Algorithms and automata for the Tower of Hanoi

ANDREAS HINZ

(LMU Munich & University of Maribor)

Mathematical solitaire games like the Chinese Rings and the Tower of Hanoi can be modelled by state graphs, leading to the two-parameter classes of Sierpiński graphs S^n_p and Hanoi graphs H^n_p. Shortest path algorithms can be based on automata in the Sierpiński case, so that the metric properties of S^n_p (and $H^3_3 \cong S^n_3$) are now completely understood. For Hanoi graphs with $p > 3$, however, the notorious Frame-Stewart Conjecture (1941) is still undecided and unexpected behavior of eccentricities like Korf’s Phenomenon (2004) remains unexplained. Whereas $\text{diam}(S^n_p) = 2^n - 1$ for all $p \geq 2$, the diameter of H^n_p is known only for small values of the parameters by computer experiments.

References.

Mihyun Kang