
2 CHAPTER 1. RECURRENCE RELATIONS

Algorithm 1 MergeSort(a[ ], `, r)

1: if r − ` > 0 then
2: m = b `+r2 c
3: MergeSort(a[ ], `,m)
4: MergeSort(a[ ],m+ 1, r)
5: for i = ` to m do
6: b[i− `+ 1] = a[i]
7: for j = m+ 1 to r do
8: c[j −m] = a[j]
9: b[m− `+ 2] = c[r −m+ 1] =∞

10: i = 1, j = 1
11: for k = ` to r do
12: if b[i] < c[j] then
13: a[k] = b[i]
14: i = i+ 1
15: else
16: a[k] = c[j]
17: j = j + 1

index limits) into two subarrays a[` . . .m], a[m+ 1 . . . r] and sort them recursively.

The lines 5 to 8 copy parts of a[ ] as follows:

b[1] . . . b[m− `+ 1] c[1] . . . c[r −m]
a[`] . . . a[m] a[m+ 1] . . . a[r]

The arrays b[ ] and c[ ] are terminated with the value ∞.

The lines 10 to 17 overwrite array a[ ] successively with the next smallest value. This is
either the next in b[ ] or in c[ ] due to the recursive sorting.

Theorem 1.1 (MergeSort): Let Cn be the number of comparisons that MergeSort
needs to sort a list of n numbers. Then the following recursion holds for n ≥ 1:

Cn = Cbn/2c + Cdn/2e + n.

Proof.

1. Cdn2 e is the number of comparisons to sort the first half a[1 . . .
⌈
n
2

⌉
].

2. Cbn2 c is the number of comparisons to sort the second half a[
⌈
n
2

⌉
+ 1 . . . n].

3. n is the number of comparisons to “merge” two sorted lists.

Theorem 1.2: Let Cn be as in the previous theorem. Then Cn = n log n+O(n).


