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We consider a generalized Vekua equation in biquaternionic formalism where the Cauchy-
Riemann operator is replaced by the differential operator D of Dirac. For particular
classes we construct differential operators of higher order which give a relation between
the monogenic functions as solutions of Dw = 0 and the generalized pseudoanalytic
functions as solutions of the generalized Vekua equation. This is done by considering a
corresponding differential equation of second order. Using generating functions in the
sense of L. Bers we can give further representations of such functions and we can obtain
related pseudoanalytic functions of the second kind as solutions of another differential
equation of first order.

1. Introduction

We denote by H(C) the algebra of complex quaternions (so called biquaternions)
defined by

H(C) = {a| a = a0 + a1i1 + a2i2 + a3i3}

where the ik are the standard basic quaternions with i3 = i1i2 , ak ∈ C , and the
complex imaginary unit i commutes with the ik, k = 1, 2, 3 . The quaternionic
conjugation is given by ā := a0 − a1i1 − a2i2 − a3i3 . Let S denote the subset of
zero divisors from H(C).

Generalizing the Cauchy–Riemann operator ∂z̄ = 1
2 (∂x + i∂y) we introduce the

Dirac operator

D :=
3∑

k=1

ik∂k where ∂k =
∂

∂xk

(see e.g. K. Gürlebeck and W. Sprössig2). For functions f : R3 → H(C) the set
kerD defines the class of regular functions with respect to D . Since the algebra of
quaternions is non-commutative we have to distinguish between f ∈ KerD such that
Df = 0 or 0 = fD . Such functions are called left monogenic or right monogenic
respectively.
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H.R. Malonek5,6 extended the concept of the so called (F,G)–derivative in the
sense of L. Bers to quaternionic-valued functions to study a spatial version of pseu-
doanalytic functions. He proved that these pseudoanalytic functions in the space
obey a generalized Vekua equation.

The generalized pseudoanalytic functions considered here are solutions of the
generalized Vekua equation

D
∗
w =

m

x1
w̄ , m ∈ N ,

with D
∗ = −i1D for which we give a general representation theorem using dif-

ferential operators. Thus we establish a relation between the monogenic functions
and the pseudoanalytic functions in the space. Furthermore relations between the
solutions of such differential equations with different parameters m are proved.

Finally we give generating pairs for such classes of generalized pseudoanalytic
functions and we represent generalized pseudoanalytic functions of the second kind
also.

For example such pseudoanalytic functions in the space are of interest in
treating the Dirac equation with a vectorial electromagnetic potential (see e.g.
V.V. Kravchenko et al.4) or the multidimensional stationary Schrödinger equation
(see V.V. Kravchenko3).

2. Differential operators for the solutions

We first consider the generalized Vekua equation

D
∗
w = ϕ(x1) w̄ (1)

and look for a solution of the form

w =
m∑

k=0

Ak(x1)
(
g D∗k

)
+

n∑

k=0

Bk(x1)
(
D
∗ k
ḡ
)

(2)

with m,n ∈ N where Dg = 0 i.e. the function g is assumed to be left monogenic
and D∗ = ∂x1 + i3 ∂x2 − i2 ∂x3 is used. Doing so we are led to the relation

n = m− 1 ,

and the following conditions

A′m(x1) = 0 ,

A′k(x1) = ϕ(x1)Bk(x1), k = m− 1, . . . , 0 ,

Bm−1(x1) = ϕ(x1)Am(x1) ,

Bk−1(x1) = −B′k(x1) + ϕ(x1)Ak(x1), k = m− 1, . . . , 1 ,

0 = −B′0(x1) + ϕ(x1)A0(x1) .

(3)

The conditions (3) form a system of 2m+ 2 ordinary differential equations for the
2m+1 functions Ak, k = 0, . . . ,m,Bk, k = 0, . . . ,m− 1, which is overdetermined in
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general. This means that in the general case it is not possible to obtain solutions of
this generalized Vekua equation in the form (2). But as we will see in the following
there are factors ϕ(x1) in (1) such that the system (3) can be satisfied. We can
assume that there will be only a few classes of differential equations of such type
for which a representation of the solutions using differential operators acting on
monogenic functions exists. Indeed it is a disadvantage of the method presented
here that the differential equations which can be solved by this method are very
particular. On the other hand we have the advantage that the application of such
differential operators is a method consisting of a finite number of processes which
can be carried out for a wide range of monogenic functions in an explicite and easy
way.

For further investigations we will not consider the system (3) but we will turn
over to a differential equation of second order to obtain a general representation
theorem for the solutions of such a generalized Vekua equation.

3. A differential equation of second order

Consider the generalized Vekua equation

D
∗
w =

m

x1
w̄ , m ∈ N . (4)

We apply the operator D∗ from the right to this equation and get the differential
equation of second order

D
∗
wD∗ +

1
x1

D
∗
w − m2

x2
1

w = 0 . (5)

For this differential equation we will deduce the general solution now. First let us
consider the differential equation

D
∗
wD∗ − 1

x1
D
∗
w − m2 − 1

x2
1

w = 0 (6)

which is associated to Eq. (5) in the following manner. We denote by Ω a suitable
domain in R3 not containing the plane x1 = 0 and by Lm(Ω) and Lm−1(Ω) the set
of solutions of the differential equations (5) and (6) respectively defined in Ω. For
w ∈ Lm(Ω) we have

u = Rw :=
x2

1

m2
D
∗
w ∈ Lm−1(Ω) (7)

and for w ∈ Lm−1(Ω) we have

v = Sw := wD∗ − 1
x1
w ∈ Lm(Ω) (8)

and furthermore

S ◦R = idLm(Ω) , R ◦ S = idLm−1(Ω)

holds. Thus we have the following
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Lemma 3.1. The mapping

R : Lm(Ω) → Lm−1(Ω)

with R from (7) is an isomorphism. Its inverse R−1 is given by

R−1 = S .

Now let Lm−k(Ω) denote the set of solutions of the differential equation

D
∗
wm−kD

∗ +
1− 2k
x1

D
∗
wm−k − m2 − k2

x2
1

wm−k = 0 , k = 0, 1, 2, . . . (9)

With k = 0 we get Eq. (5). By iterated application of the mapping Rm−k :

Lm−k(Ω) → Lm−k−1(Ω) with Rm−ku :=
x2

1

m2 − k2
D
∗
u , which in general is an

isomorphism too, the solutions of these differential equations are related.
With k = m in (9) we get the equation

D
∗
w0D

∗ +
1− 2m
x1

D
∗
w0 = 0 .

Let the operator I generate the antiderivative from a biquaternionic-valued function
that means

I(f) = F with D
∗
F = f .

With this we have

w0 = I(x2m−1
1 ĥ) + g (10)

where the functions ĥ and g obey the conditions ĥD∗ = 0 and D∗
g = 0 respectively.

By

w ≡ wm = Sm−1 ◦ . . . ◦ S0 w0 (11)

with Sk : Lk−1(Ω) → Lk(Ω), Sku := uD∗ − 2m−2k−1
x1

u we get the solutions of

Eq. (5). With w0 from (10) and the substitution ĥ = D
∗ 2m

h, where hD∗ = 0 holds,
we can transform the representation (11) for w into the form

w =
m∑

j=0

(−1)m−j(2m− 1− j)!
j!(m− j)!xm−j

1

(gD∗ j
) +

m−1∑

j=0

(−1)m−1−j(2m− 1− j)!
j!(m− 1− j)!xm−j

1

(D
∗ j
h) .

(12)
Now we have the following

Theorem 3.1.

(1) For each solution of (5) there exist two functions g left monogenic in Ω (i.e.
D
∗
g = 0) and h right antimonogenic in Ω (i.e. hD∗ = 0) respectively such

that the representation (12) holds.
(2) For each function g left monogenic in Ω and h right antimonogenic in Ω the

expression in (12) represents a solution of (5) in Ω.
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(3) For a solution w of (5) in the form (12) the functions
(
gD∗2m

)
=

m

x2m+1
1

(Pm(x1 w)) with Pw = x2
1(wD

∗)

and
(
D
∗ 2m

h
)

=
1

mx2m+1
1

(
Qm+1w

)
with Qw = x2

1(D
∗
w)

are determined uniquely.

Between the solutions of Eq. (5) with different parameters m there exist inter-
esting relations. Let Fm(Ω) be the set of solutions of (5)

D
∗
wD∗ +

1
x1

D
∗
w − m

x2
1

w = 0

and Fm±1(Ω) the set of solutions of the differential equation

D
∗
wD∗ +

1
x1

D
∗
w − (m± 1)2

x2
1

w = 0

For w ∈ Fm(Ω) we have

v1 = wD∗ −D
∗
w ∈ Fm(Ω) ,

v2 = wD∗ +
m− 1
m

D
∗
w +

2m− 1
x1

w ∈ Fm−1(Ω) ,

v3 = wD∗ +
m+ 1
m

D
∗
w − 2m+ 1

x1
w ∈ Fm+1(Ω) .

4. Representation of pseudoanalytic functions in the space

Now we can deduce a representation for the solutions of Eq. (4). From the pre-
ceeding section we see that among the solutions of (5) we find the solutions of the
generalized Vekua equation (4). Inserting the solution w of (5) according to (12)
into Eq. (4) we are led to the condition

g −mh̄ = 0 .

After the substitution g = mf, f left monogenic, we have the following representa-
tion for the solutions of Eq. (4)

w =
m∑

j=0

(−1)m−j(2m− 1− j)!
j!(m− j)!xm−j

1

[
m(fD∗ j

)− (m− j)(D
∗ j
f̄)

]
, (13)

and we can prove the following
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Theorem 4.1.

(1) For each function f left monogenic in Ω ⊂ R (i.e. Df = 0) the function w

according to (13) is a solution of the generalized Vekua equation (4)

D
∗
w =

m

x1
w̄ , m ∈ N .

(2) For each solution w of equation (4) defined in Ω there exists a function f

monogenic in Ω such that (13) holds.
(3) The function f in (13) is not determined uniquely by w. Only the expression

(fD∗2m
) is determined uniquely by

(fD∗2m
) =

1
xm

1

[
(xm

1 w)D∗m
]
.

There exist connections between the solutions of the generalized Vekua equation
(4) with different parameters. Let

Vm(Ω) =
{
w : D

∗
w =

m

x1
w̄

}

be se set of the solutions of Eq. (4) defined in Ω. Then we have

u1 = wD∗ +
m+ 1
x1

w̄ − 2m+ 1
x1

w ∈ Vm+1(Ω) ,

u2 = wD∗ +
m− 1
x1

w̄ +
2m− 1
x1

w ∈ Vm−1(Ω) ,

u3 = wD∗ − m

x1
w̄ ∈ V−m(Ω) .

With the last relation solutions may be obtained for Eq. (4) even in the case when
m is a negative integer.

5. Generating pairs

H.R. Malonek6 extended the concept of generating functions introduced by L. Bers1

for the representation of pseudoanalytic functions in the space. Let Hk denote
the set of reduced complex quaternions which have the form a = a0 + akik ,
a0, ak ∈ C, k = 1, 2 . Two pairs of functions H1 = (F,G),H2 = (M,N) with
F,G ∈ H1,M,N ∈ H2, F,G,M,N /∈ S , are called generating pairs for the solutions
of (4) if GF̄ − ḠF 6= 0, NM̄ − N̄M 6= 0 in Ω and the products FG,FN,GM,GN

are solutions of the generalized Vekua equation (4). For m = 1 such generating
pairs are given by

F = 1 M = x−m
1 (x1 − (2m− 1)x3i2) ,

G = i1 N = x−m
1 i2 .

With these functions the solutions of Eq. (4) can be represented in the form

w = F (Mφ+Nψ) +G(Mµ+Nν)
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where φ, ψ, µ, ν are suitable complex valued functions, which are determined
uniquely by the solution w .

6. Pseudoanalytic functions of the second kind in the space

Generalizing the concept of L. Bers the corresponding spatial version of a pseudo-
analytic function of second kind ω is defined as

ω(x) = φ(x) + µ(x) i1 + ψ(x) i2 + ν(x) i3

(cf. H.R. Malonek5). In the case of our particular pairs of generating functions
(again for m = 1) it obeys the differential equation

(D
∗
ω) (x1 + 1− (2m− 1)x3i2) + J2(D

∗ω) (x1 − 1− (2m− 1)x3i2) = 0 (14)

where J2 denotes the linear mapping J2 : H(C) → H(C) with J2(i1) = i1 and
J2(i2) = −i2 .

A solution can be obtained by

ω = xm−1
1 (w0 + i1w1 + i2(x1 w2 + (2m− 1)x3 w0) + i3(x1 w3 + (2m− 1)x3 w1))

(15)
where

w = w0 + w1 i1 + w2 i2 + w3 i3

is the corresponding pseudoanalytic function of the first kind. Using (15) with w

in the form (13) we finally get a representation of the solutions of the differential
equation (14) using differential operators.
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