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1. INTRODUCTION

Self-similar sets are introduced in various ways. Usually they are defined as

compact invariant sets of iterated function systems, see Hutchinson [6]. They

are studied under different assumptions concerning their symmetries and the

structure of the underlying space. Most important are the notions of nested

fractals, see Lindstr�m [13], and post-critically finite self-similar sets, see Kigami

[8] and the recent book [9].

Self-similar graphs can be seen as discrete versions of these self-similar sets.

There exists a lot of literature on different examples of self-similar graphs.

Especially the random walk on the Sierpiński graph was studied extensively,

see [2], [5], and [7]. General connections between the volume growth and

the transition probabilities of random walks were studied by Coulhon and

Grigor’yan in [3]. Telcs studied connections between the growth dimension

(also, fractal dimension), the random walk dimension, and the resistance

dimension in [17], [18], and [19]. Barlow, Coulhon, and Grigor’yan used the

growth dimension to give upper bounds for the heat kernel on graphs and

manifolds in [1].

For a good introduction to the growth of finitely generated groups, the reader is

referred to the book of de la Harpe, see [4].

One can define self-similarity of graphs, without using a given self-similar set,

which is embedded into a complete metric space. A first axiomatic definition was

stated by Malozemov and Teplyaev in [15]. Their graphs correspond to fractals

such that the boundaries of their cells, see [13], contain exactly two points. With

an axiomatic approach the author introduced the class of symmetrically self-

similar graphs in [10]. In both papers, [10] and [15], the spectrum of the discrete

Laplacian is studied. A similar approach to general self-similar graphs was

chosen by Malozemov and Teplyaev in [16]. The definition of symmetrically self-

similar graphs in [16] uses a stronger symmetry-condition than the definition in

[10] or [12]. In [12], Teufl and the author calculated the asymptotic behavior of

the transition probabilities of the simple random walk on symmetrically self-

similar graphs. They generalized results of Grabner and Woess in [5] from the

Sierpiński graph to these graphs.

Up to now, the class of symmetrically self-similar graphs is the biggest class of

self-similar graphs where the simple random walk and consequently the Green

functions as well as the spectrum of the Laplacian are understood well, see [10]

and [12]. The class of graphs discussed in the present note contains the class of

symmetrically self-similar graphs. Several results (e.g., Theorems 3.2 and 3.3 and

Corollary 3.1) are relevant to these analytic studies.

After defining general self-similarity in Section 2, we reformulate the fixed

point theorem for self-similar graphs, see Theorem 1 in [10]. This theorem can be

interpreted as a graph theoretic analog to the Banach fixed-point theorem. For

the more special class of homogeneously self-similar graphs, see Definition 2.2,

we discuss some basic geometric properties concerning the so-called n-cells, see
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Lemma 2.1. These n-cells correspond to n-cells and n-complexes in the sense of

Lindstr�m, see [13].

Self-similar graphs of bounded geometry (the set of vertex degrees is bounded)

correspond to finitely ramified fractals. In Section 3 it is proved that for homog-

eneously self-similar graphs having a constant inner degree (see Definition 3.1)

there is a simple geometric equality relation between parameters, defined

by the geometry of the graph, which is satisfied if and only if the graph has

bounded geometry. Example 3.1 shows that in general this is not true for

graphs without constant inner degree. The number of edges in the boundary of

an n-cell is calculated explicitly. We give an example of a locally finite,

homogeneously self-similar graph with constant inner degree and unbounded

geometry.

Some basic properties of different growth dimensions are discussed in

Section 4.

In Section 5 the diameter of the boundary of an n-cell in a homogeneously self-

similar graph is computed. We give upper and lower bounds for the maximal

distance between the boundary and vertices in the n-cell and bounds for the

diameter of the whole n-cell. It is proved that for homogeneously self-similar

graphs with bounded geometry, all growth dimensions can be computed by the

same formula as the Hausdorff dimension of self-similar sets, which satisfy the

open set, condition, namely,

dim X ¼ log �

log �
;

see, Hutchinson [6]. Here the length scaling factor � is the diameter of the

boundary of a 1-cell, and the volume scaling factor � is the number of 1-cells,

which are contained in a 2-cell. The result also holds if the diameter of a cell is

greater than the length scaling factor �.

2. SELF-SIMILAR GRAPHS

Graphs X ¼ ðVX;EXÞ with vertex set VX and edge set EX are always connected,

locally finite, infinite, without loops or multiple edges. We write degXx for the

degree of a vertex x, which is number of vertices in VX being adjacent to x in X.

A path of length n from x to y is an ðnþ 1Þ-tuple of vertices

ðz0 ¼ x; z1; . . . ; zn ¼ yÞ

such that zi�1 is adjacent to zi for 0 � i � n. The distance dXðx; yÞ is the length

of a shortest path from x to y. A path from x to y is geodesic if its length is

dXðx; yÞ. The vertex boundary or boundary �C of a set C of vertices in VX is the

set of vertices in VXnC being adjacent to some vertex in C. The closure of C is

defined as C ¼ C [ �C. Let us write ĈC for the subgraph of X, which is spanned by
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the closure of C. We call C connected if every pair of vertices in C can be con-

nected by a path in X that does not leave C. The set of edges �C, which connect a

vertex in C with a vertex in VXnC, is the edge boundary of C.

For the convenience of the reader, we briefly repeat the definition of self-

similar graphs and the respective point theorem, see Definitions 1 and 2 and

Theorem 1 in [10].

Let F be a set of vertices in VX. Then CXF denotes the set of connected

components in VXnF. We define the reduced graph XF of X by setting VXF ¼ F

and connecting two vertices x and y in VXF by an edge if and only if there exists a

C 2 CXF such that x and y are in the boundary of C.

Definition 2.1. X is self-similar with respect to F and  : VX ! VXF if

(F1) no vertices in F are adjacent in X,

(F2) the intersection of the closures of two different components in CXF contains

not more than one vertex, and

(F3)  is an isomorphism of X and XF.

We will also write � instead of  �1, Fn instead of  nF and we set F0 ¼ VX.

Components of CXFn are n-cells, 1-cells are also just called cells. The subgraphs

ĈCn of X, which are spanned by the closures of n-cells, are called n-cell graphs or

cell graphs instead of 1-cell graphs. An origin cell is a cell C such that ��C � C.

A fixed point of  is called origin vertex.

The following theorem is a reformulation of the fixed point theorem for self-

similar graphs. It is a consequence of Theorem 1 and Lemma 2 in [10].

Theorem 2.1. Let X be self-similar with respect to ~FF and ~  . Then X is also self-

similar with respect to ~FFk and ~  k for any positive integer k. There is an integer n

such that X, seen as self-similar graph with respect to F ¼ ~FFn and  ¼ ~  n, has

either

(i) exactly one origin cell and no origin vertex, or

(ii) exactly one origin vertex o.

In the latter case, the subgraphs XA of X spanned by the closures A of

components A in CXfog are self-similar graphs with respect to

FA ¼ F \ A and  A ¼  jFA

and they have exactly one origin cell.

Definition 2.2. A connected graph X which is self-similar with respect to F is

called homogeneous if the following axioms are satisfied:

(H1) All cell graphs are finite and for any pair of cells C and D in CXF, there
exists an isomorphism � : ĈC ! D̂D such that ��C ¼ �D.

(H2) Let v1, v2, v3, and v4 be vertices in the boundary �C of a cell C and

v1 6¼ v2 and v3 6¼ v4, then dXðv1; v2Þ ¼ dXðv3; v4Þ.
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In this section, X always denotes a homogeneously self-similar graph. The

distance � of two different vertices in the boundary of a cell is the length scaling

factor of X. The number � of 1-cells in a 2-cell is called volume scaling factor of

X. We write �X instead of j�Cj and �X instead of j�Cj for some cell C in CXF. The

diameter of a cell C is denoted by � , and we set � ¼ �� �.

For homogeneously self-similar graphs, the numbers �; �; �; �; �X and �X are

independent of the choice of the cell C.

Example 2.1. Figure 1 shows a 2-cell graph of a self-similar tree. The diameter

� of a cell is greater than the length scaling factor �. Vertices in F are drawn fat,

the two vertices in F2 are drawn fat and encircled. We have � ¼ �X ¼
�X ¼ 2; � ¼ 3, and � ¼ 4. See also Remark 1.

Lemma 2.1.

(i) Let m and n be positive integers such that n > m and let Cn be an n-cell.

Then �mðCn \ FmÞ is an ðn� mÞ-cell.
(ii) The number of n-cells in an ðnþ 1Þ-cell Cnþ1 is � and j�Cnþ1j ¼ �X.

(iii) Each cell graph ĈC consists of � copies of the complete graph K�X . More

precisely: The image ��C of the boundary of a cell C spans a graph in X

which is isomorphic to the complete graph K�X with �X vertices.

Proof.

(i) The set �Cn is the boundary of Cn in X as well as the boundary of Cn \ Fm

in XFm . Since �m is an automorphism XFm ! X, the image �m�Cn is the

boundary of �mðCn \ FmÞ in X and it is contained in Fn�m. The set

Cn \ Fm is connected in XFm and �mðCn \ FmÞ is connected in X. It

follows that �m�Cn is the boundary of the ðn� mÞ-cell �mðCn \ FmÞ.
(ii) For n ¼ 1 then the first part of the statement is clear. Suppose n is greater

or equal to 2. Then �n�1ðCnþ1 \ Fn�1Þ is a 2-cell consisting of � cells.

These cells C correspond one-to-one to the n-cells D in Cnþ1 in the

following way: �nðFn \ DÞ ¼ C or Fn \ D ¼  nC.

The image �nþ1�Cnþ1 is the boundary of a cell, hence j�Cnþ1j ¼ �X.

FIGURE 1.
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(iii) By the definition of XF , the vertices in the boundary of a cell in X are

pairwise adjacent, thus they span a complete subgraph of XF. Let C2 be a

2-cell in X. Then C2 \ F spans � copies of the complete graph K�X as

subgraph of XF. These copies constitute a cell graph in XF . &

3. BOUNDED GEOMETRY AND EDGE BOUNDARIES

Definition 3.1. A graph X has bounded geometry if the set of vertex degrees is

bounded. A number b is called constant inner degree if b ¼ degĈCv for any vertex v
in the boundary of any cell C.

Theorem 3.1. Let X be a homogeneously self-similar graph with constant inner

degree b, then

j�Cnj ¼
� b

�X � 1

�n�1

�X

for any n-cell Cn.

Proof. For n ¼ 1 the statement is clear. Let Cn be an n-cell and let the

statement of the lemma be true for n� 1. The number of edges in �ðCn \ FÞ is

j�Cn�1j, where Cn \ F is seen as ðn� 1Þ-cell in XF and Cn�1 is an arbitrary

ðn� 1Þ-cell in X. Let C be a cell in X and let v be a vertex in F such that C � Cn

and �ðCn \ FÞ \ �C ¼ fvg. Then v is adjacent in XF to �X � 1 vertices in �C.

Thus each cell C in Cn corresponds to �X � 1 edges in �Cn�1 and

j�Cn�1j=ð�X � 1Þ is the number of cells C in Cn such that �C \ �Cn 6¼ ;. This

implies

�Cn ¼
j�Cn�1j
�X � 1

b: &

Theorem 3.2. Let X be a homogeneously self-similar graph with constant inner

degree b. Then the following conditions are equivalent:

(i) X has bounded geometry.

(ii) b ¼ �X � 1.

(iii) X is locally finite and degXv ¼ degXF
v for all v 2 F.

(iv) �X ¼ j�Cnj for any n-cell Cn.

(v) For any vertex v in the boundary of any n-cell Cn, there is exactly one cell

C in Cn such that v 2 �C.
(vi) �X ¼ �Xð�X � 1Þ:

Proof. The equivalence of (i), (ii), and (iii) is a slight generalization of

Lemma 5 in [10], the proof remains the same. By Theorem 3.1, condition (iv) is

equivalent to (ii). Condition (v) says that in any n-cell there are exactly �X
different cells C such that �C \ �Cn 6¼ ;.
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This implies j�Cnj ¼ �Xb, then X must have bounded geometry and

�X ¼ �Xð�X � 1Þ. Condition (vi) implies b ¼ �X � 1. &

As the following example shows, Theorem 3.2 is in general not true for

homogeneously self-similar graphs without constant inner degree.

Example 3.1. The graph in Figure 2 is the 4-cell graph of a graph X, which is

related to the modified Koch graph, see [14]. The graph X is homogeneously self-

similar and it has a bounded geometry but

3 ¼ �X > �Xð�X � 1Þ ¼ 2:

There is no constant inner degree. Vertices in F are drawn fat, vertices in F2

encircled, vertices in F3 encircled twice, and vertices in F4 encircled three times.

Theorem 3.3. Let X be a homogeneously self-similar graph with constant inner

degree b such that b > �X � 1 and let v be a vertex in VX. Then the following

statements are equivalent:

(i) The degree of v is infinite.

(ii) The vertex v is contained in Fn for any positive integer n.

(iii) The vertex v is an origin vertex.

Proof. Let v be a vertex in the boundary of an n-cell Cn. Then Theorem 3.1

implies that v is adjacent to
�X
�X

� b

�X � 1

�n�1

FIGURE 2.
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vertices in Cn. If v is in Fn for any integer n then it must have infinite degree.

Suppose v 2 FnnFnþ1, then �nv is contained in VXnF. Since all cell graphs are

finite, the number of different complete graphs K�, which contain v, is finite. This

is the same as the number of n-cells having v in their boundaries. Thus v has finite

degree. The intersection \1
n¼1

Fn

cannot contain two different elements x and y, because � is a bijective contraction

and dð�nx; �nyÞ would tend to zero, which is impossible. See also Theorem 5.2 (i).

Since �Fnþ1 ¼ Fn for any positive integer, we have

�
\1
n¼1

Fn ¼
\1
n¼1

Fn

and a vertex lies in this intersection if and only if it is an origin cell. &

As a consequence of Theorems 3.2 and 3.3 we obtain the following.

Corollary 3.1. Let X be a homogeneously self-similar graph with constant

inner degree. Then one of the following statements is true:

(i) The graph X has bounded geometry.

(ii) There exists no origin vertex and X is locally finite but has unbounded

geometry.

(iii) There exists an origin vertex and X is non-locally finite.

Example 3.2. The graph in Figure 3 is the 2-cell graph of a locally finite,

homogeneously self-similar graph X with unbounded geometry. Again, vertices in

F are drawn fat and vertices in F2 encircled. The vertices v3 and ~vv3 in F3, which

are encircled two times are only drawn as isolated vertices. The vertices v1 and ~vv1

form the boundary of the origin cell. There is no origin vertex, �vnþ1 ¼ vn and

FIGURE 3.
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�~vvnþ1 ¼ ~vvn for any positive integer n. We have b ¼ 2; �X ¼ 2; �X ¼ 4, thus

b > �X � 1 and �X > �Xð�X � 1Þ. Let Cn be an n-cell and let vn be a vertex in

�Cn. Then, according to Theorem 3.1, j�Cnj ¼ 2nþ1. And, since vn is in the

boundary of three different n-cells, degXvn ¼ 3 � 2n.

4. GROWTH DIMENSIONS

Definition 4.1. For a vertex x 2 VX and an integer r 2 N0 we call

Bðx; rÞ ¼ fy 2 VX j dXðy; xÞ � rg

ball (or more precisely: closed dX-ball ) with centre x and radius r. Let A � VX

be a set of vertices. Then

VolXA ¼
X
y2A

degXy;

is the volume of A. We write VolX instead of VolXVX.

Lemma 4.1. Let X be any graph and let A be a set of vertices in VX. Then

(i) VolX ¼ 2jEXj and
(ii) Vol ÂA ¼ Vol XAþ j�Aj
Proof. In the sum of the definition of the volume, each edge is counted twice.

In VolXA the edges connecting two vertices in A are counted twice, the edges

connecting a vertex in A with a vertex in VXnA are counted once. When we count

these j�Aj edges a second time we obtain VolXAþ j�Aj, twice the number of all

edges in EÂA, which is the same as Vol ÂA. &

Definition 4.2. The growth function Vx at x is defined as

Vx : N0 ! N0 [ f1g; r 7!VolXBðx; rÞ:

We call

VðrÞ ¼ inffVxðrÞ j x 2 VXg

lower growth or lower global growth and

�VVðrÞ ¼ supfVxðrÞ j x 2 VXg

upper growth or upper global growth of X. The graph X has regular volume

growth, or satisfies the doubling property, if there exists a constant c such that

Vxð2rÞ � c VxðrÞ
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for any vertex x and any integer r. We define

dimG X ¼ lim inf
r!1

logVðrÞ
log r

;

the lower global growth dimension, and

dimG X ¼ lim sup
r!1

log�VVðrÞ
log r

;

the upper global growth dimension of X.

Lemma 4.2. Let x1 and x2 be any two vertices in a locally finite graph Y of

regular volume growth. Then

lim inf
r!1

logVx1
ðrÞ

log r
¼ lim inf

r!1

logVx2
ðrÞ

log r

and

lim sup
r!1

logVx1
ðrÞ

log r
¼ lim sup

r!1

logVx2
ðrÞ

log r
:

Proof. Let r be an integer such that r � dXðx1; x2Þ and r � 2. Then

Bðx1; rÞ � Bðx2; dXðx1; x2Þ þ rÞ � Bðx2; 2rÞ

implies

Vx1
ðrÞ � Vx2

ð2rÞ � c Vx2
ðrÞ

and

logVx1ðrÞ
log r

� log c

log r
þ logVx2ðrÞ

log r
: &

This lemma gives reason for the following definition.

Definition 4.3. Let x be a vertex of a graph Y of regular volume growth, then

dimX ¼ lim inf
r!1

logVxðrÞ
log r

is the lower growth dimension (or lower local growth dimension) and

dimX ¼ lim sup
r!1

logVxðrÞ
log r

is the upper growth dimension (or upper local growth dimension) of X.

Lemma 4.3.

dimG X � dimX � dimX � dimG X:
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Proof. Let x0 be a vertex and ðrnÞn2N be a sequence of integers such that

lim
n!1

logVx0
ðrnÞ

log rn
¼ dimX:

Then

dimGX ¼ lim inf
r!1

log VðrÞ
log r

¼ lim inf
r!1

log inffVxðrÞ j x 2 VXg
log r

� lim inf
n!1

log inffVxðrnÞ j x 2 VXg
log rn

� lim inf
n!1

logVx0
ðrnÞ

log rn
¼ dimX:

The inequality relation between the upper growth dimensions follows analogously.
&

5. GROWTH OF HOMOGENEOUSLY SELF-SIMILAR GRAPHS

In this section, let X always be a homogeneously self-similar graph. Recall that

ĈCn dentotes the graph spanned by Cn [ �Cn.

Theorem 5.1. Let Cn be an n-cell. Then

VolXCn ¼ VolĈCn � �X ¼ �n�Xð�X � 1Þ � �X:

Proof. By Lemma 4.1 (i), the volume VolĈCn can be calculated by counting

the edges in ĈCn twice. Let C be a cell in X. The complete graph K�X has ð�X
2
Þ

edges, and Lemma 2.1 (iii) implies

jEĈCj ¼ �
�X
2

� �
and Vol ĈC ¼ ��Xð�X � 1Þ:

By Lemma 2.1 (ii), Cn contains � disjoint ðn� 1Þ-cells D1;D2; . . . ;D� and[�
k¼1

D̂Dk ¼ ĈCn;

where this union means the union of graphs, not the usual set theoretic union. Thus

Vol ĈCn ¼ �Vol ĈCn�1 ¼ �n�1Vol ĈC ¼ �n�Xð�X � 1Þ;

where Cn�1 is any ðn� 1Þ-cell and C any cell. Lemma 4.1 (ii) implies the rest of

the statement. &

Theorem 5.2. Let Cn be an n-cell. Then

(i) diam �Cn�
n;

(ii) �n � maxfdXðx; vÞ j x 2 Cn;v 2 �Cng � �n þ ��n�1
��1

and

(iii) �n � diam Cn � �n þ ��n�1ð�þ1Þ�2

��1
< �nþ~		

where ~		 ¼ logð�þ3�Þ
log � � 1:

234 JOURNAL OF GRAPH THEORY



Proof.

ii(i) By the definition of the length scaling factor, �C1 ¼ �. Suppose �Cn�1 ¼
�n�1 for all ðn� 1Þ-cells Cn�1.

Let 
 be a geodesic path connecting two vertices v and w in the

boundary �Cn. In the intersection 
 \ Fn�1, we can find vertices

v ¼ x0; x1; . . . ;w ¼ xn, such that 
� ¼ ðv ¼ x0; x1; . . . ;w ¼ xnÞ is a path

in XFn�1 connecting v and w. The length of 
� is greater or equal �. Each

two consecutive vertices in 
� are starting and end point for a path in X

connecting different vertices in the boundary of an ðn� 1Þ-cell. This

means that 
 decomposes into at least � paths, each of them with length of

at least �n�1. Thus the length of 
 is greater or equal �n.
On the other hand, there exists a path � of length � in Cn \ Fn�1, seen

as cell in XFn�1 , connecting two points in �Cn. Any pair of consecutive

vertices in � can be connected by a path in X of length �n�1. Thus any two

points in the boundary of an n-cell in X can be connected by a path of

length less or equal �n.
i(ii) For n ¼ 1 we have � þ � ¼ �. Suppose the statement is true for n� 1. Let


 be a geodesic path connecting a vertex v in �Cn and a vertex x in Cn.

The number of ðn� 1Þ-cells having vertices in common with 
 is at

most �. Otherwise the �n�1-projection of 
 would be a geodesic path in a

cell whose length is greater than �. The intersection of 
 with all of these

ðn� 1Þ-cells except the ðn� 1Þ-cell whose closure contains x has at most

length ð�� 1Þ�n�1. The above statement for n� 1 says that the inter-

section of 
 with the last cell has at most length �n�1 þ � �
n�1�1
��1

. Thus the

length of 
 is less or equal to

ð�� 1Þ�n�1 þ �n�1 þ �
�n�1 � 1

� � 1

¼ �n þ ��n�1 þ �
�n�1 � 1

� � 1
¼ �n þ �

�n � 1

� � 1
:

(iii) We can copy the proof of (ii), but we now decompose a geodesic path 

between any two vertices in Cn into at most �� 2 paths connecting two

vertices in the boundary of an ðn� 1Þ-cell, and the initial and the end part

of 
. The length of the latter ones is at most �n�1 þ � �
n�1�1
��1

. Thus the

length of 
 is less or equal

ð�� 2Þ�n�1 þ 2

 
�n�1 þ �

�n�1 � 1

� � 1

!
¼ �n þ ��n�1 þ 2�

�n�1 � 1

� � 1

¼ �n þ �
�n�1ð� þ 1Þ � 2

� � 1
¼ �n þ ��n�1 ð� þ 1Þ � 2

�n�1

� � 1

< �n þ ��n�13 ¼ �n
� þ 3�

�
:
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Note that � ¼ � þ � and � � 2. The least real number ~		 such that

� þ 3�

�
� �~		

is

~		 ¼ logð� þ 3�Þ
log �

� 1:

The lower bounds in (ii) and (iii) are a consequence of (i).

Remark 1. For the self-similar tree in Example 2.1 the upper bound in

Theorem 5.2 (ii), and the first upper bound for Cn in Theorem 5.2 (iii) are sharp.

Definition 5.1. Let Xv be the number of cells C, such that v is a vertex in �C and

let cX be

sup cells Xv j v 2 Fg:

Let MX be the supremum of degrees of vertices in VX. We write c and M

instead of cX and MX if it is clear which graph is meant.

The following Lemma corresponds to Lemma 4 in [10].

Lemma 5.1.

Cells Xv ð�X � 1Þ ¼ degXF
v:

Corollary 5.1.
cXð�X � 1Þ ¼ MX:

Proof. Lemma 5.1 implies

cXð�X � 1Þ ¼ MXF
:

Since X and XF are isomorphic, MXF
equals MX. &

Note that homogeneously self-similar graphs have bounded geometry if and

only if c is finite. Let 	 be the least integer, which is greater or equal ~		.

Theorem 5.3. Let us write rn ¼ �n þ � �
n�1ð�þ1Þ�2

��1
for a positive integer n. Then

r
log�
log �
n �Xð�X � 1Þ��	 � VðrnÞ � �VVðrnÞ

� r
log�
log �
n �	�Xð�X � 1Þ

�
ðc� 1Þ�X þ 1

�
þ �Xð�X � 1Þðc� 1ÞðM � 1Þ:

Proof. According to Theorem 5.2 (iii) we have

rn � �nþ	 and n � log rn

log �
� 	:

236 JOURNAL OF GRAPH THEORY



Let Cn be an n-cell and let x be a vertex in Cn. Again by Theorem 5.2 (iii),

Cn is a subset of Bðx; rnÞ. Theorem 5.1 implies

VðrnÞ � Vol ĈCn ¼ �n�Xð�X � 1Þ � �
log rn
log ��	�Xð�X � 1Þ ¼ r

log�
log �
n �Xð�X � 1Þ��	:

On the other hand, let Cnþ	 be a ðnþ 	Þ-cell such that x 2 Cnþ	. Since

rn � �nþ	, the ball Bðx; rnÞ is contained in the union of Cnþ	 and the closures of

all ðnþ 	Þ-cells which are adjacent to Cnþ	. There are at most ðc� 1Þ�X of

ðnþ 	Þ-cells, being adjacent to Cnþ	. The volume of the union D of Cnþ	 and the

closures of these ðnþ 	Þ-cells is at most

�
ðc� 1Þ�X þ 1

�
�nþ	�Xð�X � 1Þ þ j�Dj;

the twice the number of edges in the subgraph spanned by D, plus j�Dj, see

Lemma 4.1 and Theorem 5.1. In each boundary of one of these ðnþ 	Þ-cells,

there are �X � 1 vertices which are not in the boundary of Cnþ	, and these vertices

have at most M � 1 edges in common with VXnD. Thus

j�Dj � ðc� 1Þ�Xð�X � 1ÞðM � 1Þ
and

�VVðrnÞ � Vol XD �
�
ðc� 1Þ�X þ 1

�
�nþ	�Xð�X � 1Þ þ ðc� 1Þ�Xð�X � 1ÞðM � 1Þ:

Since rn � �n we have

�n � �
log rn
log � ¼ r

log�
log �
n

and finally

�VVðrnÞ � r
log�
log �
n �	

�
ðc� 1Þ�X þ 1

�
�Xð�X � 1Þ þ ðc� 1Þ�Xð�X � 1ÞðM � 1Þ: &

The growth of a graph can be seen as the discrete analog to the Hausdorff

dimension. The main difference is that the Hausdorff dimension of sets in metric

spaces depends on the underlying metric. Whereas the growth of graphs is always

determined by the natural geodesic graph metric. Thus it does only depend on the

subject itself.

Theorem 5.4. The global lower and upper growth dimensions of homo-

geneously self-similar graphs of bounded geometry are

dimGX ¼ dimGX ¼ log�

log �
:

This means that the global growth dimensions of homogeneously self-similar

graphs of bounded geometry can be obtained by the same formula as the
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Hausdorff dimension of self-similar sets, which satisfy the open set condition, see

Hutchinson [6].

Proof. For a given radius r, we choose an integer n such that

�n þ �
�n�1ð� þ 1Þ � 2

� � 1
� r � �nþ1 þ �

�nð� þ 1Þ � 2

� � 1

¼ �
�
�n þ �

�n�1ð� þ 1Þ � 2

� � 1

�
� ��

�n�1ð� þ 1Þ � 2

� � 1
þ �

�nð� þ 1Þ � 2

� � 1

¼ �
�
�n þ �

�n�1ð� þ 1Þ � 2

� � 1

�
þ �

� � 1

�
� �nð� þ 1Þ þ 2� þ �nð� þ 1Þ � 2

�

¼ �
�
�n þ �

�n�1ð� þ 1Þ � 2

� � 1

�
þ 2�:

Then

r

�
� 2�

�
� �n þ �

�n�1ð� þ 1Þ � 2

� � 1
� r � �nþ1 þ �

�nð� þ 1Þ � 2

� � 1
� �r þ 2�:

For the radii

rn ¼ �n þ �
�n�1ð� þ 1Þ � 2

� � 1
and rnþ1 ¼ �nþ1 þ �

�nð� þ 1Þ � 2

� � 1

we have

VðrnÞ � VðrÞ � �VVðrÞ � �VVðrnþ1Þ

and by Theorem 5.3� r
�
� 2�

�

�log�
log �

�Xð�X � 1Þ��	 � VðrÞ � �VVðrÞ

� ð�r þ 2�Þ
log�
log ��Xð�X � 1Þ

�
ðc� 1Þ�X þ 1

�
þ ðc� 1Þ�Xð�X � 1ÞðM � 1Þ

for any integer r. It follows that

lim inf
r!1

logVðrÞ
log r

¼ lim sup
r!1

log�VVðrÞ
log r

¼ log�

log �
: &

Remark. This paper is based on parts of the author’s PhD thesis [11].
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