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Abstract

By a well known result of Philipp (1975), the discrepancyDN (ω) of

the sequence (nkω)k≥1 mod 1 satisfies the law of the iterated logarithm

under the Hadamard gap condition nk+1/nk ≥ q > 1 (k = 1, 2, . . .).

Recently Berkes, Philipp and Tichy (2006) showed that this result

remains valid, under Diophantine conditions on (nk), for subexpenen-

tially growing (nk), but in general the behavior of (nkω) becomes very

complicated in the subexponential case. Using a different norming fac-

tor depending on the density properties of the sequence (nk), in this

paper we prove a law of the iterated logarithm for the discrepancy

DN (ω) for subexponentially growing (nk) without number theoretic

assumptions.
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1 Introduction

Given a sequence (x1, . . . , xN ) of real numbers, the value

DN = DN (x1, . . . , xN ) := sup
0≤a<b≤1

∣

∣

∣

∣

A(N, a, b)

N
− (b− a)

∣

∣

∣

∣

is called the discrepancy of this sequence. Here A(N, a, b) denotes

the number of indices k ≤ N for which the fractional part 〈xk〉 of xk

belongs to the interval [a, b). An infinite sequence (xk)k≥1 is called

uniformly distributed mod 1 if DN (x1, . . . xN ) → 0 as N → ∞. By

a classical result of analysis (Bohl [5], Sierpinski [18], Weyl [20]), the

sequence (kx)k≥1 is uniformly distributed mod 1 for any irrational x.

This result extends to (nkx)k≥1 for a large class of increasing sequences

(nk) such as nk = kr (r = 1, 2, . . .), nk = (log k)α (where α > 1),

nk = pk, where pk denotes the k-th prime, etc. On the other hand, it is

easy to see that (k!x) is not uniformly distributed for x = e. However,

Weyl [21] proved that given any increasing sequence (nk)k≥1 of positive

integers, (nkx)k≥1 is uniformly distributed mod 1 for all x except for

a set with Lebesgue measure 0. Determining the discrepancy of this

sequence is a difficult problem and precise results are known only for

a few special (nk). R.C. Baker [1] proved, improving earlier results of

Erdős and Koksma [8] and Cassels [6], that for any increasing sequence

(nk) of integers the discrepancy DN (x) of (nkx)k≥1 satisfies

NDN (x) = O(N
1
2 (logN)

3
2
+ε) a.e.

for every ε > 0. Except the power of the logarithm, this result is

sharp: Berkes and Philipp [3] constructed an increasing sequence (nk)

for which

NDN (x) ≥ c(N logN)
1
2 for infinitely many N

for some constant c > 0 and almost every x. Kesten [11] proved that

for nk = k we have

NDN (x)

logN log logN
→ 2

π2
in measure.
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For the remainder term, see Schoissengeier [16]. On the other hand,

Philipp [14] proved that if (nk)k≥1 is a lacunary sequence of integers,

i.e. a sequence of integers satisfying

nk+1/nk ≥ q > 1 k = 1, 2 . . . , (1)

then the discrepancy DN (x) of the sequence (nkx)k≥1 satisfies the law

of the iterated logarithm (LIL), i.e.

1

4
≤ lim sup

N→∞

NDN (x)√
N log logN

≤ C a.e. (2)

where C ≤ 166 + 664(q1/2 − 1)−1. Recall that by the Chung-Smirnov

LIL (see [17], p. 504), for an i.i.d. uniform sequence (ξk) in [0, 1) we

have

lim sup
N→∞

NDN (ξ1, . . . , ξN )√
N log logN

= 1/2 a.s.

Thus the result of Philipp means that, in some sense, the sequence

〈nkx〉 behaves like a sequence of independent random variables. How-

ever, the analogy is not perfect: for any K > 0 one can construct a

sequence (nk) of integers satisfying the Hadamard gap condition (1)

with some q > 1 such that the lower bound 1/4 in (2) can be re-

placed by K (see Berkes and Philipp [3]). In general, it is unknown

if the limsup in (2) is a constant almost everywhere. Very recently,

Fukuyama [9] managed to compute the limsup in the special case

nk = θk, θ > 1. He showed that if θr is irrational for r = 1, 2, . . .

then the limsup is 1/2 a.e. (that is, exactly the same as in the Chung-

Smirnov LIL). Further, if θ > 1 is integer, then the limsup is
√

42/9

if θ = 2, it is 1/2
√

θ(θ + 1)(θ − 2)/(θ − 1)3 if θ ≥ 4 is even and it is

1/2
√

(θ + 1)/(θ − 1) if θ is odd. These results show that the limsup in

(2) depends on θ very sensitively and this is an indication that com-

puting the limsup (possibly depending on x) for general Hadamard

lacunary (nk) will be a very difficult problem.

If we weaken the Hadamard gap condition (1), the LIL (2) becomes

generally false: as Berkes and Philipp [3] proved, for any positive

sequence εk → 0 there exists a sequence (nk) of integers satisfying

nk+1/nk ≥ 1 + εk k = 1, 2, . . . (3)
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such that

lim sup
N→∞

NDN (x)√
N log logN

= +∞ a.e.

For subexponential sequences, i.e. sequences (nk) with nk+1/nk → 1,

the behavior of the discrepancy of 〈nkx〉k≥1 depends strongly on the

number-theoretic properties of (nk). For example, Berkes, Philipp and

Tichy [4] proved that if the number of solutions of certain Diophantine

equations

a1nk1 + a2nk2 + . . .+ apnkp = b

is “not too large” for p = 2, 4, then the law of the iterated logarithm

(2) holds. For example, this is the case if (nk) is the sequence gener-

ated by finitely many primes p1, . . . , pr (see Philipp [15]).

The purpose of the present paper is to prove a law of the iterated

logarithm for the discrepancy of 〈nkx〉 for subexponentially growing

(nk) without assuming any arithmetical conditions on nk. We define

aN,r = #{k ≤ N : nk ∈ [2r, 2r+1)}, r ≥ 0, N ≥ 1

and

BN =

(

∞
∑

r=0

a2
N,r

)1/2

, N ≥ 1. (4)

Note that for each N ≥ 1 the sum in (4) contains only finitely many

nonzero terms. It is easy to see that
√
N ≤ BN ≤ N . We will show

that an LIL holds for DN (x) provided aN,r is small compared with

BN , uniformly in r. More precisely, we shall prove the following

Theorem 1 Let (nk)k≥1 be a nondecreasing sequence of positive in-

tegers satisfying

aN,r = O
(

BN

(logN)α

)

(5)

for some constant α > 3, uniformly for r ∈ N. Then

lim sup
N→∞

NDN (x)
√

B2
N log logN

≤ C a.e., (6)

where C is a positive constant.
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If nk satisfies the Hadamard gap condition (1) then aN,r ≤ K for

N ≥ 1, r ≥ 1 with some constant K > 0 and consequently B2
N =

O(N). Hence in this case Theorem 1 reduces to the upper bound in

the theorem of Philipp formulated above. In the subexponential case

nk+1/nk → 1 we have B2
N/N → ∞, and thus the bound

NDN (x) = O
(

BN (log logN)1/2
)

a.e.

given by (6) is weaker than the LIL in (2). Of course, this must be the

case, since we already noted that in the subexponential case the LIL

for the discrepancy of 〈nkx〉 is generally false. If nk “almost” satisfies

the Hadamard gap condition, i.e. nk+1/nk tends to 1 very slowly,

then B2
N/N grows very slowly and thus in this case the discrepancy

of 〈nkx〉 “almost” satisfies the LIL. Specifically, if (nk) satisfies the

subexponential gap condition

nk+1/nk ≥ 1 + 1/ψ(k) k = 1, 2, . . . , (7)

where ψ is a nondecreasing, slowly varying function with limk→∞ ψ(k) =

+∞, then a simple calculation yields

aN,r ≤ cψ(N) and B2
N = O(Nψ(N)).

Thus in this case Theorem 1 yields

NDN (x) = O
(

√

Nψ(N) log logN
)

a.e. (8)

Conversely, Berkes and Philipp [3] showed that given a function ψ with

the above properties, there is a sequence (nk) of integers satisfying (7)

such that for almost all x we have

NDN (x) ≥ c
√

Nψ∗(N) log logN for infinitely many N (9)

where ψ∗(N) = (log logψ(N))2. There is a gap between (8) and (9)

and the precise order of magnitude of DN (x) remains open.

Note that conclusion (6) of Theorem 1 implies

lim sup
N→∞

∑N
k=1 f(〈nkx〉)

√

B2
N log logN

< +∞ a.e. (10)
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for any f of the form f = 1[a,b)(x) − (b− a), 0 ≤ a < b ≤ 1. Actually,

by Koksma’s inequality (10) remains valid for any function f on (0, 1)

with bounded variation, satisfying
∫ 1
0 f(x)dx = 0.

Condition (5) of Theorem 1 has a simple probabilistic meaning. Let

X1,X2, . . . be independent random variables with EXn = 0, EX2
n <

+∞ (n = 1, 2, . . .) and let Sn =
∑n

k=1Xk, B
2
n =

∑n
k=1EX

2
k . By a

standard version of the central limit theorem, under the assumption

|Xn| = o(Bn) (11)

we have

Sn/Bn →d N (0, 1).

Assuming the slightly stronger assumption

|Xn| = o

(

Bn

(log logBn)1/2

)

(12)

(“Kolmogorov condition”), we have the law of the iterated logarithm

(see [12]):

lim sup
n→∞

Sn
√

2B2
n log logB2

n

= 1 a.s. (13)

Both (11) and (12) are “uniform asymptotic negligibility” conditions,

requiring that the individual random variables Xn be negligible com-

pared with the norming factor in the CLT and LIL. This condition

plays a crucial role in several other limit theorems for sums of inde-

pendent random variables as well. Note that condition (5) expresses

the same effect for the random variables

Xk =
∑

nj∈[2k,2k+1)

1[a,b)(〈njx〉) (14)

in connection with the LIL (10). Thus Theorem 1 means that, roughly

speaking, the dyadic block sums Xk in (14) behave like independent

random variables. This heuristics generalizes the classical heuristics

(see e.g. Kac [10]) that for Hadamard lacunary (nk), 〈nkx〉 are nearly

independent random variables.
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As the proof of Theorem 1 will show, assumption (5) can be slightly

weakened. In fact, we shall prove the following stronger result:

Theorem 2 Let (nk)k≥1 be a nondecreasing sequence of positive in-

tegers satisfying

aN,r ≤ C1 BN

(logN)3(log logN)5/2
(15)

for a constant C1 ≥ 1, uniformly for r ∈ N, N ≥ N0. Then

lim sup
N→∞

NDN (x)
√

B2
N log logN

≤ C2 (16)

for almost all x, where C2 ≤ 104 C1.

To prove Theorem 2 we use techniques developed by Takahashi

[19], Berkes [2] and Philipp [14].

Whether Theorem 2 holds under the assumption

aN,r = o

(

BN

(log logN)1/2

)

remains open.

2 Truncation error

In this section we give an estimate for the error we make when in the

sum
∑N

k=M f(nkx) we replace f(x) by a partial sum g(x) of its Fourier

series. We use a maximal inequality by Móricz, Serfling und Stout [13].

In the following let a positive integer N be given, let f(x) denote

an even function satisfying

f(x+ 1) = f(x), Var f ≤ 2, ‖f‖∞ ≤ 1,

∫ 1

0
f(x) dx = 0, (17)

and let

f ∼
∞
∑

j=1

cj cos 2πjx
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be the Fourier series of f . Here Var f stands for the variation of f in

the interval [0, 1). We will additionally assume that

2−h−2 ≤
∫ 1

0
f(x)2 dx ≤ 2−h−1, (18)

where h is a positive integer with h ≤ ⌈(log2N)/2⌉. This condition

will play a crucial role in the chaining argument in Section 5. Let

g(x) =
N
∑

j=1

cj cos 2πjx,

aM1,M2,r = #{M1 ≤ k ≤M2 : nk ∈ [2r, 2r+1)}

for 1 ≤M1 ≤M2 ≤ N, r ≥ 1, and

BM1,M2 =

(

∞
∑

r=1

a2
M1,M2,r

)1/2

, 1 ≤M1 ≤M2 ≤ N.

Note that aM1,M2,r and BM1,M2 depend also on N , but to lighten the

notations, we will not mark the dependence on N . According to (17)

we have (see Zygmund [22, p. 48])

|cj | ≤
Var f

2j
≤ 1

j
, j ≥ 1,

and thus for J ≥ 0

∞
∑

j=J+1

c2j ≤
∫ ∞

J

1

j2
dj =

1

J
. (19)

Lemma 1 We have

∫ 1

0





M2
∑

k=M1

(f(nkx) − g(nkx))





2

dx ≤
3B2

M1,M2

N
.
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Proof:

∫ 1

0





M2
∑

k=M1

(f(nkx) − g(nkx))





2

dx

=

∫ 1

0





M2
∑

k=M1

∞
∑

j=N+1

cj cos 2πnkjx





2

dx

≤
M2
∑

k=M1

M2
∑

k′=k

∞
∑

j,j′=N+1

|cjcj′ |{jnk, j
′nk′}

≤
M2
∑

k=M1

M2
∑

k′=k

∞
∑

j,j′=N+1

1

jj′
{jnk, j

′nk′}, (20)

where {x, y} denotes the Kronecker symbol. For fixed k, k′ and j′

there is at most one j for which {jnk, j
′nk′} = 1 is true, namely

j =
j′nk′

nk
.

If nk ∈ [2r, 2r+1) and nk′ ∈ [2r+i, 2r+i+1) for some r and i ≥ 1, then

nk/nk′ ≤ 2−i+1. Hence by the Cauchy-Schwarz inequality the last

expression in (20) is at most

M2
∑

k=M1

M2
∑

k′=k

∞
∑

j′=N+1

nk

j′2nk′

≤ 1

N

M2
∑

k=M1

M2
∑

k′=k

nk

nk′

≤ 1

N

(

∞
∑

r=0

a2
M1,M2,r +

∞
∑

i=1

∞
∑

r=0

aM1,M2,r aM1,M2,r+i 2−i+1

)

≤
3B2

M1,M2

N
�

Note that B2
M1,M2

is superadditive as a function of M1 and M2.

Consequently we can use [13, Corollary 3.1] to get

∫ 1

0
max

1≤K≤N

(

K
∑

k=1

(f(nkx) − g(nkx))

)2

dx ≤ 3B2
N (1 + log2N)2

N
,
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and thus for h ≥ 1 we obtain (here and in the sequel log h will mean

max{1, log h})

Lemma 2

P

{

max
1≤K≤N

∣

∣

∣

∣

∣

K
∑

k=1

(f(nkx) − g(nkx))

∣

∣

∣

∣

∣

> h−1(log h)−2BN (log logN)1/2

}

≤ 3h2(log h)4(1 + log2N)2

N
≤ (logN)5

N

for sufficiently large N .

Here P denotes the Lebesgue measure on the interval (0, 1).

3 Exponential bounds

The following lemma is an extension of [19, Lemma 1] and [14, Lemma

3].

Lemma 3 If λ is a positive number satisfying

λ ≤ (logN)2(log logN)2

9 C1

√

log logN

B2
N

, (21)

then for sufficiently large N

∫ 1

0
exp

(

λ
N
∑

k=1

g(nkx)

)

dx ≤ e24‖f‖2λ2B2
N .

Proof: Let R = ⌊log2N⌋ + 3, then 3N < 2R. We define L =

⌊(log2 nN )/R⌋, ml = min{1 ≤ k ≤ N : nk ≥ 2Rl} for l = 0, 1, . . . , L,

further mL+1 = N + 1. Clearly the numbers ml are well defined and

1 ≤ m1 ≤ · · · ≤ mL+1. Finally for l = 0, 1, . . . , L we set

Ul(x) =

{

∑ml+1−1
k=ml

g(nkx) if ml+1 > ml

0 otherwise.
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Let Geven = {0 ≤ l ≤ L : l even and ml+1 − ml > 0} and Godd =

{0 ≤ l ≤ L : l odd and ml+1 − ml > 0}. Then
∑N

k=1 g(nkx) =
∑

l∈Geven
Ul(x) +

∑

l∈Godd
Ul(x). We define

I1(λ) =

∫ 1

0
exp



2λ
∑

l∈Geven

Ul(x)



 dx

and

I2(λ) =

∫ 1

0
exp



2λ
∑

l∈Godd

Ul(x)



 dx.

For |z| ≤ 1

ez ≤ 1 + z + z2,

and by (17) we get

‖g‖∞ ≤ ‖f‖∞ + Var f ≤ 3,

(see Philipp [14]). For sufficiently large N by (15) and (21)

‖2λUl‖∞ ≤ 2λ(ml+1 −ml)‖g‖∞ ≤ 6λR max
r≥0

aN,r

≤ 6(⌊log2N⌋ + 3)

9 logN
≤ 1

and so

I1(λ) ≤
∫ 1

0

∏

l∈Geven

(

1 + 2λUl(x) + 4λ2U2
l (x)

)

dx. (22)

For l ∈ Geven

U2
l (x) ≤ 2

ml+1−1
∑

k=ml

ml+1−1
∑

k′=k

g(nkx)g(nk′x)

and for ml ≤ k ≤ k′ ≤ ml+1 − 1

g(nkx)g(nk′x) − 1

2

∑

1 ≤ j, j′ ≤ N

|nkj − nk′j′| < nml

cjcj′ cos
(

2π(nkj − nk′j′)x
)
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is a sum of trigonometric functions whose frequencies lie between nml

and 2Nnml+1−1 and consequently between 2Rl and 2N 2R(l+1). Thus

2

ml+1−1
∑

k=ml

ml+1−1
∑

k′=k

g(nkx)g(nk′x)

= Wl(x) +

ml+1−1
∑

k=ml

ml+1−1
∑

k′=k

∑

1 ≤ j, j′ ≤ N

|nkj − nk′ j′| < nml

cjcj′ cos
(

2π(nkj − nk′j′)x
)

,

where Wl(x) is a sum of trigonometric functions whose frequencies

lie between nml
and 2Nnml+1−1, and consequently between 2Rl and

2N 2R(l+1). If Vl(x) denotes the triple sum on the right-hand side of

the last equation, then

|Vl(x)| ≤
ml+1−1
∑

k=ml

ml+1−1
∑

k′=k

∑

1 ≤ j, j′ ≤ N

|nkj − nk′j′| < nml

|cjcj′ |

≤
ml+1−1
∑

k=ml

ml+1−1
∑

k′=k

∑

|j′nk′/nk−j|<1

|cjcj′ |

≤ 2

ml+1−1
∑

k=ml

ml+1−1
∑

k′=k





∞
∑

j′=1

c2j′





1/2



∑

j>nk′/nk−1

c2j





1/2

≤ 2

ml+1−1
∑

k=ml

ml+1−1
∑

k′=k

√
2‖f‖2





∑

j>nk′/nk−1

c2j





1/2

.

If nk ∈ [2r, 2r+1) and nk′ ∈ [2r+i, 2r+i+1) for some r and i ≥ 0,

then nk/nk′ ≤ 2−i+1. Hence by Minkowski’s inequality and since
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‖f‖2 ≤ 1/2 by (18),

|Vl(x)|

≤ 2
√

2‖f‖2

∞
∑

i=0

R(l+1)−1−i
∑

r=Rl

aN,raN,r+i

√

√

√

√

√min







2‖f‖2
2,

∞
∑

j=2i−1

j−2







≤ 2
√

2‖f‖2

R(l+1)−1
∑

r=Rl

a2
N,r

∞
∑

i=0

√

√

√

√

√min







1

2
,

∞
∑

j=2i−1

j−2







≤ 12‖f‖2

R(l+1)−1
∑

r=Rl

a2
N,r. (23)

Therefore

U2
l (x) ≤ Wl(x) + 12 ‖f‖2

R(l+1)−1
∑

r=Rl

a2
N,r,

and by (22) we see that I1(λ) is bounded by

∫ 1

0

∏

l∈Geven



1 + 2λUl(x) + 4λ2Wl(x) + 48λ2‖f‖2

R(l+1)−1
∑

r=Rl

a2
N,r



 dx.

If dl cos 2πulx for l ∈ Geven, l > 0 is any term of the trigonometric

polynomial 2λUl(x)+4λ2Wl(x), then 2Rl ≤ nml
≤ ul ≤ 2Nnml+1−1 ≤

2N2R(l+1) and therefore

ul −
∑

i∈Geven,i<l

ui

≥ 2Rl − 2N

(l−2)/2
∑

j=0

2(2j+1)R = 2Rl



1 − 2N

(l−2)/2
∑

j=0

2(2j+1)R

2Rl





≥ 1 − 2N
2R−Rl(2Rl − 1)

4R − 1
≥ 1 − 3N

2R
> 0.

Hence for any (l0, l1, . . . , lj) such that 0 ≤ l0 < · · · < lj and li ∈ Geven

for i = 0, . . . , j we have

∫ 1

0

j
∏

i=0

cos 2πulix dx = 0,
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and thus

I1(λ) ≤
∏

l∈Geven



1 + 48‖f‖2 λ
2

R(l+1)−1
∑

r=Rl

a2
N,r



 .

In the same way we can show a corresponding inequality for I2(λ),

and thus using 1 + u ≤ eu, u ∈ R we get

∫ 1

0
exp

(

λ

N
∑

k=1

g(nkx)

)

dx

=

∫ 1

0
exp



λ
∑

l∈Geven∪Godd

Ul(x)



 dx

≤





∫ 1

0
exp



2λ
∑

l∈Geven

Ul(x)



 dx

∫ 1

0
exp



2λ
∑

l∈Godd

Ul(x)



 dx





1/2

≤
(

∏

l∈Geven

(

1 + 48‖f‖2 λ
2

R(l+1)−1
∑

r=Rl

a2
N,r

)

×

∏

l∈Godd

(

1 + 48‖f‖2λ
2

R(l+1)−1
∑

r=Rl

a2
N,r

))1/2

≤



exp



48‖f‖2 λ
2

L
∑

l=0

R(l+1)−1
∑

r=Rl

a2
N,r









1/2

= e24‖f‖2λ2B2
N �

Lemma 4 For sufficiently large N we have

P

{

N
∑

k=1

g(nkx) > 378 C1 h
−1(log h)−2BN (log logN)1/2

}

≤ e−2h log log N

Proof: If we put

λ =
h2(log h)2

94 C1

√

log logN

B2
N

,

then, since 1 ≤ h ≤ ⌈(log2N)/2⌉, for sufficiently large N relation (21)

is satisfied. Simple calculations show that for sufficiently large N

24 (94)−2 2(−h−1)/2 h4(log h)4 − 378 (94)−1h ≤ −2h for h ≥ 1,

14



and therefore by (18), Lemma 3 (recall that C1 ≥ 1) and the Markov

inequality

P

{

N
∑

k=1

g(nkx) > 378C1 h
−1(log h)−2BN (log logN)1/2

}

≤ exp
(

24‖f‖2λ
2B2

N − 378 C1λh
−1(log h)−2BN (log logN)1/2

)

= exp
(

24 (94C1)
−2 ‖f‖2h

4(log h)4 log logN − 378 (94)−1 h log logN
)

≤ exp
((

24 (94)−2 2(−h−1)/2 h4(log h)4 − 378 (94)−1h
)

log logN
)

≤ e−2h log log N

for sufficiently large N . �

If f(x) satisfies the conditions in (17), the same is valid for −f(x).

So we get the following

Corollary 1 For sufficiently large N we have

P

{∣

∣

∣

∣

∣

N
∑

k=1

g(nkx)

∣

∣

∣

∣

∣

> 378 C1 h
−1(log h)−2BN (log logN)1/2

}

≤ 2e−2h log log N .

4 A maximal inequality

For 2r ≤ nk < 2r+1 we put m = ⌊r + 3 log2N⌋ and approximate

g(nkx) =
∑N

j=1 cj cos 2πjnkx by

ϕk(x) =

N
∑

j=1

cj cos 2πjnk
i

2m
for

i

2m
≤ x <

i+ 1

2m
, i = 0, 1, . . . , 2m−1.

Then for all k and all x we have by |cj | ≤ 1/j

|ϕk(x) − g(nkx)| ≤
N
∑

j=1

2π|cj |jnk2
−m ≤

N
∑

j=1

8π2−3 log2 N ≤ 8πN−2,

and for 1 ≤ K ≤ N

K
∑

k=1

|ϕk(x)−g(nkx)| ≤
K
∑

k=1

8πN−2 ≤ 8πN−1 for all x ∈ [0, 1]. (24)

Further we put ZK =
∑K

k=1 ϕk(x).

15



Lemma 5 For sufficiently large N

P

{

max
1≤K≤N

|ZK | > 423 C1h
−1(log h)−2BN (log logN)1/2

}

≤ 2P

{

|ZN | > 379 C1h
−1(log h)−2BN (log logN)1/2

}

. (25)

Proof: We use an idea going back to Kolmogorov [12]. Let

λ = C1h
−1(log h)−2BN (log logN)1/2

and define the sets

E =

{

max
1≤K≤N

ZK > 423 λ

}

,

F = {ZN > 379 λ} ,
E1 = {Z1 > 423 λ} ,
EK = {Z1 ≤ 423 λ, . . . , ZK−1 ≤ 423 λ, ZK > 423 λ} , 2 ≤ K ≤ N,

GK = {ZN − ZK > −44 λ} , 1 ≤ K ≤ N.

Then the sets EKGK are pairwise disjoint and
⋃N

K=1EKGK ⊂ F ,

hence
N
∑

K=1

P(EKGK) ≤ P(F ). (26)

On the set GK (GK denotes the complement of GK)

(ZN − ZK)2 ≥ (44 λ)2 ,

and so

P(EKGK) ≤ 1

1936 λ2

∫

EK

(ZN − ZK)2 dx

=
1

1936 λ2

∫

EK

(

N
∑

k=K+1

ϕk(x)

)2

dx. (27)

Let s be the integer for which 2s ≤ nK < 2s+1, and put w = ⌊s +

3 log2N⌋. Every ϕk, 1 ≤ k ≤ K is constant on intervals of the form

I = [i2−w, (i+ 1)2−w) for i = 0, 1, . . . , 2w − 1, (28)

16



and thus the set EK can be written as a union of such intervals. We

now want to show that

1

1936 λ2

∫

I

(

N
∑

k=K+1

ϕk(x)

)2

dx ≤ 1

2
P(I) (29)

for intervals of the form (28). Then by (29) the right side of (27) is

at most 1
2P(EK), and so P(EKGK) ≤ 1

2P(EK) for 1 ≤ K ≤ N . This

together with (26) implies

1

2
P(E) =

N
∑

K=1

1

2
P(EK) ≤

N
∑

K=1

(

P(EK) − P(EKGK)
)

=

N
∑

K=1

P(EKGK) ≤ P(F ),

and the same argument, applied to (−ϕk)k≥1 instead of (ϕk)k≥1, yields

(25).

It remains to prove (29). By C1 ≥ 1, the Minkowski inequality

and (24) it is enough to show

∫

I

(

N
∑

k=K+1

g(nkx)

)2

dx ≤ 927B2
N

h2(log h)4
P(I)

for intervals I of the form (28) and sufficiently large N , which will

follow from

∫

I





K+⌊BN h−1(log h)−2⌋
∑

k=K+1

g(nkx)





2

dx ≤ 9B2
N

h2(log h)4
P(I) (30)

and

∫

I





N
∑

k=K+⌊BNh−1(log h)−2⌋+1

g(nkx)





2

dx ≤ 753B2
N

h2(log h)4
P(I). (31)

Here (30) is trivial since the integrand is bounded by

(‖g‖∞BNh
−1(log h)−2)2 ≤ 9B2

Nh
−2(log h)−4.

17



In the case K + ⌊BNh
−1(log h)−2⌋ + 1 > N inequality (31) is trivial

as well since the sum is empty. It remains to show (31) in the case

K+⌊BNh
−1(log h)−2)⌋+1 ≤ N . Using the substitution t = 2wx, (31)

is equivalent to

∫ i+1

i





N
∑

k=K+⌊BNh−1(log h)−2⌋+1

g(mkt)





2

dt ≤ 753B2
N

h2(log h)4

for some integer i, where mk = 2−wnk. We put

θ = K + ⌊BNh
−1(log h)−2⌋ + 1.

By (15) there are at most

C1BN

(logN)3(log logN)5/2

elements of the sequence (nk) in any interval [2r, 2r+1), r ≥ 0, and

thus, since θ −K = ⌊BNh
−1(log h)−2⌋ + 1 and 1 ≤ h ≤ ⌈(log2N)/2⌉,

we get that

nK/nθ ≤ 2
− θ−K

C1BN (log N)−3(log log N)−5/2
+1 ≤ 2 · 2−C−1

1 (log N)2(log log N)1/2

for sufficiently large N . Thus

1

mθ
=

2w

nθ
≤ N3nK

nθ
≤ 2N32−C−1

1 (log N)2(log log N)1/2
(32)

for sufficiently large N . Now

∫ i+1

i

(

N
∑

k=θ

g(mkt)

)2

dt

≤

∣

∣

∣

∣

∣

∣

∫ i+1

i

N
∑

k=θ

N
∑

k′=k

2

N
∑

j,j′=1

cjcj′ cos 2πjmkt cos 2πj′mk′t dt

∣

∣

∣

∣

∣

∣

(33)

and from

cos 2πjmkt cos 2πj′mk′t

=
1

2

(

cos 2π(jmk + j′mk′)t+ cos 2π(jmk − j′mk′)t
)

18



follows, in case

|jmk − j′mk′ | ≥ mk, (34)

that

2

∫ i+1

i
cos 2πjmkt cos 2πj′mk′t dt

≤ 2

2π(jmk + j′mk′)
+

2

2π|jmk − j′mk′ | ≤
1

mk
. (35)

The contribution of those summands in (33) for which (34) is not

satisfied, is at most

N
∑

k=θ

N
∑

k′=k

N
∑

j=1

N
∑

j′ = 1

|j − j′mk′/mk | < 1

cjcj′

≤ 2

N
∑

k=1

N
∑

k′=k





∞
∑

j′=1

c2j′





1/2



∞
∑

j>(mk′/mk)−1

c2j





1/2

≤ 12‖f‖2B
2
N , (36)

which can be calculated similarly to (23). Since 12 · 2(−h−1)/2 ≤
752 (h2(log h)4)−1 for integer h ≥ 1 by a simple calculation, the last

expression in (36) is at most

752
B2

N

h2(log h)4
. (37)
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Using (32), (35) and (37) we have by (33) that

∣

∣

∣

∣

∣

∣

∫ i+1

i

(

N
∑

k=θ

g(mkt)

)2

dt

∣

∣

∣

∣

∣

∣

≤ 752B2
N

h2(log h)4
+

N
∑

k=θ

N
∑

k′=k

N
∑

j,j′=1

cjcj′
1

mk

≤ 752B2
N

h2(log h)4
+ (1 + logN)2

N
∑

k=θ

N
∑

k′=θ

1

mθ

≤ 752B2
N

h2(log h)4
+ (1 + logN)2N2 2N32−C−1

1 (log N)2(log log N)1/2

≤ 753B2
N

h2(log h)4

for sufficiently large N , and thus the lemma is proved. �

By (24) and (25)

P

{

max
1≤K≤N

∣

∣

∣

∣

∣

K
∑

k=1

g(nkx)

∣

∣

∣

∣

∣

> 424 C1h
−1(log h)−2

√

B2
N log logN

}

≤ 2P

{∣

∣

∣

∣

∣

N
∑

k=1

g(nkx)

∣

∣

∣

∣

∣

> 378 C1h
−1(log h)−2

√

B2
N log logN

}

for sufficiently large N , and thus by Lemma 2 and Corollary 1 we get

Corollary 2 For sufficiently large N

P

{

max
1≤K≤N

∣

∣

∣

∣

∣

K
∑

k=1

f(nkx)

∣

∣

∣

∣

∣

> 425 C1h
−1(log h)−2BN (log logN)1/2

}

≤ 4e−2h log log N +N−1(logN)5.

A similar result can be established for odd functions satisfying the

conditions in (17) and (18). Since any periodic function f satisfying

(17) can be decomposed into an even and an odd part (put feven =

(f(x)+ f(−x))/2 and fodd = (f(x)− f(−x))/2), which satisfy (17) as

well, we get the following
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Corollary 3 Let f(x) be a function satisfying the conditions in (17)

and assume f can be decomposed into an even and an odd part both

of which satisfy (18). Then

P

{

max
1≤K≤N

∣

∣

∣

∣

∣

K
∑

k=1

f(nkx)

∣

∣

∣

∣

∣

> 850 C1h
−1(log h)−2

√

B2
N log logN

}

≤ 8e−2h log log N + 2N−1(logN)5.

5 Proof of Theorem 2

Using the exponential bounds and maximal inequalities obtained in

Sections 3 and 4 we can complete the proof of Theorem 2 by using a

chaining argument, a technique going back to Cassels. We will actu-

ally use the version of this method employed in Erdős and Gál [7] and

Philipp [14].

Let N be given and put H = ⌈(log2N)/2⌉. Every a ∈ [0, 1) can

be written in dyadic expansion

a =
∞
∑

j=1

2−jaj , aj ∈ {0, 1},

and obviously

H
∑

j=1

2−jaj ≤ a ≤
H
∑

j=1

2−jaj + 2−H .

We define the functions

̺
(j)
h (x) = 1[(j−1)2−h,j2−h)(x), 1 ≤ j ≤ 2h, 1 ≤ h ≤ H,

where 1[a,b) denotes the indicator of the interval [a, b), extended with

period 1, and we set

ϕ
(j)
h (x) = ̺

(j)
h (x) −

∫ 1

0
̺
(j)
h (x) dx, 1 ≤ j ≤ 2h, 1 ≤ h ≤ H.

21



Then for any a there exist coefficients εh = εh(a) ∈ {0, 1} and indices

jh = jh(a), 1 ≤ h ≤ H, and an additional index j̄H = j̄H(a) such that

H
∑

h=1

εh̺
(jh)
h (x) ≤ 1[0,a)(x) ≤

H
∑

h=1

εh̺
(jh)
h (x) + ̺

( ¯jH)
H (x).

For 1 ≤ h ≤ H, 1 ≤ j ≤ 2h, N ≥ 1 we write

F (N,h, j) =

∣

∣

∣

∣

∣

N
∑

k=1

ϕ
(j)
h (nkx)

∣

∣

∣

∣

∣

and define for n ≥ 1

Gn =
⋃

N : BN∈(2n−1,2n]

⋃

h≤H

⋃

j≤2h

{

F (N,h, j) >
1701 C1

h(log h)2
BN (log logN)1/2

}

We put Nn = max{k : Bk ≤ 2n}, n ≥ 0. Let now BN ∈ (2n−1, 2n], i.e.

Nn−1 < N ≤ Nn. If

F (N,h, j) > 1701 C1h
−1(log h)−2BN (log logN)1/2

is satisfied, then for any fixed ε > 0 and sufficiently large N ≥ N0(ε)

the inequality

F (N,h, j) >
1701

2 + ε
C1h

−1(log h)−2BNn(log logNn)1/2

must be satisfied as well, since by
√
k ≤ Bk ≤ k fork ≥ 1

BN (log logN)1/2

BNn(log logNn)1/2
≥ 2n−1

2n

(

log log 2n−1

log log 22n

)1/2

≥ 1

2 + ε

for sufficiently large N and n. In particular for ε = 850−1 and suffi-

ciently large N and n

P(Gn) ≤
H
∑

h=1

2h
∑

j=1

P

{

max
Nn−1<N≤Nn

F (N,h, j) >
850 C1

h(log h)2
BNn(log logNn)1/2

}

.
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The functions ϕ
(j)
h (x) satisfy the conditions of Corollary 3. Thus

P(Gn) ≤
H
∑

h=1

2h
∑

j=1

(

8e−2h log log Nn +
2(logNn)5

Nn

)

≪
⌈(log2 Nn)/2⌉

∑

h=1

2he−2h log log Nn +

⌈(log2 Nn)/2⌉
∑

h=1

2h (logNn)5

Nn

≪
∞
∑

h=1

( √
2

logNn

)2h

+
(logNn)5

Nn

⌈(log2 Nn)/2⌉
∑

h=1

2h

≪ 1

(logNn)2
+

√
Nn(logNn)5

Nn

≪ 1

n2

for sufficiently large n, since Nn + 1 ≥ 2n. Hence for arbitrary η > 0

there exists an n0 such that

∑

n≥n0

P(Gn) < η.

Now let 0 ≤ a < 1 be abitrary. Then

∣

∣

∣

∣

∣

N
∑

k=1

1[0,a)(nkx) −Na

∣

∣

∣

∣

∣

≤
H
∑

h=1

∣

∣

∣

∣

∣

N
∑

k=1

ϕ
(jh)
h (nkx)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

N
∑

k=1

ϕ
( ¯jH)
H (nkx)

∣

∣

∣

∣

∣

+ 2−HN

≤ 2
√
N +

∑

h≤H

F (N,h, jh) + F (N,H, j̄H)

≤ 1703 C1BN (log logN)1/2

(

H
∑

h=1

1

h(log h)2
+

1

H(logH)2

)

≤ 4376 C1BN (log logN)1/2

for all x and N ≥ N0(η), except a set of measure less than η, no matter

how a was chosen. For those x
∣

∣

∣

∣

∣

N
∑

k=1

1[a,b)(nkx) −N(b− a)

∣

∣

∣

∣

∣

≤ 8752 C1BN (log logN)1/2
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for all 0 ≤ a < b ≤ 1. We divide by BN (log logN)1/2, take the

supremum over 0 ≤ a < b ≤ 1, take the lim sup and let η → 0, all in

that order. This proves Theorem 2.
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