Aufgabe 58. Sei V ein Vektorraum $f:V\to V$ eine lineare Abbildung. Sei $v\in V$ ein Vektor mit der Eigenschaft, daß $f^{n-1}(v)\neq 0$ ist aber $f^n(v)=0$. Zeige, daß $\{v,f(v),f^2(v),\ldots,f^{n-1}(v)\}$ linear unabhängig sind.

Aufgabe 59. Bestimme jeweils eine Basis von Kern und Bild der linearen Abbildung

$$T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^2$$
$$A \mapsto Av$$

wobei $v = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

Aufgabe 60. Gegeben seien die linearen Abbildungen $f, g, h : \mathbb{R}^2 \to \mathbb{R}^2$

$$f:(x_1,x_2)\mapsto (x_1+x_2,x_1-x_2)$$
 $g:(x_1,x_2)\mapsto (x_1+x_2,x_1+x_2)$ $h:(x_1,x_2)\mapsto (x_2,x_1)$

Zeige, daß die Menge $\{f,g,h\}$ linear unabhängig ist, wenn man sie als Teilmenge des Vektorraums¹ $\operatorname{Hom}(\mathbb{R}^2,\mathbb{R}^2)$ aller linearen Abbildungen von \mathbb{R}^2 nach \mathbb{R}^2 auffaßt.

Aufgabe 61. Sei V ein Vektorraum und $f: V \to V$ eine *nilpotente* lineare Abbildung, d.h., es gibt ein $k \in \mathbb{N}$, sodaß $f^k = 0$.

- (a) Zeige, daß $\mathrm{id}_V f$ invertierbar ist mit $(\mathrm{id}_V f)^{-1} = \mathrm{id}_V + f + f^2 + \cdots + f^{k-1}$
- (b) Verwende (a), um die die Inverse der Matrix

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

zu bestimmen.

Aufgabe 62. Bestimme eine Permutationsmatrix P, sowie je eine linke und eine rechte Dreiecksmatrix L und R, sodaß A = PLR für

(a)
$$A = \begin{pmatrix} 5 & 2 & 1 \\ 10 & 7 & 6 \\ 15 & 0 & -10 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 1 & 1 & 7 \end{pmatrix}$

¹In der Vorlesung mit $L(\mathbb{R}^2, \mathbb{R}^2)$ bezeichnet.