals et al.
2003].

Equation (20) can be used to estimate the mean curvature. We de-

fine the mean curvature estimatorseHr(p) andHee r(p) at scaler by
deleting higher order terms in the Taylor expansions in (20):

eHr(p) =
8

3r
− 4Vr(p)

πr4
, Hee r(p) =

2

r
− SAr(p)

πr3
. (21)

In the limit r → 0, both eHr(p) andHee r(p) tend to the actual mean
curvatureH(p).

Like in the curve case, we would like to study the behaviour
of the volume descriptor for surfaces which are only piecewise
smooth and piecewise curvature-continuous. Consider a pointp
at a sharp edge, where two smooth surface patches meet. The open-
ing angle of that edge shall beα. In the smooth case (no edge),
α = π. Clearly, the Taylor series of the volume descriptor starts
with 2αr3/3, but the higher order terms are not so obvious. A more
detailed analysis shows that the curvature of the edge relative to the
adjoining surfaces is irrelevant for ther4 term, and that the volume
descriptor has the formVr = 2α

3
r3− π(H−+H+)

8
r4 +O(r5). Here

H+ andH− are the mean curvatures to either side of the edge. The
case of a sharp corner is more complicated.

5B The gradient of the volume functional

We are now interested in the gradient∇Vr(p) of the volume de-
scriptor with respect top. We consider the surfaceΦ which is the
boundary of the domainD. As in Section 4B, we choose a direc-
tion d and investigate the differenceVr(p + d) − Vr(p). The 2D
counterpart of this analysis is illustrated by Fig. 2: the difference of
volumes is given by

Vr(p + d)− Vr(p) = Ar,d‖d‖+ O(‖d‖2), (22)

whereAr,d is the apparent oriented area of the surface patchΦ ∩
Br(p) when viewed from the directiond. This area is the same
as the oriented area enclosed by the projection of the closed curve

cr = Φ ∩ ∂Br(p) onto any plane which is orthogonal tod. Let
cr(u) be a parameterization of this curvecr on the sphereS2

r (p).
We consider itsarea vector

ar(p) =
1

2

I
cr

x× dx =
1

2

Z
I

cr(u)× ċr(u) du. (23)

It is well known that the apparent areaAr,d can be expressed as
Ar,d = 〈ar(p), d

‖d‖ 〉, which leads to∆Vr(p) = 〈ar(p), ∆p〉 +
O(2).

Theorem 2 The gradient of the volume descriptorVr(p) with re-
spect to the pointp is the area vectorar(p), whose definition in
terms of the intersection curveΦ ∩ (p + rS) is given by Equation
(23):

∇Vr(p) = ar(p). (24)

If n(p) is a unit normal vector of the surfaceΦ in the pointp, which
points towards the inside of the domainD, then the area vector has
the following Taylor expansion:

ar(p) = π
h
r2 − 3H2 −K

8
r4

i
n(p) + O(r5). (25)

Proof. Equation (24) follows directly from the discussion preced-
ing the theorem. In order to investigate the behavior ofar for
r → 0, we express the intersection curvecr in the principal frame
associated with the pointp, and we employ cylinder coordinates
(ρ, φ, x3), such thatx1 = ρ cos φ, x2 = ρ sin φ. The point
of the curvecr which lies in the planeφ = const according to
(4) is found by intersecting the curvex3 = 1

2
(κ1(ρ cos φ)2 +

κ2(ρ sin φ)2) + O(ρ3) with the circleρ2 + x2
3 = r. From the

coordinates ofc+(r) in Section 3A we read off that this point in
cylinder coordinates is given byρ(φ) = r − 1

8
κ2

n(φ)r3 + O(r4),
x3(φ) = 1

2
κn(φ)r2 + O(r3), where κn(φ) = κ1 cos2 φ +

κ2 sin2 φ. When we return to Cartesian coordinates, we get a point
cr(φ) of the intersection curve, and the area vector is computed

by integration:ar(p) = 1
2

2πR
φ=0

[ρ(φ) cos φ, ρ(φ) sin φ, x3(φ)]T ×

d
dφ

[ρ(φ) cos φ, ρ(φ) sin φ, x3(φ)]T . Carrying out this integration
yields Equation (25). �

6 Invariants for curves in surfaces

Section 4A dealt with the area invariant for a planar curvec, which
arises as the boundary of a domainD. The area invariantAr(p)
means that part ofD whose distance fromp does not exceedr.

The same question can be asked if both the domainD and its
boundary curvec are contained in a smooth surfaceΦ. We define

Ar(p, Φ) := Area((p + rB) ∩ Φ). (26)

It is interesting that the Taylor expansion of this area invariant given
by the following theorem does not feature surface curvatures in its
first two terms.

Theorem 3 The area invariant of a curvec contained in a smooth
surfaceΦ has the Taylor expansion

Ar(p, Φ) =
π

2
r2 − κg

3
r3 + O(r4), (27)

whereκg is the signed geodesic curvature of the curvec (i.e., the
curvature of the projection ofc onto the tangent plane in the point
p).



Proof. We use a coordinate frame withp as origin andx3 axis or-
thogonal toΦ. Without loss of generalityΦ has the parametriza-
tion x3 = g(x1, x2). We use the notationg,i = ∂g

∂xi
and

ρ =
p

x2
1 + x2

2. As both thex1 andx2 axes are tangent toΦ,
g,1 = O(ρ), g,2 = O(ρ). The surface area differential equals

dx =
q

1 + g2
,1 + g2

,2dx1 dx2 = (1 + O(ρ2))dx1 dx2.

A domainD in the surface has a corresponding domaineD in the
x1, x2 plane, which arises as projection ofD. If the diameter ofD
is of magnitudeO(ρ2), then the area ofD, which is computed asR eD dx, obviously equals

R eD dx1 dx2 + O(ρ4).

It follows that we can compute the area invariantAr(p, Φ) to an ac-
curacy ofO(ρ4), if we project the curvec under consideration into
the x1, x2 plane. The result now follows directly from Equation
(10). �

We notice that the last paragraph of the preceding proof shows that
the area of the surface patchΦ ∩ (p + rB) equals

Ar(p) = r2π + O(r4), (28)

(which is e.g. Equ. (21) of [Pottmann et al. 2007]).

Remark 1 The area invariant for curves in surfaces employs those
points of the surface whose distance from the pointp, measured in
Euclidean space, does not exceedr. We could also ask for the points
whose distance, measured inside the surfaceΦ, does not exceedr.
As it turns out, Theorem 3 remains unchanged. The reason for this
is that the area of a geodesic disk (i.e., the points at distance≤ r
from p) differs from the area of a Euclidean disk only by a term
of magnitudeO(r4): According to the formulae of J. Bertrand and
V. A. Puiseux (see p. 127 of [Strubecker 1969]), that area has the
expansion GAr = πr2− π

12
Kr4 +O(r5). HereK is the Gaussian

curvature of the surface. We should note that the cost of computing
geodesic disks usually is too high to merit their use if all we want
to compute is curvatures.

7 Invariants from distance functions

In applications where we have access to a distance function, it
makes sense to employ this function or functions derived from it
for the definition of integral invariants. We discuss several ways to
do this.

7A Invariants composed from the signed distance

Letdist(x, Φ) be the signed distance function associated with a sur-
faceΦ: dist(x, Φ) is positive ifx lies outside the domain bounded
by Φ, and negative ifx lies inside. The absolute value of the signed
distance equals the distance fromΦ in the ordinary sense.

We employ the general method of Equation (1) to define thesigned
distance integralDr. Letting g(x) = dist(x, Φ) andw(x) = 1
leads to

Dr(p) =

Z
p+rB

dist(x, Φ) dx. (29)

The relation of these descriptors to shape characteristics is de-
scribed as follows:

Theorem 4 The signed distance integralDr(p) defined by Equa-
tion (29)has the Taylor expansionDr = 4πH

15
r5 + O(r6). HereH

is the mean curvature of the surfaceΦ in the pointp.

Proof. We consider the principal coordinate frame associated with
the pointp and the quadratic Taylor polynomial of the signed dis-
tance function given by Equation (5). Obviously,Dr =

R
rB

`
−

x3+
1
2
(κ1x

2
1+κ2x

2
2)+O(ρ3)

´
dx, with ρ = (x2

1+x2
2+x2

3)
1/2. The

volume integral ofO(ρ3) over a volume of sizeO(r3) is bounded
by O(r6). Computation of the integrals of the functionsx3, x2

1, x2
2

finally yields the expression forDr. �

Note that the descriptorDr is related to mean curvature, just as the
volume descriptor, which moreover is more stable (see the discus-
sion below). Figure 4 illustrates the similarity between these two
descriptors. The sphere integralSDr corresponding toDr by dif-
ferentiation has the Taylor expansion4πH

3
r4 + O(r5).

D0.8 D0.4 Dnoise
0.4

Dnoise
0.8 V0.8 V0.4

Figure 4: Comparison of the descriptorDr derived from the signed
(un-squared) distance the volume descriptorVr. Both are related to
mean curvature. From top left:Dr for two different kernel radii;
Dr for two different kernel radii with artificial noise added;Vr for
two different kernel radii. It is clearly visible that all descriptors try
to capture the same geometric property (in this case, mean curva-
ture), and that the effect of adding noise is almost eliminated when
choosing a bigger neighbourhood for computation. For the kernel
ball size compared to the bunny, see Fig. 5.

7B Invariants composed from the squared distance

We now use thesquareof the signed distance function for the defi-
nition of integral invariants. We study thesquared distance integral

D2,r(p) =

Z
p+rB

dist(x, Φ)2dx, (30)

and the corresponding squared sphere distance integralSD2,r(p)
defined by integration overp + rS. The following theorem de-
scribes their relation to the curvatures of the surfaceΦ.



Theorem 5 The integral invariantsD2,r(p) and SD2,r(p) have
the Taylor expansions

D2,r(p) =
4π

15
r5 − π

105
(κ1 − κ2)

2r7 + O(r8), (31)

SD2,r(p) =
4π

3
r4 − π

15
(κ1 − κ2)

2r6 + O(r7). (32)

Hereκ1 andκ2 are the principal curvatures of the surfaceΦ in the
pointp.

Proof. It turns out that in order to derive the first two nontrivial
terms of the Taylor polynomial ofD2,r(p) we need to know the
Taylor polynomial ofdist(x, Φ)2 up to order four, which can be
obtained from a third order Taylor polynomial ofdist(x, Φ). We
use the principal frame associated with the pointp and write down
a third order Taylor polynomial for the surfaceΦ, thus extending
Equation (4):

x3 =
1

2
(κ1x

2
1 + κ2x

2
2) +

1

6

X
i+j=3

dij0x
i
1x

j
2 + O(4). (33)

We are not interested in the geometric meaning of the coefficients
dij0. The 3rd order Taylor polynomial of the signed distance func-
tion has the following general form:dist(x, Φ) = −x3+

1
2
(κ1x

2
1+

κ2x
2
2) + 1

6

P
i+j+k=3 dijkxi

1x
j
2x

k
3 +O(4), where the coefficients

dijk are taken from (33) in casek = 0. This is because the zero
level set ofdist(x, Φ) coincides with the surface described by (33).
Once the surface is given, the coefficientsdij0 are known, and it
turns out that the remaining coefficientsdijk for k 6= 0 can be com-
puted by requiring the eikonal equation‖∇dist(x, Φ)‖ = 1 for the
distance function. Comparing coefficients‖∇dist(x, Φ)‖2 = 1
yields the following expressions for the distance and its square:

dist(x, Φ) = −x3 +
1

2
(κ1x

2
1 + κ2x

2
2) +

x3

2
(κ2

1x
2
1 + κ2

2x
2
2)

+
1

6

X
i+j=3

dij0x
i
1x

j
2 + O(4),

dist(x, Φ)2 = x2
3 − x3(κ1x

2
1 + κ2x

2
2)− x2

3(κ
2
1x

2
1 + κ2

2x
2
2)

− x3

3

X
i+j=3

dij0x
i
1x

j
2 +

1

4
(κ1x

2
1 + κ2x

2
2)

2 + O(5).

Integration over the ballrB yields the formula forD2,r, and the
one forSD2,r follows by differentiation. Note that the integrals
involving the coefficientsdij0 are zero. �

Theorem 5 allows to define estimatorsek2 andkee2 for the squared
difference(κ1 − κ2)

2 of principal curvatures. We neglect terms of
higher order and let

ek2(p) =
1

πr7
(28πr5 − 105 D2,r(p)), (34)

kee2(p) =
1

πr6
(20πr4 − 15SD2,r(p)). (35)

7C The squared distance from curves in 2D and in 3D

The squared distance function of a planar curve has properties sim-
ilar to the respective function associated with a surface. Thus it is
easy to repeat the discussion of Section 7B for the case of planar
curves and derive an analogue of Theorem 5. The extension of this
result to space curves is also not difficult, as shown below. Smooth
space curves do not separate space into two components, so the dis-
tance from a space curve is always considered to be nonnegative.

D2,0.4 D2,0.8

SD2,0.4 SD2,0.8

Figure 5: Geometry descriptors derived from the squared distance.
These figures illustrate the volume integralsD2,r for two different
kernel radii, and the surface integralsSD2,r, for the same kernel
radii. The higher resolution in case of smaller kernel balls is clearly
visible. These descriptors estimate the difference of principal cur-
vatures.

Theorem 6 If c is a planar or spatial curve, the squared distance
integralD2,r(p) is related to its curvatures viaZ

p+rB

dist(x, c)2dx =
π

4
r4 − κ2π

96
r6 + O(r7) or

Z
p+rB

dist(x, c)2 dx =
8π

15
r5 − κ2π

105
r7 + O(r8),

respectively. Hereκ is the curvature ofc in the pointp.

Proof. We use (3) as a starting point to derive a 3rd order Taylor
polynomial of the unsigned distance from the curvec. This is com-
pletely analogous to the proof of Theorem 5. Its square yields the
4th order approximation of the squared distance:

dist(x, c)2 ≈ x2
2 + κ2(

x4
1

4
− x2

1x
2
2)− x2(κx2

1 +
κ′

3
x3

1). (36)

This formula is very similar to the corresponding formula for sur-
faces given above. We integrate this expression over a disk of radius
r and get the result for planar curves.

For a space curvec we use (6) to express the squared distance from
c as the sum of squared distances from the developable surfaces
Ψ1, Ψ2 swept by the motion of a rotation-minimizing frame (r.m.f.)
e1, e2, as discussed in Section 3C. In the point under consideration,
we let the r.m.f. coincide with the Frenet frame, so thatt, e1, e2 and



t, e2, e1 are principal frames forΨ1, Ψ2, respectively, and these
surfaces then have the principal curvatures(0, 0) and (κ, 0) (cf.
[do Carmo 1976]).

We now use the proof of Theorem 5 to get Taylor expansion of the
distances fromΨ1 andΨ2: dist(x, Ψ1)

2 = x2
3 + (odd)+O(5) and

dist(x, Ψ2)
2 = x2

2−κ2x2
2x

2
1 +

κ2x4
1

4
+ (odd)+O(5). Here “odd”

means a linear combination of termsxi
1x

j
2x

k
3 where at least one of

i, j, k is odd. Now (6) implies that

dist(x, c)2 = x2
2 + x2

3 + κ2(
x4

1

4
− x2

1x
2
2) + (odd)+ O(5). (37)

This expression is similar to (36), the only relevant difference being
thex2

3 term. Integration over the ballrB yields the desired result.
�

8 Stability analysis

All invariants considered in this paper are obtained by integration
rather than by differentiation, which lets us expect robust behaviour
with respect to perturbations and noise – at least, a behaviour which
is more robust than that of quantities computed by numerical dif-
ferentiation. In this section we investigate this stability problem
from a theoretical perspective. Experimentally, robustness proper-
ties have been confirmed by the successful usage of curvature mea-
sures derived from integral invariants in algorithms for solving the
kinematic registration problem (see e.g. [Gelfand et al. 2005]), for
establishing surface correspondences for 3D puzzles (see [Huang
et al. 2006]), and others.

Let us start with some general remarks. Our integral invariants (de-
scriptors) compute a value which is defined by a kernel ball and a
given surface. Mostly only that part of the surface which lies inside
the kernel ball enters the definition. We discuss how the descriptor
value changes if either the kernel or the surface undergoes a pertur-
bation. Clearly instead of moving the kernel ball, one could also
move the surface in the opposite direction, so we confine ourselves
to perturbations of the surface. Without loss of generality we con-
sider onlynormal variationsof the form

p∗ = p + δ(p)n(p), (38)

wherep is a point on the surface,n(p) is the unit normal vector
of the pointp and pointing outside (with respect to the domainD),
andδ(p) is the amount of perturbation.

Ψ

Φ

Ψ∗

p

p∗

ω(x)

x

x∗

p

p∗

Figure 6: Perturbationp∗ = p + δ(p)n(p) of a surfaceΦ and its
influence on the volume descriptor. Left: The volume∆V between
surface patchesΨ andΨ∗. Right: Correction volumesVcorr.

8A Stability of the volume descriptor: Theory

Stability computations for the volume descriptor are very much re-
lated to the volume formula for a normal variation of a surface ac-
cording to (38): IfΨ is a part of the surfaceΦ, then the volume

change ‘directly overΨ’ (see Fig. 6) has the form

∆V =

Z
Ψ

(δ − δ2H +
1

3
δ3K)dx. (39)

Here H, K are the mean and Gaussian curvatures, respectively.
Note that∆V is an oriented volume, asδ can be positive or neg-
ative. The formula is valid only as long as the surface offsets are
regular.

The surface areaAr(p) inside the kernel ballp + rB, which has
been computed in Equation (28), is used in the definition of amean
perturbationδr and amaximum perturbationδmax:

δr(p) =
1

Ar(p)

Z
Φ∩(p+rB)

δ(x) dx, (40)

δmax = max
x∈Φ∩(p+rB)

|δ(x)|. (41)

Theorem 7 If a perturbationδ(x) is applied to a surfaceΦ, then
the change in the volume descriptorVr(p) can be expressed in
terms of mean curvatureH, mean perturbationδr(p), and max-
imum perturbationδmax. For a zero mean value perturbation (i.e.,
δr = 0), we have

|∆Vr| ≤ r2πδ2
max

“
|H|+ |κ1|+ |κ2|

4
+ O(δmax) + O(r)

”
.

(42)

In general,

∆Vr = r2π(δr + O(δ2
max) + O(δr2)). (43)

Proof. The change in volume when a surface is perturbed, consists
of the integral (39) over the surface patchΦ∩ (p+ rB), illustrated
by Fig. 6, left, together with the volume of the ring-shaped part
illustrated by Fig. 6, right (correction volume). Any cross section
of this correction volume is triangle-shaped of first order. Its area is
given by ‘(baseline times height)/2’, i.e.,

A∆(x) = δ(x)2 cot ω/2 + O(δ3). (44)

Herex is a point of the intersection curvecr = Φ∩ (p+ rS). The
correction volume therefore reads

Vcorr =

I
cr

1

2
δ(x)2 cot ω(x)dx + O(r2δ3). (45)

We want to relateVcorr to the mean curvature ofΦ. For
that purpose, we note that Equ. (19) of [Pottmann et al. 2007]
gives the following parameterization of the curvecr: cr(φ) =
(ρ cos φ, ρ sin φ, z), with ρ = r + O(r3) and z = O(r2). By
differentiating (4), we get the surface’s normal vector in the point
cr(φ): nr(φ) = [−rκ1 cos φ + O(r2),−rκ2 sin φ + O(r2), 1]T .
The intersection angleω(φ) between surface and sphere then obeys
sin ω(φ) = −〈nr(φ), cr(φ)〉/‖nr(φ)‖‖cr(φ‖. By some simple
computations it follows that

cot ω(φ) =
r

2
(κ1 cos2 φ + κ2 sin2 φ) + O(r2). (46)

The arc length differential of the curvecr(φ) readsds = (1 +
O(r2))dφ. We get

Vcorr =

Z 2π

0

δ2

2

` r

2
(κ1 cos2 φ + κ2 sin2 φ) + O(r2)

´
dφ + O(·)

≤ δ2
max

r2π

4
(|κ1|+ |κ2|) + O(r3δ2

max) + O(r2δ3
max).



Another term which occurs in the computation of the volume
change according to (39) is the integral

R
Ψ

δ2H. If x is at dis-
tance at mostr from the midpointp, thenH(x) = H(p) + O(r).
Therefore,Z

Φ∩(p+rB)

δ2Hdx ≤ δ2
maxr

2πH + O(δ2
maxr

3). (47)

We have now collected sufficient properties of the various integrals
involved to show the statement of the theorem. The total volume
change is bounded by|

R
Φ∩(p+rB)

(δ + δ2H + O(δ3)| + |Vcorr|.
The dominant term equals the surface patch arear2π(1 + O(r2))
times mean perturbation – the dominant error term being the surface
integral ofHδ2. The latter is of orderr2δ2

max. In case the mean
perturbation is zero, the volume change is dominated by

R
δH2 +

Vcorr. Thus the theorem is proved. �

Remark 2 The results of Theorems 7 and 2 agree, which is seen
as follows. The gradient vector of the volume descriptor is given
by πr2n(p) plus higher order terms, wheren(p) is the normal
vector of the surface under consideration. When evaluating the
volume descriptor not for a boundary pointp, but for a pointp +
∆p, Theorem 2 shows that the change in the volume descriptor
approximately equalsπr2〈n, ∆p〉. The same value is also given
by Theorem 7, since the changep → p + ∆p is equivalent to
moving the surface by the amount ofδr = 〈∆p,n〉 in orthogonal
direction.

8B Stability of the volume descriptor: Discussion

In order to assess the significance of Theorem 7 and also Theorem 2
which is a special case, we study the effect of a surface perturbation
on the mean curvature estimatoreH defined by Equation (21). In
case of a zero mean perturbation, we get

|∆ eHr|δr=0 =
4|∆Vr|

πr4

≤ (
δmax

r
)2(4|H|+ |κ1|+ |κ2|+ O(r) + O(δmax)). (48)

The relative changein the mean curvature estimator consequently
is given by

|∆ eHr|δr=0

max(κ1, κ2)
≤ (

δmax

r
)2(6 + O(r) + O(δmax)). (49)

We see that the stability expressed by Theorem 7 and Equations
(48), (49) is quite good, when we consider perturbations smaller
than the kernel radius, i.e.,δmax/r � 1. Zero mean perturbations
occur e.g. in the form of noise, and also as discretization artifacts.
The stability encountered here is the best for curvature estimators
so far.

In the case of a systematic component in the perturbation (i.e.,
nonzero meanδr(p)), the change in the mean curvature estimator
has the following form:

∆ eHr ≤
4

r

δr + O(δ2
max) + O(δrr

2)

r

=⇒ ∆ eHeH ≤ 4
eH−1

r

“δr + O(δ2
max)

r
+ O(rδr)

”
.

This shows that the descriptoreH is stable against perturbations of
magnitudeδr, if the following two conditions hold:

– (i) δr is small compared to the kernel radiusr; and
– (ii) the estimated mean curvature radiuseH−1 is of the same mag-
nitude or smaller thanr.

If eH is employed in feature recognition procedures, then a region
of higher mean curvature, i.e., afeature, is more likely to persist
through perturbations than a non-feature. This behaviour is exactly
what is needed from a robust curvature estimator.

Remark 3 The significance of the stability inequalities presented
here lies in the fact that robustness against perturbations is quan-
tified in terms of the magnitude of the perturbation alone, without
reference to the perturbation’s derivatives.

Remark 4 This allows to draw a further conclusion: If a real data
set can in theory be seen as a perturbation of a much smoother
one, then the previous paragraphs apply. Therefore, the mean cur-
vature estimatoreH defined via a certain kernel radiusr actually
measures, with the bounds given above, the mean curvature of this
hypothetic smooth surface.

8C Stability of the sphere area descriptor: Theory

The sphere area descriptorSAr(p) is the derivative of the volume
descriptorVr(p) with respect to the kernel radiusr and thus cannot
be expected to have the same amount of stability. One source of
instability is a possibly near-tangential intersection between surface
and kernel sphere in case of a kernel radius which is of the same
magnitude or smaller than the curvature radii of the surface.

If this intersection angle “ω” is known, the deviation of the inter-
section curve from its unperturbed state can be quantified. In the
limit r → 0, the intersection angle tends to 90 degrees, but in gen-
eral it is unknown. Nevertheless, we first consider the deviationδc

of the intersection curve as ifω were known. The reason for that is
that a bound on the maximum curve perturbationδc,max leads to a
reasonable bound on the perturbations inflicted on the sphere area
descriptor. By elementary geometry,

δc(x) =
δ(x)

sin ω
+ O(δr2). (50)

As the kernel radius tends to zero, Equation (46) together with
1/ sin ω =

√
1 + cot2 ω implies that δc(x) ≈ δ(x)

`
1 +

r2

4
(κ1 cos2 φ + κ2 sin2 φ)2

´
, whereφ is the polar angle associ-

ated with the intersection pointx. We conclude that

δc,max ≤ δmax(1 + O(r2)) (r → 0). (51)

Note that the previous equation applies only in the limit, and that
the magnitude of the quadratic terms depends on the curvatures of
the surface.

Theorem 8 A perturbationδ(x) of the given surface causes the
intersection curvecr to move sideways by an amountδc(x), the
mean value of which is denoted byδc. The sphere area descriptor
SAr(p) changes via

|∆SAr(p)|δ̄c=0 ≤ πrδ2
c,max

“ |H|
2

+ O(r) + O(δc,max)
”

(52)

∆SAr(p) = 2πrδc

`
1 + O(r2) + O(δc,max)

´
depending on whether we have zero mean noise (δc = 0) or a sys-
tematic error (δc 6= 0). HereH is the mean curvature. Asr → 0,
replacing the curve perturbationδc by the surface perturbationδ
in formula (52) causes∆SAr to be multiplied by a factor of mag-
nitude1 + O(r2).



Proof. We consider an arc length parametrizationcr(s) of the in-
tersection curvecr, and associate the Darboux frame{t, e2,n}
with it (see Section 3D). As we use a coordinate system where
the center of the kernel sphere is the origin, the normal vectorn(x)
simply equals− 1

r
x. It follows thatṅ = 1

r
ċ, i.e., in the notation of

Section 3D,κn = −1/r andτg = 0. The perturbation causesc(s)
to move to the pointec(s), which has the general form

c̃(s) = c(s) cos δs(s) + re2(s) sin δs(s),

where the amount of perturbation is not expressed in terms of chord
length (that would beδc) but rather in terms of a polar angleδs.
Obviously we haverδs = δc of first order, and we also have
δc ≤ rδs. The exact relation follows from expanding the definition
δc(s) := ‖ec(s) − c(s)‖ and readsδc(s) = rδs(s)(1 + O(δ2

c )).
The change in surface area now is the oriented area of the spherical
domain parametrized byx(s, v) = cos v c(s) + r sin v e2(s), for
s ∈ [0, Lr] andv ∈ [0, δs(s)]. The surface area element can be
written as

dA = det(n,xs,xv) dvds

= det(n, t cos v + rκgt sin v,−c sin v + e2r cos v) dvds

= (r cos2 v − r2κg sin v cos v) dvds

(subscripts indicate differentiation, and we have used the formu-
lae of Section 3D). It follows that the change in surface area
∆SAr(p) =

R Lr

s=0

R δs(s)

v=0
dA equals

∆SAr(p) =

I
cr

h
r
sin 2δs + 2δs

4
− r2κg

1− cos 2δs

4

i
ds

=

I
cr

h
rδs − r2κg

δ2
s

2
+ O(rδ3

s)
i
ds.

Here we have terminated the sine and cosine series at their quadratic
terms. The Gauss-Bonnet theorem

H
κg = 2π − SAr/r2 and the

Taylor expansionSAr = 2πr2 − πHr3 + O(r4) together imply
that

H
r2κg = πHr + O(r2). As to

H
rδs we note that according

to Equ. (25) of [Pottmann et al. 2007], the perimeter of the path of
integration equalsLr = 2πr+O(r3), and the mean valueδc is de-
fined to equal 1

Lr

H
δc. Thus,

H
rδs =

H
δc(1+O(δ2

c )) = 2πr(1+

O(r2))(δc + O(δ3
c,max)) = 2πrδc + O(rδ3

c,max) + δcO(r3).
By summing up the casesδc = 0 and δc 6= 0 we get Equa-
tions (52). By (51) and the discussion preceding that formula,
δc,max = δ(1+O(r2)), so the statement about the limit caser → 0
follows. �

8D Stability of the sphere area descriptor: Discussion

In order to investigate how good or bad the inequalities (52) are, we
now consider robustness from the viewpoint of the curvature esti-

matorHee r, which is based on the descriptorSAr. A perturbation of

the surfaceΦ causes a change∆Hee r = ∆SAr/πr3. Consequently,

|∆Hee r|δ=0

H
≤ 1

2

`δc,max

r

´2
+ · · · , ∆Hee r

H
= 2

δc

r

H−1

r
+ · · · ,

(53)

where higher order terms are not written down. These equations
show that the robustness inherent in the sphere area descriptor is
nominally the same as for the volume descriptor (see Section 8B).
The difference is that we use the perturbationδc of the intersection
curve instead of the surface perturbationδ. Only asymptotically,
δc ≈ δ.

8E Stability of the squared distance integral

So far we have considered stability only for invariants which are
related to mean curvature. Fortunately, the squared distance integral
D2,r which has a relation not to mean curvature, but toκ1−κ2, also
exhibits sufficient stability for practical purposes. If the perturbed
surfaceΦ∗ is at distance≤ ε from the original surfaceΦ, then
obviously|dist(x, Φ∗)− dist(x, Φ)| < ε. With the implication

|d− d∗| ≤ ε =⇒ |d2 − d∗2| = |d− d∗|(d + d∗) ≤ ε(2d + ε)

the difference of squared distance integrals with respect toΦ and
Φ∗ reads

∆D2,r(p) ≤ ε

Z
p+rB

(2|dist(x, Φ)|+ ε)dx = 2εD+
r + ε2

4πr3

3
.

Here the quantityD+
r is the integral of theunsigneddistance func-

tion over the kernel ball. It would not be hard to relate it to cur-
vatures, using the Taylor expansion of the signed distance function
given in this paper, and the general method, presented by [Pottmann
et al. 2007], of integrating functions over that part of a kernel ball
which lies to one side of the given surface. However, it is obvious
that the dominant term inD+

r is given by the integral of|x3| over

the kernel ballrB, i.e., πr4

2
.

We investigate the effect of a surface perturbation in the geometry
descriptorek, which is based onD2,r, and which estimates|κ1−κ2|.
From (34) we get

∆(ek2) ≈ ∆D2,r(p)
105

πr7
≈ 105

r2

` ε

r
+

4

3
(
ε

r
)2

´
. (54)

As ek estimates a difference in curvatures, it has to be compared to
the curvature of the kernel sphere, i.e.,r−1. We therefore rewrite
the previous equation as

∆(ek2)

(0.0975 r)−2
≈ ε

r

`
1 +

4

3

ε

r

´
. (55)

Again, we consider perturbations withε� r. We see that the right
hand side is bounded in terms ofε/r. In contrast to the mean cur-

vature estimatorseH andHee , the robustness inequality forek relates
the change in the geometry descriptor to the kernel radius, and not
to the value of the geometry descriptor itself.

Another difference to the geometry descriptors derived from vol-
ume and sphere area is that here the case of zero mean noise (δ̄ = 0)
does not lead to better robustness. This is easily explained from the
fact the perturbation inflicted on the distance field associated with
the surface essentially depends on the mean of|δ| and not on the
mean ofδ (see Fig. 7).

Even if we can give bounds for the effect of noise and perturba-
tions, invariants which involve the distance function are generally
less stable than those which integrate just the indicator function.

9 Computation of integral invariants

Throughout the paper we maintain the notion that the curves and
surfaces under consideration are the boundary of some domainD.
This appears to restrict discussion to closed curves and surfaces.
All open curves and surfaces however locally occur as part of the
boundary of some domain, so this assumption is not a real restric-
tion. Implementing the computation of integral invariants for such
‘open’ curves and surfaces does not differ in essential ways from



Figure 7: Isolines of the distance function from a curve. Left: un-
perturbed (straight) line. Right: perturbed version of curve. Appar-
ently the fact that a perturbation has zero mean does not favorably
influence the perturbation of the distance field.

doing the same for closed curves and surfaces, and so our discus-
sion will be restricted to the ‘closed’ case.

The computation of integral invariants for discrete surfaces needs
appropriate data structures for preprocessing, as well as intelligent
ways of discretizing integrals. We approach this problem in three
different ways, each of them being suitable for certain kinds of in-
tegral invariants. These are an FFT-based method (Section 9A),
an octree based method (Section 9B), and a triangulation based
method (Section 9C). We will discuss applications in Section 10.

9A Computing invariants with FFT

The general form of an integral invariantIr(p) as defined by (1)
can be written in convolution notation. We use the notation1rB for
the indicator function of the ballr ·B and write

k(x) = w(x) · 1rB(x) =⇒

Ir(p) =

Z
R3

g(x)k(p− x) = (g ? k)(p). (56)

Into this category fall the invariantsVr, Dr, D2,r, and also the
invariants employed in principal component analysis by [Pottmann
et al. 2007]. An obvious way to evaluate integral invariants would
be to approximate these continuous convolutions by discrete ones
and employ FFT for them. This method is also described by [Yang
et al. 2006]. Here we are going to show a modification of this simple
procedure which yields a better approximation of the continuous
convolution.

In our setting, functions are typically only known at grid points
j ∈ Z3 with integer coordinatesj = (j1, j2, j3), however we
‘know’ that they are smooth or have at least smooth level sets. Of
course, the continuous convolutionf?g can be approximated by the
discrete convolution defined by(f >g)(k) =

P
j∈Z3 f(j)g(k− j).

We will not use this simple approximation, but rather define contin-
uous functions from discrete data and show to evaluate their contin-
uous convolution using the discrete one. Discrete convolutions are
computed with FFT.

One way to define a continuous functiong(x) from discrete data
g(j) is to interpolate between the grid points by letting

g(x) =
X

j
g(j)K(x− j), where (57)

K(x) = b(x1)b(x2)b(x3), b(ξ) = max(0, 1− |ξ|).

← C1

C2

↓

C3 −→

Figure 8: Integral invariant computation based on an octree data
structure. The cubesC1, C2, C3 correspond to cases 2cα, 2b, and
2cβ of Algorithm 1, respectively.

The convolution of (56) now takes the form

(g ? k)(p) =

Z X
j
g(j)K(x− j)k(p− x)dx

=
X

j
g(j)

Z
K(y)k(p− y − j)dy

=
X

j
g(j)(K ? k)(p− j) = (g > (K ? k))(p).

The discrete Fourier transform ofK ? k, which is needed here, can
be precomputed.

The function in the definition of the integral invariant may coin-
cide with the indicator function1D of the domainD (in case of the
volume descriptor). Knowledge of all valuesg(j) for integer grid
pointsj then means that the domainD is voxelized and given as an
occupancy grid. We refer to [Gelfand et al. 2005] for more details
on the computation of occupancy grids via scan conversion (see
e.g. [Nooruddin and Turk 2003]). For the invariantDr, the func-
tion g is the signed distance from the surface under consideration,
and for the invariantD2,r, we use the square of that distance func-
tion. Distance fields can be computed in various ways; we used fast
sweeping (see e.g. [Danielsson 1980], [Kimmel et al. 1996], [Tsai
et al. 2003], [Zhao 2005], [Kao et al. 2005]).

When we employ FFT for computing discrete convolutions, we ac-
tually compute many more values than are necessary, because inte-
gral invariants are only evaluated at boundary points of the domain
D. In order to reduce computational costs, we invoke convolution
not for a single bounding box ofD, but for a sequence of boxes
which cover the boundary∂D. We estimate that for box sizeb the
cost of each convolution equalsC(b, r) := N(b, r)3 log N(b, r)
with N(b, r) = b + 2r. The total cost then equalsC(b, r) times
the number of boxes, i.e., is proportional toC(b, r)/b2. Minimiz-
ing this function leads to an optimal box size ofbopt(r) ≈ 2.28r,
which for practical purposes gets rounded up such that we apply
FFT to a box whose size is a power of two.

9B An octree based method for computing invariants

An advantage of the FFT method is its simplicity. Disadvantages
are that even with an optimized box size we still compute many
values which do not interest us, and most importantly, that we can



evaluate integral invariants only at grid points. This section de-
scribes a data structure which yields a new way of evaluating inte-
gral invariants for the actual surface points.

We decompose an appropriate bounding box of the given surface
into a hierarchical collection (an octree) of cubes, such that the
functiong(x) of Equation (1) is sufficiently well approximated by
a quadratic functionegi in each leaf cube. This approach works well
if the functionw in Equ. (1) is constant. An example of such a de-
composition, with the purpose of computing the volume descriptor,
is illustrated by Fig. 8.

Given a decomposition of space into cubesCi, we write the integral
of Equation (1) as follows:

Mr
i,p := Ci ∩ (p + rB) =⇒

Ir(p) =
X

i:Ci⊆(p+rB)̀

Z
Ci

g
´

+
X

i : Mr
i,p 6= ∅,

Ci 6⊆ (p + rB)

` Z
Mr

i,p

g
´
.

It is the aim of our data structure to eliminate integrals of the sec-
ond kind and adaptively decompose space such that the majority of
computations is for integrals of the first type. This is because their
values can be precomputed. Integrals of the second kind are com-
puted via the previously obtained approximationsegi in each leaf
cubeCi.

We now describe the three main parts of our method: octree con-
struction, preprocessing, and computation of integral invariants. We
focus on the casesg = 1D (soIr(p) is the volume descriptor) and
the squared distance function.

In the caseg = 1D, we construct the octree using a scan conver-
sion method if∂D is given as a triangle mesh (cf. [Nooruddin and
Turk 2003; Ju 2004]), and the method of [Frisken et al. 2000] if it
is a point cloud. The functionegi which approximates the indicator
function1D in each cube is chosen as a constant, which indicates
to which extent the cubeCi lies insideD. As cubes which con-
tain the boundary∂D are very small anyway, this is a reasonable
simplification.

For computing integral invariants based on the squared distance, we
haveg(x) = dist(x, ∂D)2. In our examples, the values ofg(x)
have been obtained by fast sweeping (cf. [Tsai et al. 2003; Zhao
2005; Kao et al. 2005]). Then we use the procedure of [Mitra et al.
2004] to determine the decomposition of space into cubesCi such
that within each leaf cubeCi, the squared distance is approximated
by quadratic functionsegi.

After the octree has been constructed, we compute the integrals of
the functiong over each leaf cubeCi, using the approximationegi,
and then propagate these values to obtain the integrals of the func-
tion g over the remaining cubes. The computation ofIr(p) runs as
sketched in Algorithm 1.

The different types of cubes are illustrated by Figure 8. The most
costly operation obviously is to integrate the functionegi over the
domainCi ∩ (p + rB) in 2cα. This is made easier by the fact
that the functionsegi are actually quadratic. When computing the
volume invariant, such that this integral equals the volume ofCi ∩
(p + rB) ∩ D, the boundary ofD can be replaced by its tangent
plane ifCi is small.

9C Computing surface integrals

For the computation of invariants defined by an area integral over
the sphere, we employ triangulations of the sphere, and take care of
the boundary of the spherical patch we are integrating on. This
method is described by [Yang et al. 2006] and [Pottmann et al.
2007], so we do not give details here.

1. InitializeCi with the root cube; letI = 0.
2. For the cubeCi, perform the following computations:

2a. If Ci is outsidep + rB, do nothing.
2b. Else ifCi ⊆ (p + rB), increaseI by the valueR

Ci
egi, which is precomputed.

2c. Else:
(α) If Ci is a leaf cube, increaseI by the valueR

Ci∩(p+rB)
egi.

(β) Else, call 2. for all 8 child cubes ofCi.
3. I contains the result.

Algorithm 1. ComputingIr(p) based on the octree decomposition illus-
trated by Figure 8.

9D Computational efficiency

Computation times for the bunny and dragon models from the Stan-
ford collection are indicated in the table below. Here ‘preprocess-
ing’ for volume integrals means computing a grid structure which
stores the characteristic function. For invariants computed by sur-
face integration, a triangulation of the sphere with 13592 triangles
has been employed. The run times shown are for a 2 GHz PC with
2 GB RAM. For the volume integrals we have used the method of
9B, for the surface integrals the method of 9C.

model bunny dragon
# triangles 69451 104568
grid size for1D 170× 168× 146 194× 156× 124
preprocessing 4.6 s 4.4 s
computingVr 3.8 s 3.7 s
computingSAr 9.7 s 19.6 s

As to thesquared distance integral, the preprocessing stage the dis-
tance field is computed (we used fast sweeping), takes longer than
for the volume descriptor. In the case of the bunny (cf. the table
above), this preprocessing step needed 10s.

The cost of computation of integral invariants atn different scales
with the FFT method is not proportional to the cost of computing
once, but roughly proportional to the cost ofn + 1 FFTs. E.g.
[Huang et al. 2006] computed integral invariants for 8 different radii
for the parts of of Fig. 10. This computation needed approximately
1 minute for 400 000 vertices on a 1.4 GHz PC with 512 MB RAM.

10 Applications

We think that integral invariants may be useful for every kind of
computation or algorithm which makes use of shape characteristics,
especially curvatures. Usually the computation of such geometric
properties via integral invariants is rather more robust with respect
to perturbations and noise than other methods. For certain integral
invariants this experimental result, for which we refer to [Yang et al.
2006], is confirmed by the theoretical investigations of the present
paper.

A second property of integral invariants which make them valuable
for applications is that they allow to compute at a certain scaler,
which for the current paper is identified with the kernel ball radius.
The nature of computation is such that surface features smaller than
r are considered as noise and will be smoothed out.

There are several publications which deal with applications and
comparison of methods, so we will not go into details here (one



Figure 9: Feature extraction on multiple scales according to [Yang
et al. 2006]. Integral invariants for several different kernel radii are
used to identify features. Darker regions are classified as features
on all scales, lighter shaded regions correspond to features extracted
at only one or two scales. At left: ravines; at right: ridges. The
integral invariants used for this figure areIr(xixj) (i, j = 1, 2, 3),
whose properties are not discussed in the present paper.

of these is [Yang et al. 2006]). Figure 9 illustrates feature detection
at multiple scales: ravines and ridges are detected by computing
curvatures; and that curvature computation is done by evaluating
integral invariants defined by a certain kernel ball of radiusr. Fea-
tures which persist for several values ofr are considered to be de-
tected with higher confidence than those which are only detected
for a small number of kernel ball radii.

Another application of integral invariants in general is the compu-
tation of the network of principal curvature lines in a robust way by
[Liu et al. 2006].

A third and important application of integral invariants is the com-
putation of shape characteristics for the purpose of kinematic reg-
istration and establishing correspondences between surfaces. Such
surfaces can be partially overlapping scan data of the same model
– the task is then to merge these scans together in order to create a
dataset of the entire object (cf. [Gelfand et al. 2005]). Another in-
stance where the kinematic registration problem occurs in the auto-
matic reassembling of fragments of broken objects by [Huang et al.
2006]. For this ‘3D puzzle’ problem (see Fig. 10), each fragment is
represented as a geometric model, e.g., as a triangle mesh, but it is
unknown a priori how the pieces fit together. The paper by [Huang
et al. 2006] describes a rather involved procedure which recognizes
fracture surfaces and finds correspondences between them in or-
der to reestablish the lost connectivity of the original 3D volume.
This method relies heavily on the availability of independent and
robustly computable geometry descriptors. A significant number
of the descriptors involved are integral invariants described in the
present paper, namelyVr(p) andD2,r(p), for a sequence of differ-
ent values of the kernel radiusr.

11 Conclusion and future research

We analyzed geometry descriptors, which are capable of captur-
ing shape characteristics, and which exhibit a multi-scale behaviour
useful for recognizing persistent features. We discussed theoretical
stability results which express again the numerical robustness of
integral invariants already encountered in various algorithms. The
volume descriptor exhibits the best stability, because compared to
invariants based on surface integrals it is averaging over a greater
domain, and compared to invariants based on distance functions it
is averaging a function whose values which are not subject to noise.

1

1
2

3

4

56

eH ek

Figure 10: Reassembling a broken brick. The top figure shows
all 6 pieces, 5 of them already put together. The figures below
shows piece No. 6, with the values of an estimated mean curva-
ture derived from the volume descriptor (at left), and an estimated
difference between principal curvatures, derived from the squared
distance descriptor. These shape characteristics are employed in
order to distinguish fracture surfaces from the smoother surface of
the original object, and then to establish correspondences between
fracture surfaces for the purpose of automatic reassembling. This
figure was taken from [Huang et al. 2006].

Regarding computational efficiency, all invariants described in the
present paper generate running times of the same magnitude.

We expect further applications where integral invariants can greatly
improve robustness of algorithms. We would like to mention one
area of future research which seems promising, namelyshape sig-
natures. They have been initiated by [Manay et al. 2004]. The sig-
nature of a planar curvec is defined as set of points(I(p), I ′(p)),
wherep ∈ c, I is a certain integral invariant andI ′ is its derivative
with respect to arc length. In order to enhance robustness, we might
want to avoid a derivative, but instead employ another integral in-
variantI2. I2 could be of the same type asI, only computed with
respect to a different kernel ball radius. Ideally, the signature should
characterize the shape within some tolerance up to rigid body mo-
tions (or other transformations). We are not aware of any result in
this direction. Clearly, all these investigations should eventually be
performed for 3D objects.
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