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Abstract

We consider functions with values in the Clifford algebra Cl,, which are solu-
tions of a certain class of the iterated generalized Bers-Vekua equation D™w = 0
with Dw = Jw + cw where 0 = Z?:o e; 0/0x; is the generalized Cauchy-Riemann
operator. We prove that any such function w has a Almasi-type decomposition of
the form w = vg + xov1 + ... + xgl_lvm_l where x = g + x1€1 + ... 2Tnen, and the
functions v;,j = 0,1,...,m— 1, are solutions of the generalized Bers-Vekua equation
Dv =0.
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1 Introduction

Let Cl,, with p 4+ ¢ = n be the 2"-dimensional Clifford algebra generated by the elements
€1,...,6en, which obey the multiplication rules

e?zeo,jzl,...,p, e?:—eg,j:p—i—l,...,n and eje; +eje;=0fore <y,

where ey denotes the identity of the algebra. An arbitrary element a of Cl,, is given by

CLZZ)\AeA, A €ER
A

with eq4 = eq €0y - €ap,1,...;op €{1,...;ntand 1 <oy <ag < ... <ap <n.

The conjugation is defined by a = ) ,As1€4 where €4 = é,,...€,, and € = ey,
éj = —6j7j = ]_, Loy, holds.

Now an element z in R"*! with the coordinates g, z1, ..., x, is identified with

r=x9g+x1€1+ ... +TE,

and the conjugate of x is ¥ = x¢g — r1e1 — ... — T €,.



In R™*! the generalized Cauchy-Riemann operator is defined by

and the conjugate operator J is given by
- 0 = 0
0=—— e;i—
Oz ; 7O,

These operators act on the space C'(2, Cl,,) where Q denotes a domain in R™!.
Using such a Clifford algebra in a multidimensional space, elliptic, hyperbolic and parabolic
differential equations can be considered in an inductive way (cf. e.g. [1]).
A function u is said to be (left) Clifford holomorphic in €2 if it is a solution of the differential
equation

ou=20

Here we consider the generalized Bers-Vekua operator D defined by
Dv:=0v+cv

where ¢ is a real valued function of x.
In the algebra of complex quaternions H. Malonek [2] investigated some classes of gener-
alized Bers-Vekua equations. B. Goldschmidt [3] presented regularity properties of gen-
eralized analytic vectors a particular subset of which is described by Dv = 0. In [4] a
similar operator was used to describe pseudoanalytic functions in the space, whereas in a
forthcoming paper of the author for ¢(xg) = k/xo, k € Z, a representation theorem for the
solutions of Dv = 0 is proved using certain differential operators of Bauer-type acting on
Clifford holomorphic functions.
Here we study the iterated operator D™ with m € Nand D™ f = D(D™ ' f) and D°f = f.
There exists a close connection between the solutions of the iterated generalized Bers-Vekua
equation

D"w =0 (1)

and the solutions of Dv = 0. This result generalizes the representation of the solutions of
the iterated generalized Cauchy-Riemann equation

O™ =0 2)

(sometimes called (k)-monogenic or polymonogenic functions) given in [5] (see also [6]) and
further the classical Almansi theorem [7] for polyharmonic functions.

Supposing that there exists a representation of the solutions of Dv = 0 by means of certain
differential operators as it was discussed e.g. in the forthcoming article we prove a close
connection between the solutions of (1) and the solutions of (2).



2 An Almansi-type decomposition

Proposition 1. For any real valued, continuously differentiable function ¢(xo) of the vari-
able zo and for each function w € C*(Q2, Cl,,) we have

(i) O(p(x0) W) = ¢'(z0)W + ¢ (0) (OW)
(i4) D(p(x0) w) = @' (20)W + p(z0) (DW)

(iii) If u € CH(Q,Cl,,) is a solution of Du = 0 then au with a € R is a solution of
Du =0 also.

Proof. Using the relation @ ¢(z9) = () @ which is true for any real valued function ¢
and all w € C(Q, Cl,,) the assertions can be proved by direct calculation. ]

To find representations for the solutions of the iterated equation (1) we first choose a new
function w; as

_ 1 _
wy = D™y — — D™ 2w
To

which obeys the differential equation
1
le + —w; = 0 (3)
Zo

This can be proved immediately using proposition 1(ii) and equation (1). Further we define

the functions 2
wy:=D"Fw— =Dk Ly k=23 ... m—1 (4)
Zo

for which the relations

1
Dw,+ —w, =wip_1, k=2,3,....,m—1 (5)
Zo

hold. With k = m — 1 equation (4) leads to

-1
Wyp—1 = Dw — m w (6)
Lo
Setting w,, := w we get from (3), (5) and (6) a system of m differential equations for
the functions wg, k = 1,...,m. With the vector W := (wy,...,w,,)" and the matrices
A = (aj;) with
1/xq for 1<j=k<m-1
(1—=m)/zg for j=k=m
aj, =
A for j=k+1,1<k<m-—1

0 else



and B = (b;,) with
¢ for 1<j=k<m
bjk -
0 else

this system can be given in matrix notation as
OW + AW + BW =0 (7)

Writing OW means the application of the operator 0 to each component of W.

Let P = (pjx) denote a m X m-matrix the components of which are real valued, continu-
ously differentiable functions of xy. By the transformation W = PU in connection with
proposition 1(i) equation (7) leads to the relation

P(OU) + (P'+ AP)U + PBU =0

for the new unknown vector U = (uyq, ..., uy)".
The request P’ + AP = 0 can be satisfied by the matrix P with

rxj—kfl
0 . .
: for 1<k<j1<j<m-1
(J —k)!
0 for j<k<m,1<j7<m-1
Pjk = 1 pmk-1
0 .
—_—— { = 1<k< —1
k(m—k—1) o JTMi=sk=m
G for j=k=m

which is nonsingular since det P= 1. Thus for the vector U we have the simple system
U +cU =0

which states that each component u; of the vector U obeys the generalized Bers-Vekua
equation
Dup, =0up+cu,=0, k=1,...,m

The focal question is which form has the function w = w,,, the m-th component of the
vector W. From W = PU we have

m—1

1
w:wmzz_:pmkuk: _E(m——k‘—l)!ukJr% Um

where the v, are solutions of Dv, = 0 and we have the following

4



Theorem 1. 1. Let the functions v,k = 0,1,...,m—1, be solutions of the generalized
Bers-Vekua equation Dvy = 0 in Q. Then the function w according to (8) represents
a solution of the iterated generalized Bers-Vekua equation D™w = 0 in Q.

2. For each solution w of (1) defined in Q) there exist solutions vy, k =0,1,...,m — 1,
of Dup =0 in  such that w can be written in the form (8).

To bring out the connection between a solution w of (1) and the functions vy in the
representation (8) we first prove the relation

-1

3

k!
(k_mx]g’lvk, [=0,1,....m—1 9)

Dhw =

>
Il

l

This can be considered as a linear system of m equations for the functions vy, k =0, ...,
m — 1, which has the form

MV =W with V = (vg,...,0m_1)" and W:(w,Dw...,Dm_lw)t

The coefficient matrix M = (m;;) with

k=10 0 o
o — (k—i)!xo fori <k
0 fori >k

is non singular, its inverse M~ = (u;) is given by
(_1)i+k L -
B ¢ <k
=4 G- DIk -0 'S
0 fori >k

Thus the solution of system (9) can be written as

and we have the

Lemma 1. For each solution w of (1) in the form (8) the functions vy are determined
uniquely by (10).

In Cly; the operator 0 reduces to the Cauchy-Riemann operator and eq. (1) to the iterated
Bers-Vekua equation for which in [8] a corresponding representation theorem was proved.
For the iterated Dirac operator 0% with 9 = Z;;l e; 0/0x; a similar decomposition was
proved in [9], whereas in [10] a unified approach to decomposing kernels of iterated opera-
tors was investigated.



3 Differential operators for the solutions

Now let us consider the case when the solutions of Dv = 0 can be represented by means of
a suitable differential operator of Bauer-type acting on solutions of du = 0. In the paper
mentioned above a sufficient condition on the coefficient ¢ in Dv = 0 was given for the
existence of such a differential operator with which Clifford holomorphic functions g can
be transformed into solutions v of Dv = 0 by

v = ZCL]‘(Io) (géj) + Z bj(l’o) (639) s N eN

In particular for the coefficient ¢(z9) = N/xo, N € Z, such a Bauer-type differential oper-
ator exists and the coefficients a; and by can be given in an explicite form.
Let us assume that there exists a representation for the functions vy in (8) of the form

N N-1

v =Y aj(zo) () + ij(azo) (¥gy) . k=0,...,m—1 (11)

=0 =0
with suitabel functions g, which are solutions of dgp, = 0,k = 0,...,m — 1. With the
operator 0 defined by

Su = (ud) — (Ou), & u = 6(8u), 0°u :=u
by direct calculation we can prove the

Proposition 2.
(i) For any Clifford holomorphic function gy the function u according to

m—1
U= Z L i (12)
k=0

represents a solution of 0™u =0 (see also [5]).

(ii) For a function u given by (12) we have the relation

Now from the representation (8) with the functions vy given in (11) and with proposition
2(ii) we get the following form for the solutions of (1)

w=Y"a(a) (5%) + 3 b)) (13

Theorem 2. In the case of the existence of Bauer-type operators for the representation of
the solutions of the generalized Bers-Vekua equation Dv = 0 the solutions of the iterated
generalized Bers-Vekua equation D™w = 0 can be given in terms of solutions of the iterated
generalized Cauchy-Riemann equation 0™u = 0 by a differential operator in the form (13).
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