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Abstract. We investigate the function uK,S(m; q), which counts the number

of representations of algebraic integers α with |NK/Q(α)| ≤ q, so that they can
be written as sum of exactly m S-units of the number field K.

1. Introduction

The study of the additive structure of units in rings originates in investigations
due to Zelinsky [14] back in the fifties of the previous century. Zelinsky showed
that every endomorphism of a vector space V over a division ring D can be written
as the sum of two automorphisms, unless D is not the field with two elements and
V is of dimension 1. Similar results were obtained for other endomorphism rings
(for an overview see [13]).

The additive unit structure of maximal orders of number fields have been studied,
too. In particular, Jacobson [9] observed that every element in the maximal orders
of the number fields Q(

√
2) and Q(

√
5) can be written as the sum of distinct units.

Later all quadratic, cubic and quartic fields with this property were determined
(see [11, 2, 3]). By a combination of results on S-unit equations and combinatorial
results Jarden and Narkiewicz [10] showed that given a finitely generated domain
B of characteristic zero for every positive integer k there exists an α ∈ B such that
α cannot be written as the sum of k units. In view of this observation two problems
arise:

The qualitative problem: Which rings of integers are generated by their
units?

The quantitative problem: How many non-associated algebraic integers
with bounded norm, height, etc. can be written as the sum of k units?

The qualitative problem has been solved for quadratic and complex cubic fields (see
[2, 1, 12]. Also some classes of quartic fields have been investigated (see [8, 15]).
Recently, the quantitative problem has been investigated for quadratic fields and
some purely quartic fields (see [8, 7]).

This paper is devoted to the quantitative problem. In order to give precise
statements we introduce the following counting function:

Definition 1. Let K be a number field, S a finite set of places of K and UK,S the
group of S-units. As usual, two S-integers α and β of K are said to be associated
if there exists an S-unit ε such that α = βε and we write α ∼ β.
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We define the counting function uK,S(n; q) = u(n; q) as number of equivalence
classes [α]∼ such that

N(α) :=
∏
ν∈S
|α|ν ≤ q, α =

n∑
i=1

εi, εi ∈ UK,S

and no subsum vanishes.

Note that the function u(n; q) is well defined, since N(α) = N(β) if α ∼ β.
Before we state our main theorem we fix the following notation for the rest of the
paper. Let K be a number field and S be a finite set of places of K including the
archimedian ones and let |S| = s + 1. By UK,S we denote the group of S-units of
K and we fix a fundamental system ε1, . . . , εs of S-units. By ωK and RegK,S we
will denote the number of roots of unity and the S-regulator of K.

Theorem 1. Let ε > 0. Under the above assumptions we have

u(n; q) =
cn−1,s

n!

(
ωK(log q)s

RegK,S

)n−1

+ o((log q)(n−1)s−1+ε)

for all ε > 0, where the constant cn,s is the volume of

{(x11, . . . , xsn) ∈ Rns : h(x11, . . . , xsn) < 1}
with

h(x11, . . . , xsn) =
s∑
i=1

max{0, xi1, . . . , xin}+ max

{
0,−

s∑
i=1

xi1, . . . ,−
s∑
i=1

xin

}
.

Our theorem is closely related to results due to Everest [4, 5] who counted the
number of solutions to certain norm inequalities. However, the full result of Everest
makes heavy use of many non-elementary results such as theorems on the uniform
distribution of sequences, Schmidt’s subspace theorem, Baker’s theory on linear
forms in logarithms, etc. Using the full result would lead us to an error term
without ε and a big-O instead of a small-o.

In order to give the reader more insight we sketch Everst’s proof and try to avoid
most of the non elementary steps. Unfortunately, we cannot avoid an application
of Schmidt’s subspace theorem (see Lemma 3, second statement). However, the
interested reader is advised to study Everest’s papers for a full account to the
techniques described below.

In the next section we introduce some notations that will help us in section 3
to state Everest’s results and to sketch their proofs. Applying these results we will
prove our main theorem in section 4. Since the definition of the constant cn,s is not
very illuminating we discuss an estimate for cn,s in the last section.

2. Some Notations

We want to study S-unit representations with small norm and so we introduce
the following function. Let x = (1, x2, . . . , xn) ∈ UnK,S then we consider the function

NK,S(x) = N(x) =
∏
ν∈S
|1 + x2 + · · ·+ xn|ν

and its related counting function

NK,S(q) = N(q) = ]
{
x ∈ UnK,S : N(x) < q

}
.
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where no subsum of 1+x2+· · ·+xn vanishes. We are also interested in the following
variant: Let c = (c1, . . . , cn) ∈ (K∗)n be fixed, we define

Nc(x) =
∏
ν∈S
|c1 + c2x2 + · · ·+ cnxn|ν

and the corresponding counting function

Nc(q) = ]
{
x ∈ UnK,S : Nc(x) < q

}
,

where no subsum of c1 + c2x2 + · · ·+ cnxn vanishes.
As we will see in the next section these functions are closely related to the height

functions
Hν(x) = max{0, |xi|ν ; i = 1, . . . , n}

and
H(x) =

∏
ν∈S

max{0, |xi|ν ; i = 1, . . . , n} =
∏
ν∈S

Hν(x)

and its counting function

H(q) = ]
{
x ∈ UnK,S : H(x) < q

}
.

As will be shown later the following set U0 ⊂ UnK,S will yield the main contribution
to H(q). We write H∗ν to be the second largest member of the set {0, |xi|ν}. Given
reals Aν > 0, Bν > 1, define

U0 =
{
x ∈ UnK,S : ∀ν ∈ S, H

∗
ν (x)

Hν(x)
< Aνe

−Bν log logH(x)

}
.

Next we define the counting function

H0(q) = ] {x ∈ U0 : H(x) < q} .

Assume for the rest of the paper that Aν and Bν are fixed numbers. This choice
does not effect the asymptotics but rather the constants in the error terms.

3. Sums of S-units

In this section we adapt the results and techniques due to Everest [4, 5] to our
case. We start with

Lemma 1.

H(q) = cn,s

(
ωK(log q)s

RegK,S

)n−1

+O((log q)(n−1)s−1).

Proof. Let xi be S-units and write xi = ζiε
ni1
1 · · · εniss for i = 1, . . . , n. Taking

logarithms of the absolute values | · |ν with ν ∈ S and recalling the definition
of H(x) we see that the function H(q) essentially counts the number of points
n = (n11, . . . , nns) ∈ Zns that fulfill the inequality

(1)
s+1∑
i=1

max{0, L(j)
i (n)} < log q,

where
L

(j)
i (n) = ni1 log |εi|νj + · · ·+ nis log |εs|νj = log |xi|νj ,
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where S = {ν1, . . . , νs+1}. A linear transformation of determinant Reg−1
K,S turns

the L(j)
i (n) into

L̃
(j)
i (n) =

{
nij for j ≤ s
−
∑s
k=1 nik for j = s+ 1.

Note that the number of lattice points in a polyhedron of dimension n is its volume
plus an error term of the size about the n − 1 dimensional volume of its faces.
Bearing in mind the linear transformation and the fact that the number of lattice
points are points counted by H(q) up to multiplication by roots of unity we obtain
the lemma. �

For the function H0(q) we obtain (see [5, Proposition 1]).

Lemma 2.
H0(q) = H(q) + o

(
(log q)(n−1)s−1+ε

)
for all ε > 0.

Note that the proof of this lemma does not need any deep results and can be
achieved by considering Dirichlet series (see also [4, Lemma 3]).

Next, we want to establish a relation between H(x) and N(x) (see [4, Lemma 6]).

Lemma 3. (1) For all x ∈ U0 we have logN(x) = logH(x)+O (1/ log(H(x))).
(2) For all x ∈ UK,S such that no subsum of 1 + x2 + . . .+ xn vanishes, there

exists a constant θ > 0 such that logN(x) > θ logH(x)

Proof. We have

logN(x) =
∑
ν∈S

log |1 + x2 + · · ·+ xn|ν

=
∑
ν∈S

logHν(x) +
∑
ν∈S

log
(

1 +O

(
H∗ν (x)
Hν(x)

))

because of the definition of U0 the first statement is proved. The second statement
is a consequence of Schmidt’s subspace theorem (see [6, Theorem 2] and in the case
of K a quadratic field see also [7, Lemma 3]) �

Now we establish the main result of this section (see also [5, Theorem 1]):

Proposition 1.

N(q) = cn,s

(
ωK(log q)s

RegK,S

)n−1

+ o((log q)(n−1)s−1+ε)

for all ε > 0.

Proof. We break up to counting function into two parts:

N(q) =]{x : N(x) < q, x ∈ U0}+ ]{x : N(x) < q, x 6∈ U0}
=N1(q) +N2(q)

For the second part we obtain by Lemma 3

N2(q) = ]{x : H(x)θ < q, x 6∈ U0} = o
(

(log q)(n−1)s−1+ε
)
,
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where the last equality is obtained by a combination of the Lemmas 1 and 2. Since
those x that satisfy H(x) < (log q)1/2 are only O((log q)(n−1)s/2) in number, we
may assume H(x) > (log q)1/2. So we obtain

N1(q) =]{x ∈ U0 : log(H(x)) < log q +O(1/
√

log q)}

=H0

(
q1+O(1/

√
log q)

)
=H

(
q1+O(1/

√
log q)

)
+ o

(
((1 +O(1/

√
log q)) log q)s(n−1)−1+ε

)
=cn,s

(
ωK(log q)s

RegK,S

)n−1

+ o((log q)(n−1)s−1+ε) +O(log q(n−1)s−3/2)

=cn,s

(
ωK(log q)s

RegK,S

)n−1

+ o((log q)(n−1)s−1+ε)

�

Corollary 1. Assume for all ν ∈ S that log |ε1|ν , . . . , log |εs|ν generate a Q-space
of dimension at least 2. Then

N(q) = cn,s

(
ωK(log q)s

RegK,S

)n−1

+O((log q)(n−1)s−1)

Proof. Combine Everest’s result [5, Theorem 1] with Proposition 1. �

At the end of the section we want to state Everest’s result [5, Theorem 1] for
Nc(q) which stated in this form may be obtained analogously to the proof of Propo-
sition 1, i.e. the only non elementary part is the proof of the second statement of
Lemma 3.

Proposition 2. For all c ∈ (K∗)n we have

Nc(q) = O((log q)(n−1)s).

4. The number of S-unit representations

This section is devoted to the proof of our main Theorem 1. Assume α =
x1 + . . .+ xn can be written as a sum of S-units, where

xi = ζiε
ni1
1 · · · εniss

for i = 1, . . . , n. Then we can write α = 1 + x2 + · · · + xn, with 0 = n1s ≤ n2s ≤
· · · ≤ nns, since we are interested only in equivalence classes of associated integers.
Let us denote by u0(n; q) the number of representations, where all units are pairwise
distinct. Then we have u0(n; q) = N(q)/n!− r, where r is the number of integers α
that have two distinct representations as sums of n distinct S-units. As shown in
[7, Lemma 2] r depends only on n and S but not on q. The factor 1/n! comes from
the fact that the order of the xi does not matter in the computation of u0(n; q).

On the other hand we have

(2) u(n; q) = u0(n; q) +
∑
c

Nc(q)
l(c)!

+O(1),

where the O(1) comes from the α′s with two distinct representations and the sum
runs over all c = (c1, . . . , cm) ∈ Zm with ci ≥ 1 and c1 + · · · + cm = n and
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(c1, . . . , cm) 6= (1, . . . , 1), i.e. m < n for all c’s appearing in the summation. More-
over we write l(c) = m. Applying the Propositions 1 and 2 to formula (2) proves
our main Theorem 1.

5. Some results for cn,s

In this section we want to discuss the quantity cn,s. For small values of s and n
it is possible to compute the quantity cn,s directly. We did this for all pairs (n, s)
with n+ s ≤ 6 (see Table 1).

Table 1. Values for cn,s

s�n 1 2 3 4 5
1 2 3 4 5 6
2 3 15

4
7
2

45
16

3 10
3

7
3

55
54

4 35
12

275
32

5 21
10

Furthermore, we can prove the following:

Lemma 4. (1) cn,1 = n+ 1;
(2) c1,s = 4sΓ(s+1/2)√

πΓ(s+1)2
;

(3) 2ns

(ns)! < cn,s < 2ns;

Proof. First we consider the case s = 1, i.e. we have to compute the volume of

Bn,1 := {(x1, . . . , xn) ∈ Rn : max{0, x1, . . . , xn}+ max{0,−x1, . . . ,−xn}} .
Assume the following holds:

x1 > x2 > · · · > xr > 0 > xr+1 > · · · > xn

with 0 < r < n. Then we have x1 − xn < 1. Note that the case r = 0 respectively
r = n yields the volume of a simplex with rectangular edges of length 1 hence
volume 1/n!. In the other cases the volume is

1∫
x1=0

0∫
xn=x1−1

x1∫
x2=0

· · ·
xr−1∫
xr=0

0∫
xn−1=xn

· · ·
0∫

xr+1=xr+2

1 dxr+1 · · · dxn−1dxr · · · dx2dxndx1 =

1∫
x1=0

0∫
xn=x1−1

x1∫
x2=0

· · ·
xr−1∫
xr=0

(−xn)n−r−1

(n− r − 1)!
dxr · · · dx2dxndx1 =

1∫
x1=0

0∫
xn=x1−1

(−xn)n−r−1xr−1
1

(n− r − 1)!(r − 1)!
dxndx1 =

1∫
x1=0

(1− x1)n−rxr−1
1

(n− r)!(r − 1)!
dx1 =

1
n!

So any case (also the cases r = 0 and r = n) yields the volume 1/n!. Since there
are (n+ 1)! cases we obtain cn,1 = (n+ 1)!/n! = n+ 1.
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Now we consider the case n = 1. In this case we have to compute the volume of

B1,s := {(x1, . . . , xs) ∈ Rs : h(x1, . . . , xs) < 1}

where h(x1, . . . , xs) := max{0, x1}+ · · ·+max{0, xs}+max{0,−x1−· · ·−xs}. Let
us assume x1, . . . , xr > 0 and xr+1, . . . , xs ≤ 0. Then h(x1, . . . , xs) = x1 + · · ·+ xr
if −x1− . . .−xs ≤ 0 and h(x1, . . . , xs) = −xr+1−· · ·−xs otherwise. In the second
case we may make the coordinate change yi = −xi with 1 ≤ i ≤ s and obtain the
first case with s−r instead of r. Therefore we consider only the case x1, . . . , xr > 0,
xr+1, . . . , xs ≤ 0 and x1 + . . . + xs > 0. Then we have to compute the following
integral:

1∫
x1=0

· · ·
1−

Pr−1
i=1 xi∫

xr=0

0∫
xr+1=−

Pr
i=1 xi

· · ·
0∫

xs=−
Ps−1
i=1 xi

1 dxs · · · dx1 =

1∫
x1=0

· · ·
1−

Pr−1
i=1 xi∫

xr=0

(
∑r
i=1 xi)

s−r

(s− r)!
dxr · · · dx1 =

1∫
x1=0

· · ·
1−

Pr−2
i=1 xi∫

xr−1=0

1
(s− r + 1)!

−
(
∑r−1
i=1 xi)

s−r+1

(s− r + 1)!
dxr−1 · · · dx1 =

1
(s− r + 1)!(r − 1)!

−
1∫

x1=0

· · ·
1−

Pr−2
i=1 xi∫

xr−1=0

(
∑r−1
i=1 xi)

s−r+1

(s− r + 1)!
dxr−1 · · · dx1 =

r∑
j=1

(−1)j+1

(s− r + j)!(r − j)!
=

1
(s− r)!(r − 1)!s

All together we obtain

cn,s =
s∑
j=0

2
(
s
j

)
(s− r)!(r − 1)!s

=
4sΓ(s+ 1/2)√
πΓ(s+ 1)2

.

We are left to prove the last statement of the lemma. Since we have |xi,j | < 1
for 1 ≤ i ≤ n and 1 ≤ j ≤ s the upper bound is established. For the lower bound
we use the fact that all xij satisfying

n∑
i=1

s∑
j=1

|xi,j | < 1

lie in the body that defines cn,s. �

Remark 1. With a little more effort it would be possible to show sharper bounds
for cn,s. We abandon to do so because the constant does not effect the asymptotics
of u(n; q) which is our main concern in this paper.
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Let us consider the result for s = 1, i.e. let us consider the unit group of a real
quadratic field, complex cubic field or totally complex quartic field K. This yields

u(n; q) =
1

(n− 1)!

(
ωK(log q)

log |η|

)n−1

+ o((log q)(n−2+ε),

where η is a fundamental unit of K with |η| > 1. Moreover, note that the number of
roots of unity ωK = 2 if K is quadratic or a cubic field or a quartic field containing
neither i nor 1+i

√
3

2 . In particular, for K a real quadratic field we get

u(n; q) =
1

(n− 1)!

(
2(log q)

log η

)n−1

+ o((log q)(n−2+ε),

which is an improvement of the result obtained in [7].
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