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Abstract

We obtain a complete description of the planar cubic Cayley graphs,
providing an explicit presentation and embedding for each of them. This
turns out to be a rich class, comprising several infinite families. We obtain
counterexamples to conjectures of Mohar, Bonnington and Watkins. Our
analysis makes the involved graphs accessible to computation, corrobo-
rating a conjecture of Droms.

1 Introduction

1.1 Overview

The study of planar Cayley graphs has a tradition starting in 1896 with Maschke’s
characterization of the finite ones. Among the infinite planar Cayley graphs,
those corresponding to a discontinuous action on the plane have received a lot of
attention. Their groups are important in complex analysis, and they are closely
related to the surface groups [26, Section 4.10]. These graphs and groups are
now well understood due to the work of Macbeath [19], Wilkie [25], and others;
see [26] for a survey. The remaining ones are harder to analyse. They have been
the subject of more recent work [8, 9, 10, 12], and they are not yet completely
classified. For example, we do not know if they can be effectively enumerated
[8, 9].

In this paper we study those planar Cayley graphs that are cubic, which
means that every vertex is adjacent with precisely three other vertices. It turns
out that this class is restricted enough to allow for a complete description of all
of its elements, while offering enough variety to allow an insight into the general
planar Cayley graphs.

Our main result is

Theorem 1.1. Let G be a planar cubic Cayley graph. Then G has precisely one
of the presentations listed in Table 1. Conversely, each of these presentations,
with parameters chosen in the specified domains, yields a non-trivial planar
cubic Cayley graph.
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Some of the entries of Table 1 yield counterexamples to a conjecture of
Bonnington and Watkins [4] and Bonnington and Mohar [21]; see Section 1.3.

The presentations of Table 1 have a special structure that is related to the
embedding of the corresponding Cayley graph, and yield geometric information
about the corresponding Cayley complex. The ideas of this paper are used in
[16] to prove that every planar Cayley graph admits such a presentation. This
solves the aforementioned problem of [8, 9] asking for an effective enumeration;
see Section 1.4.

Motivated by Stallings’ celebrated theorem, Mohar conjectured that every
planar Cayley graph with more than 1 end can be obtained from simpler ones
by a glueing operation reminiscent of group amalgamation. Some of the entries
of Table 1 disprove Mohar’s conjecture, but we will show that the conjecture
becomes true in the cubic case after a slight modification. This modified ver-
sion might be true for all Cayley graphs, not just the planar ones, yielding a
refinement of Stallings’ theorem. See Section 1.2 for details.

In [15] I asked for a characterization of the locally finite Cayley graphs
that admit a Hamilton circle, i.e. a homeomorphic image of S1 in the end-
compactification of the graph containing all vertices. Mohar and I conjectured
that every 3-connected planar Cayley graph does. As explained in Section 1.5,
perhaps the hardest case for this conjecture is the cubic case, and our classifi-
cation constitutes significant progress in this direction.

1.2 Some examples and Mohar’s conjecture

Let us consider some examples. Suppose G is a finite or 1-ended Cayley graph
embedded in the plane, that some generator z of G spans a finite cyclic subgroup,
and the corresponding cycles of G bound faces in this embedding, see Figure 1
(i). Then, considering the amalgamation product with respect to the subgroup
〈z〉, and using the generators of G, we obtain a multi-ended Cayley graph G′

which can also be embedded in the plane: the face that was bounded by some
coset C of 〈z〉 in G can be used to recursively accommodate the copy K of
G glued along C and the further copies sharing a z cycle with K and so on; see
Figure 1 (ii).

This kind of amalgamation can be used to produce new planar Cayley graphs
from simpler ones, but it cannot yield cubic graphs since the degree of a vertex
is increased. To amend this, Mohar [21] proposed the following variant of this
operation. For every z cycle C of Figure 1 (ii), rotate one of its sides in such a
way that the edges incident with C on either side do not have common endver-
tices, but appear in an in-out alternating fashion instead; see Figure 1 (iii). It
is at first sight not clear why the new graph G′′ produced like this is a Cayley
graph, but in fact it is, and its group is an overgroup of the group of G, see [14].
We call the operation of Figure 1 a twist-amalgamation.

Our next example is slightly more complicated. Let this time G be the
Cayley graph of a finite dihedral group shown in the left part of Figure 2.
Then, for every 4-cycle C of G bounding a face F , we embed a copy of G in
F , with C being glued with a corresponding cycle of the copy. As in our last
example, this glueing does not identify vertices with vertices, but rather puts
some vertices of one copy of G midway along some edges of the other, see the
right part of Figure 2.
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(ii)(i)

(iii)

Figure 1: A twist-amalgamation.

(ii)(i)

Figure 2: A twist-squeeze-amalgamation.
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Unlike the previous example, where every edge of C was subdivided into
two, this time every other edge of C is subdivided into three while every other
edge is left intact. We recursively repeat this kind of glueing operation for the
newly appeared face-bounding 4-cycles. Again, we obtain a new planar Cayley
graph. We call the operation of Figure 2 a twist-squeeze-amalgamation.

These two examples are special cases of a more general, and more compli-
cated, phenomenon: the hardest task addressed in this paper is to show that
for every multi-ended cubic planar Cayley graph G′, it is possible to obtain a
presentation of G′ from one of a finite or 1-ended cubic Cayley graph G embed-
ded in G′, by replacing some of the generators by new ones, and replacing each
occurrence of an old generator z by a word Wz in the new generators. We call
this operation a word extension of G. In our two examples it was enough to
replace just one generator, and the corresponding word had length two or three.
There are many cases where this is enough: the entries (5), (20) and (26) of
Table 1 for example were obtained like that. However, there are much harder
cases, where one needs to replace all generators by new ones, and there is no
upper bound to the length of the replacing words Wz needed. This is the case
for the last five entries of Table 1.

In our two examples we saw how a Cayley graph G′ with infinitely many
ends can be obtained from a finite or 1-ended Cayley graph G by glueing copies
of G together. Mohar’s aforementioned conjecture [22, Conjecture 3.1] was that
every planar Cayley graph graph with more than one end can be obtained in a
similar way:

Conjecture 1.1. Let G be a planar Cayley graph. Then G can be obtained as
the tree amalgamation of (subdivisions of) one or more planar Cayley graphs,
each of which is either finite or 1-ended. Moreover, the identifying sets in these
amalgamations correspond to cosets of finite subgroups.

We will refrain from repeating the definition of Mohar’s tree amalgamation,
which can be found in [22, Section 2], and contend ourselves with examples. The
phrase “subdivisions of” is missing in Mohar’s conjecture, but apparently it was
intended. In any case, omitting it makes the first sentence false as indicated by
the above examples (the first of which is due to Mohar).

The results of this paper corroborate the first sentence of Conjecture 1.1.
For example, the graph of Figure 1 (iii) is the tree amalgamation of the graph
H obtained from Figure 1 (i) by subdividing every z edge into two, the amal-
gamations taking place along the facial cycles. Similarly, the graph of Figure 2
(ii) can be obtained from that of Figure 2 (i) by subdividing every directed
edge into three, and then amalgamating copies of the resulting graph along the
trapezoid cycles.

The second sentence of Conjecture 1.1 is easily shown to be false by the
latter example.

1.3 The conjecture of Bonnington and Watkins

Bonnington and Watkins [4] made the following conjecture.

Conjecture 1.2 ([4]). No locally finite vertex-transitive graph of connectivity 3
admits a planar embedding wherein some vertex is incident with more than one
infinite face-boundary.
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Mohar [22] disproved this using his aforementioned amalgamation construc-
tion to obtain vertex-transitive graphs of connectivity 3 with arbitrarily many
infinite face-boundaries incident with each vertex. This motivated Bonnington
and Mohar [21] to ask whether there is a planar 3-connected vertex-transitive
graph all face-boundaries of which are infinite.

In this paper we show that, surprisingly, such graphs do exist: we construct
3-connected planar cubic Cayley graphs in which no face is bounded by a finite
cycle. Note that a 3-connected planar graph has an essentially unique embed-
ding (see Theorem 3.2 below), which makes the existence of such examples more
surprising.

In fact, we describe all 3-connected planar cubic Cayley graphs with the
property that no face is bounded by a finite cycle: they are precisely the mem-
bers of the families (34) and (37) of Table 1. See Corollary 9.13 and Corol-
lary 9.19.

1.4 Planar presentations and effective enumeration

Some of the groups appearing in Table 1 were already known and well-studied,
namely those admitting a Cayley complex that can be embedded in the plane
after removing some redundant simplices, see [12]. These are the 1-ended ones,
those of connectivity 1, and some of those appearing in Table 1 with connectivity
2 [13]. This paper is mainly concerned with the remaining ones. It turns out
that none of the Cayley graphs of Table 1 from (26) on admits a Cayley complex
as above1 [12].

However, it follows from our results that they admit a Cayley complex X for
which there is a mapping σ : X → R2 such that for every two 2-simplices of X,
the images of their interiors under σ are either disjoint or one of these images is
contained in the other, or their intersection is a 2-simplex bounded by the two
parallel edges corresponding to some involution in the generating set. We call
such an X an almost planar Cayley complex.

Theorem 1.2. Every cubic planar Cayley graph is the 1-skeleton of an almost
planar Cayley complex of the same group.

A planar presentation is a group presentation giving rise to an almost planar
Cayley complex. This property can be recognised by an algorithm, see Defi-
nition 9.9 for an example or [16] for details.

All presentations in Table 1 are planar. The semi-colons contained in some of
them are used to distinguish relators that induce face-boundaries, which appear
before the semi-colon, from relators that induce cycles separating the graph in
infinite components, and appear after the semi-colon.

Theorem 1.1 yields an effective enumeration of the planar cubic Cayley
graphs, corroborating the aforementioned conjecture of Droms et. al. [8, 9].
Moreover, our constructions imply that every planar cubic Cayley graph is ef-
fectively computable.

1This does not immediately imply that their groups are distinct from the groups of earlier
entries, as a group can have various planar Cayley graphs of different nature; in fact, for very
small values of the involved parameters it can happen that the corresponding group coincides
with one from an earlier entry. For example, as pointed out by M. Dunwoody (personal
communication), the group of case (35) for n = 2 and m = 1 coincides with that of case (8)
for n = 2 and m = 4. However, for larger values of the parameters all groups from (26) on
should be distinct from the previous ones; a proof of this fact is in progress.
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Using the ideas of this paper Theorem 1.2 is extended in [16] to arbitrary pla-
nar Cayley graphs. As planar presentations can be recognised by an algorithm,
this settles the general case of the aforementioned conjecture.

1.5 Hamilton circles in Cayley graphs

The following conjecture was motivated by [15]:

Conjecture 1.3 (Georgakopoulos & Mohar (unbublished)). Every finitely gen-
erated 3-connected planar Cayley graph admits a Hamilton circle.

A Hamilton circle of a graph G is a homeomorphic image of the circle S1

in the end-compactification of G containing all vertices. It has been proved
[5] that every 4-connected locally finite VAP-free planar graph has a Hamilton
circle, and it is conjectured that the VAP-freeness requirement can be dropped
in that theorem; this generalises a classical theorem of Tutte for finite graphs.
A Cayley graph of degree 4 or more will either be 4-connected, in which case
one can try to apply the above result, or its small separators will give away
information about its structure; e.g. we know that a non-4-connected Cayley
graph of degree 5 or more cannot be 1-ended [2, Lemma 2.4.].

This means that the cubic case plays an important role for Conjecture 1.3.
Thus this paper constitutes an important step towards its proof, as it describes
the structure of these graphs in a way that can be exploited to prove hamil-
tonicity. Indeed, in graphs like the one in Figure 1 (iii) Mohar and I found a
way to construct a Hamilton circle of the whole graph using Hamilton circles of
the basis graph Figure 1 (i).

1.6 Structure of the proof

This paper is structured as follows. After some definitions and basic facts,
we handle the finite and 1-ended case, corresponding to entries (12) to (19) of
Table 1, in Section 7; entries (1) and (2) are easy and entries (3) to (11) were
handled in [13]; see Section 5. Most of this paper is concerned with entries
from (20) on. They are divided naturally into cases according to the number
of generators (2 or 3), the existence of cycles avoiding one of the generators,
and the spin behaviour (see Section 2.3) in the corresponding embedding; they
occupy Sections 8 and 9.

These cases vary considerably in difficulty, in general becoming more diffi-
cult as we progress towards the end of Table 1. However, there is a common
structure: for every graph G as in the entries from (20) on, we begin by finding
a subgroup, typically finite or 1-ended, that has a Cayley graph G2 topologically
embedded in G. This yields a Dunwoody structure tree whose nodes are the
copies of G2 in G, in which two nodes are adjacent if the corresponding copies
share a cycle of G. These cycles are typically cycles of minimal length bounding
two infinite components of G. We then show that the desired presentation of
G can be derived from a presentation of G2 by translating each generator g of
G2 into a word in the generators of G, which word can be read off the path in
G onto which g is mapped when embedding G2 into G. The presentation of G2

is obtained from some earlier entry of Table 1, and many of the entries, even
multi-ended ones, find themselves embedded in other entries, giving rise to a
rich structure.
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κ(G) = 1 1.
〈
a, b | b2, an

〉
, n ∈ {∞, 2, 3, . . .}

2.
〈
b, c, d | b2, c2, d2, (bc)n

〉
, n ∈ {∞, 1, 2, 3, . . .}

κ(G) = 2

3. G ∼= Cay
〈
a, b | b2, (ab)n

〉
, n ≥ 2

4. G ∼= Cay
〈
a, b | b2, (aba−1b−1)n

〉
, n ≥ 1

5. G ∼= Cay
〈
a, b | b2, a4, (a2b)n

〉
, n ≥ 2;

6. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bc)2, (bcd)m

〉
, m ≥ 2

7. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bc)2n, (cbcd)m

〉
, n,m ≥ 2

8. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bc)n, (bd)m

〉
, n,m ≥ 2

9. G ∼= Cay
〈
b, c, d | b2, c2, d2, (b(cb)nd)m

〉
, n ≥ 1,m ≥ 2

10. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcbd)m

〉
, m ≥ 1

11. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bc)n, cd

〉
, n ≥ 1

κ(G) = 3,
G is 1-ended or finite,
with two generators

12. G ∼= Cay
〈
a, b | b2, an, (ab)m

〉
, n ≥ 3, m ≥ 2

13. G ∼= Cay
〈
a, b | b2, an, (aba−1b)m

〉
, n ≥ 3,m ≥ 1

14. G ∼= Cay
〈
a, b | b2, (a2b)m

〉
, m ≥ 1

15. G ∼= Cay
〈
a, b | b2, (a2ba−2b)m

〉
, m ≥ 1

κ(G) = 3,
G is 1-ended or finite,
with three generators

16. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcd)n

〉
, n ≥ 1

17. G ∼= Cay
〈
b, c, d | b2, c2, d2, (cbcdbd)n

〉
, n ≥ 1

18. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bc)n, (bdcd)m

〉
, n ≥ 2,m ≥ 1

19. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bc)n, (cd)m, (db)p

〉
, n,m, p ≥ 2

κ(G) = 3,
G is multi-ended,
with two generators

20. G ∼= Cay
〈
a, b | b2, (a2b)m; a2n

〉
, n ≥ 3,m ≥ 2

21. G ∼= Cay
〈
a, b | b2, (a2ba−2b)m; a2n

〉
, n ≥ 3,m ≥ 1

22. G ∼= Cay
〈
a, b | b2, a2ba−2b; (baba−1)n

〉
, n ≥ 2

23. G ∼= Cay
〈
a, b | b2, (a2ba−2b)m; (baba−1)n

〉
, n,m, p ≥ 2

24. G ∼= Cay
〈
a, b | b2, (a2b)2; (ab)2m

〉
, m ≥ 2

25. G ∼= Cay
〈
a, b | b2, (a2b)n; (ab)2m

〉
, n ≥ 3, m ≥ 2

κ(G) = 3,
G is multi-ended,
with three generators

26. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcd)m; (bc)n

〉
, n ≥ 2, m ≥ 2

27. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcdcbd)m; (bc)n

〉
, n ≥ 2,m ≥ 1

28. G ∼= Cay
〈
b, c, d | b2, c2, d2, (cd)m, (dbcb)p; (bc)2n

〉
, n, m, p ≥ 2

29. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcbdcd)m; (bc)2n

〉
, n ≥ 2,m ≥ 1

30. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcbdcd)p; (dc)2n, (bc)2m

〉
, n,m, p ≥ 2

31. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcbdcd)p; (dbcb)2n, (bc)2m

〉
, n,m, p ≥ 2

32. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcd)2; (bcdc)n

〉
, n ≥ 2

33. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcd)k;P〉

, k ≥ 3,
P is a non-crossing pattern

34. G ∼= Cay
〈
b, c, d | b2, c2, d2;P〉

,
P is a non-regular non-crossing pattern

35. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bdbcdc)k; (c(bc)nd)2m

〉
, k ≥ 2,

n, m ≥ 1, n + m ≥ 3
36. G ∼= Cay

〈
b, c, d | b2, c2, d2, (bdbcdc)q; (c(bc)n−1d)2m, (c(bc)nd)2r

〉
,

n, r,m, q ≥ 2
37. G ∼= Cay

〈
b, c, d | b2, c2, d2; (c(bc)n−1d)2m, (c(bc)nd)2r

〉
, n, r,m ≥ 2

Table 1: Classification of the cubic planar Cayley graphs. All presentations are
planar in the sense of Section 1.4.
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In Section 10 we pose some further problems, one of which seeks for a gen-
eralisation of this proof-structure to a general multi-ended Cayley graph.

2 Definitions

2.1 Cayley graphs and group presentations

We will follow the terminology of [7] for graph-theoretical terms and that of [3]
for group-theoretical ones. Let us recall the definitions most relevant for this
paper.

Let Γ be group and let S be a symmetric generating set of Γ. The Cayley
graph Cay(Γ, S) of Γ with respect to S is a coloured directed graph G = (V, E)
constructed as follows. The vertex set of G is Γ, and the set of colours we will
use is S. For every g ∈ Γ, s ∈ S join g to gs by an edge coloured s directed from
g to gs. Note that Γ acts on G by multiplication on the left; more precisely,
for every g ∈ Γ the mapping from V (G) to V (G) defined by x 7→ gx is a
colour-automorphism of G, that is, an automorphism of G that preserves the
colours and directions of the edges. In fact, Γ is precisely the group of colour-
automorphisms of G. Any presentation of Γ in which S is the set of generators
will also be called a presentation of Cay(Γ, S).

If s ∈ S is an involution, i.e. s2 = 1, then every vertex of G is incident
with a pair of parallel edges coloured s (one in each direction). However, when
calculating the degree of a vertex of a Cayley graph we will count only one edge
for each such pair, and we will draw only one, undirected, edge in our figures. For
example, if S consists of three involutions then we consider the corresponding
Cayley graph to be cubic. This convention is common in the literature, and it
is necessary if one wants to study the property of being a Cayley graph as a
graph-theoretical invariant, like e.g. in Sabidussi’s theorem [1, Proposition 3.1].

Given a group presentation 〈S | R〉 we will use the notation Cay 〈S | R〉 for
the Cayley graph of this group with respect to S.

If R ∈ R is any relator in such a presentation and g is a vertex of G =
Cay 〈S | R〉, then starting from g and following the edges corresponding to the
letters in R in order we obtain a closed walk W in G. We then say that W is
induced by R; note that for a given R there are several walks in G induced by
R, one for each starting vertex g ∈ V (G). If R induces a cycle then we say that
R is simple; note that this does not depend on the choice of the starting vertex
g. A presentation 〈a, b, . . . | R1, R2, . . .〉 of a group Γ is called simple, if Ri is
simple for every i. In other words, if for every i no proper subword of any Ri is
a relation in Γ.

Define the (finitary) cycle space Cf (G) of a graph G = (V, E) to be the
vector space over Z2 consisting of those subsets of E such that can be written
as a sum (modulo 2) of a finite set of circuits, where a set of edges D ⊆ E is
called a circuit if it is the edge set of a cycle of G. Thus Cf (G) is isomorphic to
the first simplicial homology group of G over Z2. The circuit of a closed walk
W is the set of edges traversed by W an even number of times. Note that the
direction of the edges is ignored when defining circuits and Cf (G). The cycle
space will be a useful tool in our study of Cayley graphs because of the following
well-known fact which is easy to prove.
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Lemma 2.1. Let G = Cay 〈S | R〉 be a Cayley graph of the group Γ. Then the
set of circuits of walks in G induced by relators in R generates Cf (G).

Conversely, if R′ is a set of words, with letters in a set S ⊆ Γ generating
Γ, such that the set of circuits of cycles of Cay(G,S) induced by R′ generates
Cf (G), then 〈S | R′〉 is a presentation of Γ.

2.2 Graph-theoretical concepts

Let G = (V,E) be a connected graph fixed throughout this section. Two paths
in G are independent , if they do not meet at any vertex except perhaps at
common endpoints. If P is a path or cycle we will use |P | to denote the number
of vertices in P and ||P || to denote the number of edges of P . Let xPy denote
the subpath of P between its vertices x and y.

A cycle C of G is induced if every edge of G that has both endvertices on C
is an edge of C.

A hinge of G is an edge e = xy such that the removal of the pair of vertices
x, y disconnects G. A hinge should not be confused with a bridge, which is an
edge whose removal separates G although its endvertices are not removed.

The set of neighbours of a vertex x is denoted by N(x).
G is called k-connected if G − X is connected for every set X ⊆ V with

|X| < k. Note that if G is k-connected then it is also (k − 1)-connected. The
connectivity κ(G) of G is the greatest integer k such that G is k-connected.

A 1-way infinite path is called a ray , a 2-way infinite path is a double ray .
Two rays are equivalent if no finite set of vertices separates them. The corre-
sponding equivalence classes of rays are the ends of G. A graph is multi-ended
if it has more than one end. Note that given any two finitely generated pre-
sentations of the same group, the corresponding Cayley graphs have the same
number of ends. Thus this number, which is known to be one of 0, 1, 2,∞, is an
invariant of finitely generated groups.

2.3 Embeddings in the plane

An embedding of a graph G will always mean a topological embedding of the
corresponding 1-complex in the euclidean plane R2; in simpler words, an em-
bedding is a drawing in the plane with no two edges crossing.

A face of an embedding σ : G → R2 is a component of R2\σ(G). The
boundary of a face F is the set of vertices and edges of G that are mapped by σ
to the closure of F . The size of F is the number of edges in its boundary. Note
that if F has finite size then its boundary is a cycle of G.

A walk in G is called facial with respect to σ if it is contained in the boundary
of some face of σ.

An embedding of a Cayley graph is called consistent if, intuitively, it embeds
every vertex in a similar way in the sense that the group action carries faces to
faces. Let us make this more precise. Given an embedding σ of a Cayley graph G
with generating set S, we consider for every vertex x of G the embedding of the
edges incident with x, and define the spin of x to be the cyclic order of the set
L := {xy−1 | y ∈ N(x)} in which xy−1

1 is a successor of xy−1
2 whenever the edge

xy2 comes immediately after the edge xy1 as we move clockwise around x. Note
that the set L is the same for every vertex of G, and depends only on S and on
our convention on whether to draw one or two edges per vertex for involutions.

9



This allows us to compare spins of different vertices. Note that if G is cubic,
which means that |L| = 3, then there are only two possible cyclic orders on L,
and thus only two possible spins. Call an edge of G spin-preserving if its two
endvertices have the same spin in σ, and call it spin-reversing otherwise. Call a
colour in S consistent if all edges bearing that colour are spin-preserving or all
edges bearing that colour are spin-reversing in σ. Finally, call the embedding
σ consistent if every colour is consistent in σ (this definition is natural only if
G is cubic; to extend it to the general case, demand that every two vertices have
either the same spin, or the spin of the one is obtained by reversing the spin of
the other).

It is straightforward to check that σ is consistent if and only if every colour-
automorphism of G maps every facial walk to a facial walk.

It follows from Whitney’s theorem mentioned in the introduction that if G is
3-connected then its essentially unique embedding must be consistent. Cayley
graphs of connectivity 2 do not always admit a consistent embedding [9]. How-
ever, in the cubic case they do; see [13].

An embedding is Vertex-Accumulation-Point-free, or VAP-free for short, if
the images of the vertices have no accumulation point in R2.

3 Known facts

In this section we recall some easy facts about Cayley graphs that we will use
later. The reader may choose to skip this section and the next.

We begin with a well-known characterisation of Cayley graphs. Call an
edge-colouring of a digraph G proper , if no vertex of G has two incoming or two
outgoing edges with the same colour.

Theorem 3.1 (Sabidussi’s Theorem [23, 1]). A properly edge-coloured digraph is
a Cayley graph if and only iffor every x, y ∈ V (G) there is a colour-automorphism
mapping x to y.

The following classical result was proved by Whitney [24, Theorem 11] for
finite graphs and by Imrich [17] for infinite ones.

Theorem 3.2. Let G be a 3-connected graph embedded in the sphere. Then
every automorphism of G maps each facial path to a facial path.

This implies in particular that if σ is an embedding of the 3-connected Cayley
graph G, then the cyclic ordering of the colours of the edges around any vertex
of G is the same up to orientation. In other words, at most two spins are allowed
in σ. Moreover, if two vertices x, y of G that are adjacent by an edge, bearing
a colour b say, have distinct spins, then any two vertices x′, y′ adjacent by a
b-edge also have distinct spins. We just proved

Lemma 3.3. Let G be a 3-connected planar Cayley graph. Then every embed-
ding of G is consistent.

Finally, we recall the following fact that is reminiscent of MacLane’s pla-
narity criterion.

Theorem 3.4 ([13]). Let 〈S | R〉 be a simple presentation and let G = Cay 〈S | R〉
be the corresponding Cayley graph. If no edge of G appears in more than two
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circuits induced by relators in R, then G is planar and has a VAP-free embed-
ding the facial cycles of which are precisely the cycles of G induced by relators
in R.

4 General facts regarding connectivity

Call a relation of a group presentation cyclic, if it induces a cycle in the cor-
responding Cayley graph. An involution is by convention not cyclic. Cyclic
relations are useful because they allow us to formulate the following lemma.

Lemma 4.1. A cubic Cayley graph is 2-connected if and only if each of its
generators a is in a cyclic relation.

Proof. Firstly, note that if G is a cubic Cayley graph that is not 2-connected,
then it must have a bridge e. But then the generator a corresponding to e
cannot be in any cyclic relation because a cycle cannot contain a bridge.

Conversely, an edge corresponding to a generator a that is in no cyclic re-
lation cannot lie in any cycle; thus it is a bridge, which means that any of its
endpoints separates the graph.

In many occasions we will use some of the graphs of Table 1 as building
blocks in order to construct more complicated ones. Our next lemma will be
useful in such cases, as it will allow us to deduce the fact that the new graphs
are 3-connected from the fact that the building blocks were. Let K, K1,K2 be
subsets of V (G). We will say that K is k-connected in G, if for every vertex
set S ⊆ V (G) with |S| < k, there is a component of G − S containing K − S.
Similarly, we will say that K1 is k-connected to K2 in G, if for every vertex set
S ⊆ V (G) with |S| < k, there is a path from K1 to K2 in G− S; in particular,
|K1|, |K2| ≥ k.

Lemma 4.2 ([14]). Let G be a graph, and let {Ki}i∈I be a family of subsets of
V (G) such that the following three assertions hold:

1.
⋃

I Ki = V (G);
2. For every i ∈ I, Ki is k-connected in G, and
3. For every i, j ∈ I there is a finite sequence i = n0, . . . , nr = j such that

Knm is k-connected to Knm+1 in G for every relevant m.

Then G is k-connected.

5 Graphs of connectivity 1 or 2

It follows easily from Lemma 4.1 that if G is a cubic Cayley graph of connectivity
κ(G) = 1, then its group Γ(G) has one of the following presentations.

1.
〈
a, b | b2, an

〉
, n ∈ {∞, 2, 3, . . .}

2.
〈
b, c, d | b2, c2, d2, (bc)n

〉
, n ∈ {∞, 1, 2, 3, . . .},

where n = ∞ means that the corresponding relator is omitted.
All Cayley graphs corresponding to these presentations are planar; this fol-

lows easily from κ(G) = 1 and the assumption that G is cubic.

The planar cubic Cayley graphs of connectivity 2 were completely analysed
in [13], yielding the following classification.

11



Theorem 5.1. Let G be a planar cubic Cayley graph of connectivity 2. Then
precisely one of the following is the case:

1. G ∼= Cay
〈
a, b | b2, (ab)n

〉
, n ≥ 2;

2. G ∼= Cay
〈
a, b | b2, (aba−1b−1)n

〉
, n ≥ 1;

3. G ∼= Cay
〈
a, b | b2, a4, (a2b)n

〉
, n ≥ 2;

4. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bc)2, (bcd)m

〉
, m ≥ 2;

5. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bc)2n, (cbcd)m

〉
, n,m ≥ 2;

6. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bc)n, (bd)m

〉
, n,m ≥ 2;

7. G ∼= Cay
〈
b, c, d | b2, c2, d2, (b(cb)nd)m

〉
, n ≥ 1,m ≥ 2;

8. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcbd)m

〉
, m ≥ 1;

9. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bc)n, cd

〉
, n ≥ 1 (degenerate cases with redun-

dant generators).

Conversely, each of the above presentations, with parameters chosen in the spec-
ified domains, yields a planar cubic Cayley graph of connectivity 2.

The above presentations are planar; see [13, Corollary 6.3].
We use Theorem 5.1 to obtain the entries (3)–(11) of Table 1, but we also use

these graphs as important building blocks in later constructions of 3-connected
Cayley graphs.

The following sections are devoted to the 3-connected case.

6 Crossings of shortest dividing cycles

Given a plane graph G and a cycle C of G, the Jordan curve theorem yields
two distinct regions IN(C), OUT (C) of R2\C which we call the sides of C.
Define the closed sides IN(C), OUT (C) of C to be the respective union of
IN(C), OUT (C) with C.

Call a cycle C of G a dividing cycle if both sides of C contain infinitely many
vertices, and call C a shortest dividing cycle if its length is minimal among all
dividing cycles of G. The shortest dividing cycles will play a very important
role in this paper: in most of the group presentations we construct, any relator
that does not induce a face boundary will induce a shortest dividing cycle. In
this section we provide some general facts, that will be useful later, about how
pairs of shortest dividing cycles can meet.

We will say that two cycles C,C ′ of G cross each other if none of them is con-
tained in the closure of a side of the other; equivalently, if each of IN(C), OUT (C)
meets both IN(C ′), OUT (C ′). It turns out that the ways in which shortest di-
viding cycles can cross are very restricted.

We will first consider the simplest case, when two shortest dividing cycles
C, C ′ cross only once, that is, when C − C ′ consists of two components and so
does C ′ − C. In this case, R2\(C ∪ C ′) consists of four regions A,B,D, F as in
Figure 3.

Since C, C ′ are dividing cycles, both the inside and the outside of each of
them contain infinitely many vertices. This immediately implies that either
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Figure 3: The four regions of R2\(C ∪ C′).

both A,D are infinite or both B, F are infinite. We may assume without loss
of generality that

both A,D are infinite (1)

since otherwise we could modify the embedding of G so as to fix C but exchange
its inside with its outside, which would have the effect of renaming the regions
A,B, D, F .

As G is cubic, every time C and C ′ intersect they must have at least one
common edge. This gives rise to the three cases displayed in Figure 4. In two
of those cases (upper half of Figure 4) we immediately obtain a contradiction:
in each case we obtain two new cycles K, K ′ (dashed lines) both of which are
dividing by (1). Now an easy double counting argument shows that the length
at least one of K, K ′ must be less than ` := |C| = |C ′|, the length of a shortest
dividing cycle of G: indeed, we have |K|+ |K ′| < |C|+ |C ′|.

∞ ∞ ∞ ∞

∞ ∞

P1 P
′
1P2 P

′
2

Figure 4: The three ways in which two dividing cycles C, C′ can cross. The dashed
cycles K, K′ are also dividing.

Thus, whenever two shortest dividing cycles C, C ′ cross only once we must
have the situation in the lower half of Figure 4, with each of A and D containing
infinitely many vertices. Moreover,

at least one of B, F is finite, (2)

since otherwise one of the cycles P1 ∪P ′1 and P2 ∪P ′2 is dividing and has length
less that ` by a double-counting argument as above.
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If C,C ′ cross more than once then more or less the same arguments apply,
but we have to be a bit more careful. We define the regions A,B, D, F as follows.
We let A := IN(C)∩OUT (C ′), B := IN(C)∩IN(C ′), D := OUT (C)∩IN(C ′),
and F := OUT (C) ∩ OUT (C ′). Now each time C, C ′ cross, the corresponding
subpaths must be arranged as in the lower half of Figure 4 as can be shown by
repeating the above arguments, except that this time K, K ′ need not be cycles
but could be more complicated closed walks. Still, we can decompose each of
them into a finite collection of cycles, one of which will have to be dividing and
shorter that `.

Note that |P1| = |P ′1| must hold in Figure 4 because if, say, |P1| < |P ′1| then
we can replace P ′1 by P1 in C ′ to obtain the cycle K ′ which is shorter than C ′.
But by (1) K ′ would then be a dividing cycle, contradicting the fact that C ′ is
shortest possible. Similarly, we obtain |P2| = |P ′2|. Thus, both dotted cycles in
the lower half of Figure 4 have the same length as C, and by (1) again they are
shortest dividing cycles.

This means that whenever we have two crossing shortest dividing cycles
C, C ′ in a cubic graph G,

there is a shortest dividing cycle K which is the union of a non-trivial
subpath of each of C, C ′ which subpaths witness the fact that C, C ′

cross.
(3)

This will imply the following tool that we will use in many cases.

Corollary 6.1. Let C, C ′ be two crossing shortest dividing cycles in a cubic
graph G. Let Q be a maximal common subpath of C,C ′, and let F be a facial
subpath of C or C ′ that has maximal length among all facial subpaths of all
shortest dividing cycles of G. Then if Q and F have a common endvertex y,
their edges incident with y are distinct.

Proof. Suppose, to the contrary, that such a path Q finishes with the edge e = xy
which is also the last edge of the facial subpath F of C that has maximum length.
Since Q was a maximal common subpath of C, C ′, the edge f = yz of C following
Q is different from the edge f ′ = yz′ of C ′ following Q. By (3), we can combine
C and C ′ into a new shortest dividing cycle K that comprises a subpath P of
C ending with e and a subpath P ′ of C ′ starting with f ′. Recall that the path
F is facial, and let H denote its incident face. Since F was a maximal facial
subpath of C, H is not incident with the edge f ∈ E(C). Thus, as G is cubic, H
is incident with f ′. Now note that K contains f ′ by construction, as well as the
last edge e of F . If K contains all of F , then it contains the facial path F ∪ f ′,
which contradicts the maximality of the length of F among all facial subpaths
of all shortest dividing cycles. Thus P ′ must interrupt F . This however yields
a contradiction to the embedding. Indeed, since H is a face, it is contained in
either IN(C) or OUT (C). Recall also that P ′ must by definition be contained
in IN(C) or OUT (C). But as P ′ contains the edge f ′ which is incident with H,
both H and P ′ must be accommodated in the same side of C. Thus P ′ cannot
contain any of the edges incident with F , since these edges lie in the other side
of C. This shows that P ′ cannot interrupt F , and we obtain a contradiction
that completes the proof.
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7 The finite and 1-ended cubic planar Cayley
graphs

In this section we analyse the cubic planar Cayley graphs that are either finite
or infinite but with only 1 end. Many, perhaps all, of these graphs were already
known. They appear as entries (12)–(19) of Table 1, but also provide building
blocks for many of the more interesting entries.

We begin with some general properties of planar Cayley graphs with at most
1 end.

Theorem 7.1. Every finite or 1-ended cubic Cayley graph is 3-connected.

This is proved in [1, Chapter 27, Theorem 3.7.] for finite G and in [2, Lemma
2.4.] for infinite G.

Combining this with Lemma 3.3 easily yields the following well-known fact.

Lemma 7.2. In an 1-ended plane Cayley graph all face-boundaries are finite.

Conversely, we have

Lemma 7.3 ([12, Lemma 3.4]). A plane 2-connected graph with no dividing
cycle and no infinite face-boundary is either finite or 1-ended.

Our last lemma is

Lemma 7.4. Let G = Cay 〈S | R〉 be finite or 1-ended and planar , and let R′
be a set of relations of Γ(G) such that every face boundary of G is induced by
some relation in R′. Then Γ(G) ∼= 〈S | R′〉.
Proof. It suffices to show that the edge-set of every cycle C of G is a sum of
edge-sets of finite face-boundaries. This is indeed the case, for as G is at most
1-ended, there must be a side A of C containing only finitely many vertices, and
so E(C) is the sum of the edge-sets of the face-boundaries lying in A.

We can now proceed with the main results of this section.

Theorem 7.5. Let G = Cay
〈
a, b | b2, . . .

〉
be planar and finite or 1-ended.

Then precisely one of the following is the case:

1. G ∼= Cay
〈
a, b | b2, an, (ab)m

〉
, n ≥ 3, m ≥ 2 (and a, b preserve spin);

2. G ∼= Cay
〈
a, b | b2, an, (aba−1b)m

〉
, n ≥ 3, m ≥ 1 (and only a preserves

spin);
3. G ∼= Cay

〈
a, b | b2, (a2b)m

〉
, m ≥ 2 (and only b preserves spin);

4. G ∼= Cay
〈
a, b | b2, (a2ba−2b)m

〉
, m ≥ 1 (and a, b reverse spin);

5. G ∼= Cay
〈
a, b | b2, a2, (ab)n

〉
, n ≥ 2 or G ∼= Cay

〈
a, b | b2, ab

〉
(degenerate

cases in which G is not cubic).

All presentations above are planar.
Conversely, each of the presentations (i)–(iv), with parameters chosen in the

specified domains, yields a planar, finite or 1-ended, non-trivial cubic Cayley
graph.
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Proof. For the forward implication, let G = Cay
〈
a, b | b2, . . .

〉
be planar, with

at most one end. G is 3-connected by Theorem 7.1, unless a is an involution too
in which case we have one of the degenerate cases of (v). In all non-degenerate
cases, the (essentially unique) embedding is consistent with respect to spin by
Lemma 3.3. Thus we have precisely one of the following cases.

Case (i): both a, b preserve spin.
Since a preserves spin the walk P := 0, a, a2, a3, . . . is facial. By Lemma 7.2

P cannot be a ray, so it spans a finite cycle C of length n say. Similarly, the
walk Q := 0, a, ab, aba, abab, . . . is facial because b also preserves spin, and by the
above argument it must span a finite cycle C ′ with edges alternating between
a and b. Note that both C, C ′ are face boundaries. Moreover, by Theorem 3.2
every face-boundary of G is a translate of one of C,C ′. By Lemma 7.4 this
means that the relations an, (ab)m, inducing C and C ′ respectively, combined
with b2 yield a presentation of Γ(G). Thus G ∼= Cay

〈
a, b | b2, an, (ab)m

〉
with

m ≥ 2 as claimed.
Case (ii): a preserves spin and b reverses spin.
As in Case (i) we conclude that G has finite a-coloured faces, induced by a

relation an. As b reverses spin now, a walk Q as above is not facial any more,
and instead 0, a, ab, aba−1, aba−1b, . . . is facial. By similar arguments we obtain
the desired presentation G ∼= Cay

〈
a, b | b2, an, (aba−1b)m

〉
, n ≥ 3, m ≥ 1.

Case (iii): b preserves spin and a reverses spin.
The walk 0, a, aa, aab, aaba, . . . is now facial, and spans a finite cycle C

of length 3m for some m ≥ 2. It is also straightforward to check that ev-
ery facial path of G is of that form, in other words, every face boundary is
a translate of C. Again by Lemma 7.4 we obtain the desired presentation
G ∼= Cay

〈
a, b | b2, (a2b)m

〉
, m ≥ 1.

Case (iv): both a, b reverse spin.
This case is similar to the previous one, except that the a edges on a fa-

cial walk do not all have the same direction now, but instead their directions
alternate after each b edge. We thus obtain G ∼= Cay

〈
a, b | b2, (a2ba−2b)m

〉
,

m ≥ 1.

For the converse assertion, given any presentation of the form (i), let us
show that the Cayley graph G is planar. We begin with an auxiliary plane
graph H, namely, the graph of the regular tiling of the sphere, euclidean plane,
or hyperbolic plane with n m-gons meeting at every vertex. The existence of
H is well-known and not hard to prove [20]. Note that H is a vertex-transitive
graph: for any two vertices x, y ∈ V (H) it is straightforward to inductively
construct an isomorphism between the balls of radius r around these vertices.
To obtain G from H, replace every vertex x of H with a cycle Cx of length n,
and join each edge incident with x to a distinct vertex of Cx, keeping the cyclic
ordering, so that the graph remains planar. Then, assign to each edge of Cx

the label a, and direct it in such a way that Cx is oriented clockwise. Moreover,
assign to every other edge, coming from an edge of H, the label b. Let G be the
resulting coloured graph. We claim that G is the Cayley graph corresponding
to presentation (i). Indeed, the fact that G is a Cayley graph follows easily from
Sabidussi’s Theorem 3.1 and the fact that H was vertex-transitive. The fact
that G has the desired presentation now follows from the forward implication
which we have already proved since, by construction, all edges of G preserve
spin.
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Given any presentation of the form (ii), it is now easy to construct an em-
bedding of the corresponding Cayley graph G: we can start with a graph G′ of
type (i) with parameters n,m′ := 2m, and then reverse the orientation of ‘every
other’ a-cycle to obtain G. More precisely, let G′ ∼= Cay

〈
a, b | b2, an, (ab)2m

〉
,

and define a bipartition {X,Y } of the a-cycles of G′ by letting X (resp. Y ) be the
set of those a-cycles that can be reached from a fixed vertex o ∈ V (G) by a path
containing an even (resp. odd) number of b-labelled edges. To see that this is in-
deed a bipartition, note that every relation in the group of

〈
a, b | b2, an, (ab)2m

〉
contains an even number of appearances of the letter b. Note moreover, that
any two a-cycles that are connected by a b edge lie in distinct classes of this
bipartition. Thus, if we reverse the orientation of every a-cycle lying in X we
obtain a plane graph G in which only the a edges preserve spin. Again, we can
check that G is a Cayley graph using Sabidussi’s theorem, and we apply the
forward implication to show that G has the presentation (ii).

We handle case (iii) similarly to case (i), except that now the auxiliary
graph H is obtained by contracting the b-edges instead of the a-labelled ones.
To achieve the desired orientation, replace every b-edge by a 2-cycle, and orient
all these cycles clockwise; then make sure that for every face boundary of type
(a2b)m all edges are oriented in the same direction.

A graph of type (iv) can be obtained by one of type (iii) by reversing the
orientation of every other a-path, similarly to the above reduction of type (ii)
to type (i).

Finally, the Cayley graphs of type (v) are finite and easy to construct.
It follows easily from our construction that all our presentations are planar.

We now proceed with the case where G is generated by three generators.

Theorem 7.6. Let G = Cay
〈
b, c, d | b2, c2, d2, . . .

〉
be planar and finite or 1-

ended. Then precisely one of the following is the case:

1. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcd)n

〉
, n ≥ 1 (all colours preserve spin);

2. G ∼= Cay
〈
b, c, d | b2, c2, d2, (cbcdbd)n

〉
, n ≥ 1 (only c, d preserve spin);

3. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bc)n, (bdcd)m

〉
, n ≥ 2, m ≥ 1 (only d preserves

spin);
4. G ∼= Cay

〈
b, c, d | b2, c2, d2, (bc)n, (cd)m, (db)p

〉
, n,m, p ≥ 2 (all colours

reverse spin);
5. G ∼= Cay

〈
b, c, d | b2, c2, d2, (bc)n, cd

〉
, n ≥ 1 (degenerate, non-3-connected

cases with redundant generators).

All presentations above are planar.
Conversely, each of the above presentations, with parameters chosen in the

specified domains, yields a planar, finite or 1-ended, non-trivial cubic Cayley
graph.

Proof. By the arguments of Theorem 7.5 G uniquely embeds in the sphere,
unless we are in the degenerate case (v), and so the colours behave consistently
with respect to spin. We thus have the following non-degenerate cases. Recall
that by Lemma 7.2 all face boundaries of G are finite; we are going to tacitly
make use of this fact in all cases.

Case (i): all colours preserve spin.
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Consider the path 0, b, bc, which is facial for some face boundary F since
it only has two edges. Since c preserves spin, the next edge on F must be
coloured d. Similarly, the edge after that must be coloured b since d preserves
spin. Continuing like that we conclude that the edges of F follow the pattern
bcdbcdb . . ., in other words, F can be induced by the relation (bcd)n. Since all
edges preserve spin, any two faces of G that share an edge e = xy can be mapped
to each other by the automorphism of G exchanging x with y, where we are using
the fact that all edges correspond to involutions. Thus all face boundaries of
G have the same form as F . Similarly to Theorem 7.5, we can now apply
Lemma 7.4 to conclude that G ∼= Cay

〈
b, c, d | b2, c2, d2, (bcd)n

〉
, n ≥ 1.

Case (ii): precisely two colours, c, d say, preserve spin.
In this case, at every vertex of G the situation looks locally like Figure 5, and

it is straightforward to check that every face boundary is of the form (cbcdbd)n.
Indeed, as c, d preserve spin, every facial walk of the form cd is a subwalk of a
facial walk of the form bcdb. Moreover, as b reverses spin, every facial walk of
the form cb is a subwalk of a facial walk of the form cbc and every facial walk
of the form db is a subwalk of a facial walk of the form dbd. Furthermore, there
is no facial walk of the form bcb or bdb. Combining these facts one obtains that
every face boundary is indeed of the form (cbcdbd)n. Thus Lemma 7.4 yields
G ∼= Cay

〈
b, c, d | b2, c2, d2, (cbcdbd)n

〉
, n ≥ 1.

Figure 5: The local situation around any vertex in case (ii).

Case (iii): precisely one colour, d say, preserves spin.
Then a walk alternating in b, c is facial, and so G has two coloured faces,

induced by a relation (bc)n for some n ≥ 2. It is straightforward to check, by
observing the spin behaviour, that every facial walk containing a d-edge is of the
form bdcdbd . . .. Thus, by Lemma 7.4 again, G ∼= Cay

〈
b, c, d | b2, c2, d2, (bc)n, (bdcd)m

〉
,

n ≥ 2,m ≥ 1.
Case (iv): all colours reverse spin.
Similarly to Case (iii) it follows that any two-coloured walk is facial, and so at

every vertex we have three different kinds of incident face boundaries, each a two-
coloured cycle. By Lemma 7.4 we obtain G ∼= Cay

〈
b, c, d | b2, c2, d2, (bc)n, (cd)m, (db)p

〉
,

n,m, p ≥ 2.

The converse assertion can again be proved using explicit constructions sim-
ilarly to what we did in the proof of Theorem 7.5, but these constructions
become more complicated now and so we will follow a different, and interesting,
approach that makes use of Theorem 3.4. Given any presentation of one of
these four forms, we will check that the presentation is simple. Moreover, it
is straightforward to check that each of these presentations satisfies the condi-
tions of Theorem 3.4, with every edge of G appearing in precisely two circuits
induced by the specified relators. Thus, by that theorem, the corresponding
Cayley graph is planar, and has a VAP-free embedding σ in which the finite
face boundaries are induced by those relators, and each edge lies in precisely two
such boundaries. This means that all face boundaries in σ are finite. Moreover,
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σ has no dividing cycles because it is VAP-free. Thus we can apply Lemma 7.3
which yields that G is 1-ended if it is infinite.

It only remains to check that our presentations are simple indeed. To see
that (i) is simple, note that even if we set d = 1 we can prove no subword of
(bc)n to be a relation since (bc)n is simple in the subgroup generated by b, c.
Similarly, consider the subgroups of (ii) generated by b, d and b, c to see that
the presentation is simple. To see that (iv) is simple, consider the subgroup F
consisting of all elements that can be presented by a word of even length in the
letters b, c, d; this is indeed a subgroup since every relation of the original group
contains an even number of letters. Note that F is generated by bc, cd, db, and in
fact one of these generators is redundant. Thus F ∼= 〈a′, b′ | (a′)n, (b′)m, (a′b′)q〉,
where a′ := bc, b′ := cd. Note that if we impose b′2 = 1 then this presentation
reduces to (i) of Theorem 7.5, and we implicitly checked there that (a′)n is
simple in that group. Thus (a′)n must be simple in F , which means that (bc)n

is simple in our original group Γ as the element bc cannot have a smaller order
in Γ than in a subgroup of Γ. By symmetry, all relations in (iv) are simple.
Instead of showing that presentation (iii) is also simple, let us rather explicitly
construct the desired Cayley graph from one of type (iv). For this, let G′ =
Cay

〈
b, c, d | b2, c2, d2, (bc)n, (cd)2m, (db)2m

〉
. We have already proved that G′

has an embedding with all edges reversing spin, and we have observed that
the set of elements that can be presented by a word of even length forms a
subgroup F , which of course has index 2. Note that any two adjacent vertices
of G′ lie in distinct left cosets of F . Now let G be the graph obtained from G′

by exchanging, for every f ∈ F , the labels of the edges incident with f labelled
b and c. Note that every vertex of G is still incident with all three labels by
the above observation. It is easy to prove that G is a Cayley graph using
Sabidussi’s theorem. Moreover, the d-edges now preserve spin. Thus, by the
forward implication, G has the desired presentation (iii). Finally, presentation
(v) gives rise to a finite Cayley graph which is easy to embed.

It follows easily from our construction that all our presentations are planar.

8 The planar multi-ended Cayley graphs with 2
generators

Having already characterised the 1-ended cubic planar Cayley graphs in the
previous section, we turn our attention to our main object of interest, the pla-
nar, 3-connected, multi-ended Cayley graphs. In this section we consider those
generated by two generators, one of which must be an involution. We will dis-
tinguish two cases according to whether the other generator has finite or infinite
order, discussed separately in the following two subsections. We will obtain pla-
nar presentations for each of those graphs, as well as explicit constructions of
their embeddings. Our results are summarised in Theorems 8.3 and 8.5 below.
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8.1 Graphs with monochromatic cycles

In this section we consider the case when am = 1 for some m > 2. It turns out
that in this case

a reverses spin, (4)

because of the following lemma.

Lemma 8.1. Let G = Cay
〈
a, b | b2, . . .

〉
be a 2-connected Cayley graph with a

consistent embedding in which a preserves spin and such that a has finite order.
Then G has at most one end.

Proof. We begin by showing that

G does not have a dividing cycle. (5)

Indeed, suppose to the contrary that C is a shortest dividing cycle, and choose
C so that it has a facial subpath F that has maximum length among all shortest
dividing cycles and all their facial subpaths. We distinguish three cases, all of
which will lead to a contradiction.

Case I: one of the end-edges e of F is labelled a.
In this case, we can rotate the finite a-cycle containing e by a colour-

automorphism of G to translate C to a further shortest dividing cycle C ′ that
crosses C in such a way that e is the last edge of a common subpath of C and
C ′; see Figure 6 (left). Indeed, since e is the last edge of F , the edge of F
before it must have been labelled b, and the edge of C following e is labelled a
too, so that such a rotation is possible. This crossing immediately contradicts
Corollary 6.1.

Figure 6: Creating a crossing in Case I (left) and Case II (right).

Case II: both end-edges of F are labelled b, and b reverses spin.
In this case we can apply the colour-automorphism of G that exchanges the

endvertices of some end-edge e of F to translate C to a new shortest dividing
cycle C ′ that crosses C; see Figure 6 (right). Again, the crossing we obtain
contradicts Corollary 6.1.
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Case III: both end-edges of F are labelled b, and b preserves spin.
Let e = yz be an end-edge of F . Since b is an involution, the edge g = xy of

F preceding e is labelled a, and so g is not an end-edge of F , which means that
F has at least one more edge. The edge f = wx of F preceding g is labelled b
again, because otherwise F would not be facial, see Figure 7. We claim that the
colour-automorphism T of G that maps z to x translates C to a cycle C ′ = T (C)
that crosses C. To see this, let F be the face whose boundary contains F , and
note that the edge h = zv following F on C is not incident with F , for F is
maximally facial. Assume without loss of generality that g is directed from x
to y. Then, as b preserves spin, h is directed from v to z. This implies that
T (h) 6= g, and so C ′ has an edge, namely T (h), that lies in the side of C not
containing F .

Figure 7: Creating a crossing in Case III.

On the other hand, T (F ), which is a subpath of C ′ since F ⊆ C, is facial
by Theorem 3.2. Since T (e) = f and we are assuming that both a and b
preserve spin, it follows that T ‘maps’ F to itself, more precisely, that T (F ) is
contained in the boundary of F . As F is also contained in the boundary of F ,
and |F | = |T (F )|, this means that if we start at x and walk around F in the
direction of w, then T (F ) spans more edges of the boundary of F than F does.
Since T (F ) ⊆ C ′, this proves that C ′ has an edge in the side of C that contains
F . Combined with our earlier observation that C ′ also meets the other side of
C proves that C ′ crosses C, and in fact so that one of their common subpaths
ends with f . As f is also the final edge of T (F ), a facial subpath of maximum
length, this contradicts Corollary 6.1 again.

Thus, in all three cases we obtained a contradiction, and so we have estab-
lished (5). We can now exploit this fact to prove our next claim.

Every face boundary of G is finite. (6)

To see this, let C be a cycle containing an edge e coloured b; such a cycle exists
because G is 2-connected. Now as C cannot be dividing by (5), one of its sides
contains only finitely many vertices. Thus, all faces contained in that side have
a finite boundary. This means that e itself is on a finite face boundary F . Now
consider one of the a-cycles D incident with e. Rotating along D by colour-
automorphisms of G we can map F to the other face incident with e. Since we
can also map e to any other b edge by a colour-automorphismof G, Theorem 3.2
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now implies that every face boundary containing a b edge is finite. As we are
assuming that a preserves spin, any face boundary not containing a b edge is a
finite a-cycle of length m, the order of a. These two observations together prove
(6).

We can now apply Lemma 7.3, using (5) and (6), to prove that G has at
most one end.

It follows from (4) that the order m of a is even, since the b edges incident
with any a-cycle C must alternate between the two sides of C (Figure 8).

Figure 8: An a-cycle and some of its translates. Every a-edge reverses spin.

Now consider the subgroup Γ2 of Γ spanned by a2 and b. We claim that
Γ2 is a proper subgroup of Γ; in fact, that for every a-cycle C of Γ spanned by
a, at most half of the vertices of C lie in Γ2. To see this, note that if x, y are
two elements of Γ2, then there is an x–y path P in G the a edges of which can
be decomposed into incident pairs. Now using Figure 8 it is easy to see that
whenever such a path P meets an a-cycle C of G, the two edges of P incident
with C lie in the same side of C. In other words, P cannot cross any a-cycle C
of G. This fact easily implies our claim.

By the same token, given an embedding σ of G, we can modify G and σ to
obtain a Cayley graph G2 of Γ2, with respect to the generating set {a2, b}, and
an embedding σ2 of G2 as follows. For every a-cycle C of G that contains a
vertex in Γ2, delete all vertices and edges in the side of C that does not meet
Γ2; such a side exists by the above argument. Let G′2 be the graph obtained
after doing so for every such cycle. Then, suppress all vertices of G′2 that now
have degree two; that is, replace any a-labelled path xPy of length two whose
middle vertex now has no incident b edge by a single x-y edge directed the same
way as P , bearing a new label z (corresponding to the generator a2), to obtain
G2.

We will soon see that G2 uniquely determines G. But let us first look at G2

more closely. To begin with, using Lemma 4.1 it is easy to show that

G2 is 2-connected. (7)

Note that the embedding σ2 is by construction a consistent embedding of G2,
but the z-labelled edges now preserve spin. Applying Lemma 8.1 to G2 thus
implies that

G2 has at most one end. (8)
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It now follows from our characterization of such graphs in Section 7 that,

either G2
∼= Cay

〈
z, b | b2, zn, (zb)m

〉
, n ≥ 3, m ≥ 2

or G2
∼= Cay

〈
z, b | b2, zn, (zbz−1b)m

〉
, n ≥ 3, m ≥ 1.

(9)

Indeed, since G has a monochromatic cycle, it must belong to one of the types
(i), (ii) or (v) of Theorem 7.5. However, the third type can immediately be
eliminated, as it would either imply that a pair of vertices of G2 adjacent by a z
edge disconnects G, which cannot be the case as G is assumed to be 3-connected,
or it would imply that G is a graph on four vertices. (If we drop the assumption
that G be 3-connected though then such a graph does exist, and it is unique: it
is described in [13, Figure 5].)

We are going to use the presentation (9) of G2 to obtain a presentation of
G. To achieve this, we are going to find some relations of Γ such that the set of
cycles induced by these relations generates Cf (G). In fact, these relations are
just the ones that appear in the presentation (9). Intuitively, one way to prove
this is as follows. Given an arbitrary cycle C of G, consider the finitely many
translates G1, G2, . . . GkC

of G′2 in G that intersect C, and observe that C can
be written as a sum of cycles of the Gi. Now as any cycle in G2 (and G′2) is a
sum of cycles induced by the relators in (9), our claim follows by Lemma 2.1.
We are going to use a similar argument in several occasions throughout this
paper, and rather than repeating the argumentation each time, we are going to
use the following more abstract to obtain a rigorous proof of the fact that G has
the claimed presentation.

Lemma 8.2 ([14]). Let G be any graph, and let X be a set of subgraphs of
G with the following properties:

1.
⋃

H∈X H = G,

2. no edge of G lies in infinitely many elements of X ; and

3. there is a tree T (X , ET ) on X such that for every edge e ∈ ET , joining Hi

to Hj say, there is a common cycle Fi of Hi and Hj such that Fi separates⋃
H∈V (T1)

H from
⋃

H∈V (T2)
H where T1, T2 are the two components of

T − e.

Then, for every choice (FH)H∈X of a generating set FH of Cf (H) for each
element H of X , the union

⋃
X FH generates Cf (G).

Now in order to apply this to our particular Cayley graph G, consider for
every vertex x ∈ V (G) the left coset of Γ2 in Γ containing x, and let Hx ⊆ G
be the corresponding copy of G′2; in other words, Hx is the image of G′2 under
the colour-automorphism x. We are now going organize these copies into an
auxiliary tree T satisfying (iii). The vertex set of T is the set of graphs Hx, for
all vertices x of G. Two vertices Hx,Hy of T are joined by an edge if and only
if they share an a-coloured cycle of G. It follows easily from the definition of
G′2 that T is indeed a tree, and that it satisfies (iii). The interested reader will
be able to check that T is in fact a Dunwoody structure tree [6] of G.

It is clear that this set {Hx | x ∈ V (G)} satisfies (i) and (ii) of Theorem 8.2.
Before we apply Theorem 8.2, it remains to define the generating sets Fx. For
this, let F be the set of cycles of G induced by the relators in the presentation
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(9) —for which have distinguished two cases— after replacing each appearance
of the letter z by the word a2. Note that all these cycles are contained in G′2.
Moreover, F generates Cf (G′2) by Lemma 2.1 since (9) is a presentation of Γ2.

Thus, defining Fx to be the image of F under the automorphism of G that
maps G′2 to its copy Hx, we meet the requirement that Fx generate Cf (Hx)
for every x, and Theorem 8.2 yields that

⋃Fx generates Cf (G). By the sec-
ond sentence of Lemma 2.1 and the definition of F it now follows that either G ∼=
Cay

〈
a, b | b2, a2n, (a2b)m

〉
, n ≥ 3, m ≥ 2 or G ∼= Cay

〈
a, b | b2, a2n, (a2ba−2b)m

〉
,

n ≥ 3,m ≥ 1. The first (respectively second) case occurs if b preserves (resp.
reverses) spin, as can be seen by applying Theorem 7.5 to G2. Thus we have

Theorem 8.3. Let G = Cay
〈
a, b | b2, . . .

〉
be a 3-connected Cayley graph with

more than one end and suppose that a has finite order. Then a reverses spin.
If b preserves spin then
G ∼= Cay

〈
a, b | b2, (a2b)m; a2n

〉
, n ≥ 3,m ≥ 2.

If b reverses spin then
G ∼= Cay

〈
a, b | b2, (a2ba−2b)m; a2n

〉
, n ≥ 3,m ≥ 1.

In both cases, the presentation is planar.
Moreover, G is the Mohar amalgamation of G2

∼= Cay
〈
z, b | b2, zn, (zb)m

〉
or G2

∼= Cay
〈
z, b | b2, zn, (zbz−1b)m

〉
with itself.

Conversely, each of these presentations, with parameters chosen in the spec-
ified domains, yields a Cayley graph as above.

Here, a Mohar amalgamation is the operation of Figure 1 (iii) described in
the Introduction.

Proof. The forward implication was proved in the above discussion. It remains
to prove the converse and the fact that these graphs can be obtained by the
claimed Mohar amalgamations. We will prove both these assertions simultane-
ously. For this, given one of the above presentations, consider the auxiliary pre-
sentation Γ2 =

〈
z, b | b2, zn, (zb)m

〉
or Γ2 =

〈
z, b | b2, zn, (zbz−1b)m

〉
obtained

by replacing a2 by z throughout. Applying Theorem 7.5 (i) or (ii) to this pre-
sentation shows that the corresponding Cayley graph G2 is finite or 1-ended,
and has an embedding in which all monochromatic cycles induced by zn bound
faces. The other relation also induces facial cycles but we will not use this
fact. Now construct a graph G as the Mohar amalgamation of G2 with itself
with respect to the z-monochromatic cycles, orienting the pasted discs in such
a way that all b edges preserve (respectively, reverse) spin if the presentation
we started with was of the first (resp. second) kind.

It follows easily from Sabidussi’s theorem that the plane edge-coloured graph
G just constructed is a Cayley graph. Moreover, G has infinitely many ends:
by construction, any z-coloured cycle separates two infinite components. We
claim that G is 3-connected. To prove this, suppose {x, y} ⊂ V (G) separates
G. It is easy to see that by the construction of G the vertices of any z-coloured
cycle cannot be separated by {x, y}. Moreover, as G2 is itself 3-connected by
Theorem 7.1, no two z-coloured cycles that lie in a common copy of G2 can be
separated by {x, y}. But for any two z-coloured cycles Z, Z ′ of G there is by
construction a finite sequence Z1 = C1, C2, . . . , Ck = Z ′ such that Ci, Ci+1 are
z-coloured cycles lying in a common copy of G2. Applying Lemma 4.2 using
these two facts yields that G is 3-connected as claimed.
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We can now apply the forward implication of Theorem 8.3 to this graph
G; we thus obtain that the corresponding group has the desired presentation,
namely the one we used for the construction of G.

8.2 Graphs without monochromatic cycles

We now consider the case when a has infinite order, and so G has no monochro-
matic cycles. Instead, the a edges span double rays in G. Also in this case we
will be able to prove that

a reverses spin, (10)

because of the following lemma which is similar to Lemma 8.1.

Lemma 8.4. Let G = Cay
〈
a, b | b2, . . .

〉
be a 3-connected planar Cayley graph

in which a has infinite order. Then a reverses spin.

Proof. Suppose, to the contrary, that a preserves spin. We will show that
G must have a dividing cycle. For this, pick two vertices x, y that lie in the
same a-coloured double ray R of G. As G is 3-connected, there are three in-
dependent x–y paths P1, P2, P3 by Menger’s theorem [7, Theorem 3.3.1]. By
an easy topological argument, there must be a pair of those paths, say P1, P2,
whose union is a cycle C such that some side of C contains a tail of R and
the other side of C contains P3, see Figure 9. We may assume without loss of
generality that P3 is not a single b edge, for we are allowed to choose x and y far
apart. Thus the side of C containing P3 contains at least one vertex z. Now as
all a edges preserve spin, the a-coloured double ray R′ incident with z is facial,
and so it cannot exit the cycle C. This means that C is dividing, since one of
its sides contains R′ and the other contains R.

P

P

P

Figure 9: Finding a dividing cycle for the proof of Lemma 8.4.

Now imitating the proof of Lemma 8.1 we can obtain a contradiction to the
fact that G has a dividing cycle. Thus a must reverse spin.

Using (10) and Theorem 3.2 it follows easily that any two face boundaries
can be mapped to each other by a colour-automorphism of G. Thus all faces of
G have the same size N . This implies that G must have a dividing cycle: if N
is infinite, then any induced cycle is dividing. If N is finite, then the existence
of a dividing cycle follows immediately from Lemma 7.3.

We now turn our attention to the shortest dividing cycles of G. We will be
able to describe these cycles precisely, but in order to do so we have to start
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with a more modest task, namely to prove that

no shortest dividing cycle of G has an a-labelled subpath comprising
more than two edges. (11)

To show this, let p be the maximum length of an a-labelled subpath of a shortest
dividing cycle of G, and let P be a an instance of such a path with ||P || = p.
We need to prove that p ≤ 2. We distinguish two cases according to the parity
of p.

If p is even, and at least 4, then we can shift a shortest dividing cycle
C containing P by two edges of the a-coloured double ray containing P to
obtain a translate C ′ of C that crosses C as in Figure 10. It follows from
our discussion in Section 6 that one of the regions, D, say resulting from this
crossing contains only finitely many vertices, while the regions B and F must
each contain infinitely many vertices. Moreover, the paths xC ′y and xCy in
Figure 10 must have equal lengths, for otherwise the shortest of them provides
a shortcut for the C or C ′, contradicting the minimality of the latter. Thus we
can replace xCy by xC ′y in C to obtain a new shortest dividing cycle C ′′ with
an a-labelled subpath containing P and two more a-edges. This contradicts the
maximality of P .

∞

∞

x
C
′y

x
C

y

P

Figure 10: A crossing in the case that p is even.

If p is odd, and at least 3, then we can again shift a shortest dividing cycle
C containing P along the a-coloured double ray containing P , this time shifting
only by one edge, to obtain a translate C ′ of C that crosses C as in Figure 11.
By the same arguments, one of the regions A,D must be finite, and replacing a
subpath of C ′ for a subpath of C we obtain a new shortest dividing cycle with
a longer a coloured subpath than P .

Thus in both cases we obtained a contradiction to the maximality of P ,
which proves our claim (11).

Next, we prove that

no shortest dividing cycle of G has a facial subpath comprising more
than three edges. (12)

Indeed, let F be a maximal facial subpath of the shortest dividing cycle C and
suppose that ||F || ≥ 4. Then F does not contain a bab subpath because a
reverses spin, so F must contain an aa subpath. It then follows from (11) that
any such subpath of C lies within a baab subpath of C. Since any baab path
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∞

∞

P

Figure 11: A crossing in the case where p is odd.

is facial in our case, F has to contain a baab subpath too. We distinguish two
cases, according to the colour of the last edge e of F . If that colour is a then
we have the situation on the left half of Figure 12, while if it is b then we have
the situation on the right half of Figure 12; here we are using the fact that F
cannot finish with an aa subpath followed by an a-edge on C because of (11).

Figure 12: Proof that a facial subpath of length four forces a crossing.

In both cases, the colour-automorphism of G mapping x to y translates C
to some other shortest dividing cycle C ′ that intersects C. We would like to
show that C ′ crosses C. Note that this colour-automorphism maps F to a facial
subpath F ′ of C ′ that is incident with the same face F as F was. It is now
easy to see that F ′ must meet both sides of C, for otherwise C ′ has more edges
along the boundary of F than C has, which would contradict the maximality
of F . This proves that C ′ crosses C indeed. As we could have chosen F to
have maximum length among all facial subpaths of all shortest dividing cycles
of G without loss of generality, we can apply Corollary 6.1 to this crossing to
obtain a contradiction that proves (12).

Combining (12) with (11) easily implies that a shortest dividing cycle cannot
even contain an a-labelled subpath comprising more than one edge, which means
that

The colours of the edges of every shortest dividing cycle of G alternate
between a and b.

(13)
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8.2.1 Tidy cycles

Now consider a b edge e of a shortest dividing cycle C. We will say that e is tidy
in C if the two edges incident with e that do not lie in E(C) lie in the same side
of C. We will say that C is tidy if all its b edges are tidy in C. The reason why
we are interested in tidy shortest dividing cycles is the following proposition,
which will help us obtain the desired presentation of G:

A shortest dividing cycle is tidy if and only if it is induced by a word
of the form (ab)n and b preserves spin, or it is induced by a word of the
form (aba−1b)n and b reverses spin.

(14)

Indeed, this follows immediately from the fact that a reverses spin and the
definition of tidy .

In order to be able to exploit this fact we need to show that

G has a tidy shortest dividing cycle. (15)

In fact, we will show that every shortest dividing cycle is tidy, unless every face
of G has size 6. For this, we first have to show the following.

If G has a face of size greater than 6 then no two shortest dividing cycles
of G cross.

(16)

To prove this, note first that since a reverses spin, any two faces of G can be
mapped to each other, and so every face has size greater than 6 in this case.

Now suppose that two shortest dividing cycles C, C ′ cross. Then by (2)
there is a subpath P of C and a subpath P ′ of C ′ such that P ∪ P ′ is a cycle
K bounding a finite region B. We will show that such a region contradicts
Euler’s formula n −m + f = 2 for the sphere. To see this, let H be the finite
plane subgraph of G spanned by K and all vertices in B. Note that for a cubic
finite graph J , using the fact that |E(J)| = 3

2 |V (J)| and that every edge lies in
precisely two faces, Euler’s formula can be rewritten as

(Euler’s formula for a cubic graph)
∑

k≥3 ck|Fk| = 12, (17)

where |Fk| is the number of k-gonal faces of J , and ck := 6− k is the curvature
of each k-gonal face. This means in particular that a cubic plane graph must
have some faces of size k less that 6.

Our graph H almost contradicts (17) since all faces of G have size greater
that 6, except that it has some vertices of degree two on its boundary K. To
amend these degrees, consider the graph H ′ obtained from two copies of H by
joining corresponding vertices of degree two by an edge, and note that H ′ is
cubic. Consider an embedding of H in the sphere such that the two copies of H
occupy two disjoint discs D1, D2, and the newly added edges and their incident
faces lie in an annulus Z that joins these discs. Now note that all faces within
these discs still have size greater than 6, contributing a negative curvature to
(17), but Z can contain 4-gons. Still, we will show that the number of 4-gons is
not enough to balance the deficit in curvature.

To begin with, note that every face in Z has even size. Moreover, since a
reverses spin and each of P, P ′ in the construction of H was a, b alternating by
(13), it is easy to see that an a-edge at the boundary of D1 or D2 cannot be
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Figure 13:

incident with a 4-gon in Z unless it was one of the four end-edges of P and P ′

(Figure 13). On the other hand, a b edge at the boundary of D1 or D2 can be
incident with a 4-gon in Z, however, the fact that a reverses spin easily implies
that if e, f are two b edges incident with a 4-gon and both lying on P , say, then
there must be a b edge between them on P that is incident with an 8-gon in
Z, and the same holds for P ′. These two observations together imply that the
number |F4| of 4-gons in Z is bounded from above by |Fk| ≤ 4+2+|F8| = 6+|F8|.
But as c4+c8 = 0, this means that the total curvature contributed to (17) by the
faces in Z is at most 6f4 = 12, and as D1, D2 only contain faces of size greater
than 6 each of which contributes a negative curvature, we obtain a contradiction
to (17). This proves (16).

This argument also explains why we have to treat the case when every face
is a hexagon separately.

We now return to the proof of (15). In fact, we are going to show something
stronger: in the case where G has a face of size greater than 6, if a shortest
dividing cycle is untidy then it must cross some other shortest dividing cycle,
and so by (16) every shortest dividing cycle is tidy.

Figure 14: Finding a crossing at an untidy edge e.

For this, suppose there is a shortest dividing cycle C with an untidy b edge e.
If b reverses spin then exchanging the endvertices of e by a colour-automorphism
translates C to a cycle C ′ that crosses C and we are done (Figure 14, top). If
b reverses spin, then note that the two a-edges of C incident with e both point
towards e, or both point away from e (Figure 14, bottom). Now suppose we
walk around C starting at e. Every time we come to a tidy b edge, its two
incident a-edges in C point in the same direction. Thus, as the two a-edges in
C incident with e point in opposite directions, before we arrive at e again we
must visit a further untidy edge e′ the incident edges of which point away from
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e′ if the incident edges of e point towards e and the other way round. Now
translating e′ to e maps C to a cycle C ′ that again crosses C. Thus in both
cases applying (16) we prove that

If G has a face of size greater than 6 then every shortest dividing cycle
of G is tidy. (18)

In particular, we proved (15) in the case that G has a face of size greater than
6.

The hexagonal grid case

It remains to consider the case when every face of G has size 6, since, easily,
no face can have a size smaller than 6 when a reverses spin and has infinite
order. In this case, it is easy to see that any two a-coloured double rays that
are joined by a b edge are joined by infinitely many b edges that together with
these double rays form an infinite strip of hexagons. Using this fact and (13)
it is easy to check that the subgroup of Γ spanned by a has finite index n, in
other words, V (G) is spanned by finitely many a-coloured double rays.

Let us first consider the case when b reverses spin, and so all the a double
rays point in the same direction, see Figure 15. Now let C be any cycle in G such
that the colours of the edges of C alternate between a and b, the directions of
the a-edges being arbitrary. For instance, C could be a shortest dividing cycle
by (13). We claim that

if w is a word with letters a, a−1, b that induces C then the letter a
appears as often as the letter a−1 in w.

(19)

To see this, note first that translating C by a2 we obtain a cycle C ′ whose union
with C bounds a strip of |C|/2 many hexagons (Figure 15). We call any of the
translates of C by a2i, i ∈ N a level . Enumerate the levels by the integers so
that neighbouring levels are assigned consecutive numbers, and these numbers
increase whenever we apply a2.

Figure 15: The case when every face is a hexagon and b reverses spin, and a shortest
dividing cycle C. The top and bottom rays coincide, and so do the two vertices marked
x.

It is straightforward to check, using the spin behaviour of the edges and
the structure of C, that for any side A of C, all (a-coloured) edges that have
precisely one endvertex in C are directed the same way, that is, either they are
all directed from C into A or the other way round. Moreover, if these edges are
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directed from C say, the edges incident with C on its other side are directed
towards C. Now pick a vertex z of C and consider the path P starting at z
and induced by w. We may assume without loss of generality that the successor
y of z on P is not in C, for otherwise we could have started reading w at
y. Note that now any appearance of a or a−1 in w forces a change of level,
while any appearance of b leaves us in the same level. Moreover, it follows from
the aforementioned property of the direction of the edges incident with C that
any appearance of a increases the level by one, while any appearance of a−1

decreases it. But as w induces a cycle, P must return to its initial vertex, and
so (19) follows.

Now let C be any shortest dividing cycle of G. Using (19) we will now
modify C into a tidy shortest dividing cycle. For this, note that we can replace
any path of the form aba−1 in C by a−1ba (and the other way round), to obtain
another shortest dividing cycle; indeed, aba−1a−1ba is a relation, as it induces a
boundary of a hexagonal face. Applying this operation several times, and using
(19), we can reshuffle the letters in a word w inducing C to obtain a new word
w′ that still induces a shortest dividing cycle and has the form w′ = (aba−1b)n.
By (14) any cycle induced by w′ is tidy, and so we achieved our aim to show
(15) in case b reverses spin.

If b preserves spin instead, then the same arguments still apply with the
following slight modification. In this case, adjacent a double rays point in
different directions. Partition their set into two equal subsets none of which
contains two adjacent double rays, and call the elements of one the two subsets
the even double rays, and call the remaining ones odd . Now colour every edge
that lies in an odd double ray with a new colour o and reverse its direction.
Pretending that we cannot distinguish the colour a from o, and using the fact
that every fourth edge on any shortest dividing cycle must be coloured a and
every fourth edge must be coloured o, we can apply the above arguments to
obtain a shortest dividing cycle C of the form (abo−1b)n. As o−1 is an alias for
a, (14) implies again that C is tidy, so we have proved (15) in this case too.

Thus (15) holds in all cases.

8.2.2 Structure and presentations

It now follows from (14) that every a-edge of G lies in a unique tidy shortest
dividing cycle. Similarly, every b edge of G lies in precisely two tidy shortest
dividing cycles. In other words, if we represent the involution b by two parallel
edges, then the tidy shortest dividing cycles form a decomposition of E(G) into
edge-disjoint cycles.

Moreover,

the tidy shortest dividing cycles incident with (the b edges of) a given
tidy shortest dividing cycle C lie alternately in its inside and outside.

(20)

This allows us to obtain a presentation, as well as a precise description of the
embedding of G by methods similar to those of Section 8.1, where we had divid-
ing a-coloured cycles and the b edges incident with any of them lied alternately
in its inside and outside.

So similarly to what we did there, we now define the subgroup Γ2 of Γ to be
the subgroup spanned by b, a−1ba and aba−1 if b reverses spin, or the subgroup
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spanned by b and aba (and the inverse a−1ba−1 of aba) if b preserves spin. We
claim that Γ2 is a proper subgroup of Γ, and will prove this by showing that if
C is a tidy shortest dividing cycle containing the identity then only one of the
sides of C meets Γ2. To see this, note that by (20) any path in G composed as
a concatenation of subpaths induced by the words b, aba or b, aba−1 and their
inverses generating Γ2 can never cross from the inside of a tidy cycle to its
outside. Thus, only vertices that lie in one of the sides of C, or any other tidy
shortest dividing cycle, meet Γ2.

Given an embedding σ of G we can, still similarly to what we did in Sec-
tion 8.1, modify G and σ to obtain a Cayley graph G2 of Γ2, with respect to
the above generating set and an embedding σ2 of G2 as follows. For every tidy
shortest dividing cycle C of G that contains a vertex in Γ2, delete all vertices
and edges in the side of C that does not meet Γ2; such a side exists by the above
argument. Let G′2 be the graph obtained after doing so for every such cycle.
Then, suppress all vertices of G′2 that now have degree two to obtain G2.

It is easy to prove that G2 is 2-connected. Indeed, for every vertex x ∈
V (G2), the two tidy shortest dividing cycles of G incident with x form a sub-
graph of G that contains the neighbourhood N(x) of x and is connected even
after removing x, which means that x cannot disconnect G2. With a little bit
more effort we can even prove that

G2 is 3-connected unless V (G2) is contained in a tidy shortest dividing
cycle of G.

(21)

For this, suppose that G2 − {x, y} is disconnected. If the vertices x, y lie in no
common tidy shortest dividing cycle of G, then by the above argument their
neighbourhoods are connected, a contradiction. So let C be an shortest dividing
cycle of G containing both vertices.

It could happen that V (C) = V (G2), which is the case when G has hexagonal
faces (for example, when it is the graph of Figure 15). In this case G2 is not
3-connected: it is a finite cycle with parallel edges. Now assume that this is not
the case, which means that some b edge e of C ∩ G2 is incident with a further
tidy shortest dividing cycle Ce 6= C that contains vertices that lie in G2\C. But
then, given two b-edges e, e′ ∈ C ∩ G2 it is straightforward to check that there
is a colour-automorphism g of G that rotates C, fixing it set-wise, and maps e
to e′, and so every b edge in C ∩G2 has this property.

We claim that if e, e′ are consecutive b edges of C ∩G2 then there is a path
in G−C connecting their incident cycles Ce, Ce′ . To see this, note that as G is
3-connected, removing e and its endvertices p, q does not disconnect G, and so
there is a Ce–C path P in G − {p, q}. Let f be the b edge in C incident with
the endpoint of P . If f = e′ then P is the path we were looking for and we
are done. If f 6= e′, then consider the colour-automorphism g of G that rotates
C and maps e to e′, and let P ′ := gP be the image of P under g. Since the
endvertices of both e and e′ lie in G2, it follows by the construction of G2 that
P and P ′ lie in the same side of C. Thus, as g rotates C, P ′ must meet P at
some vertex z, say. Now combining the subpaths of P, P ′ from their starting
point up to z we obtain the desired path joining Ce to Ce′ .

In fact, we can now see that e and e′ do not have to be consecutive in the
above assertion: For if e = e1, e2, . . . , ek = e′ is a sequence of consecutive b
edges of C ∩G2, then combining the Cei–Cei+1 paths we just constructed with
subpaths of the cycles Cei we can construct a Ce–Ce′ path in G− C.
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We will now use this kind of path to complete our proof of (21). For this,
let Cx 6= C be the other tidy shortest dividing cycle of G containing x, and
define Cy similarly for y. Note that each of Cx ∩ G2, Cy ∩ G2 is connected to
C in G2 − {x, y}. Thus, if {x, y} separates G2 then it has to separate C into
two subarcs P1, P2 that lie in distinct components of G2 − {x, y}. Pick vertices
v ∈ P1 ∩ G2 and w ∈ P1 ∩ G2, and let ev, ew be the b edges containing v, w
respectively. By our last observation there is a Cev

–Cew
path P in G−C. If we

could transform P into a Cev
–Cew

path P in G2 − C we would be done, since
such a path would contradict the fact that x, y separate P1 from P2. But this
is easy to do: for every tidy shortest dividing cycle C ′ 6= Cev

, Cew
of G visited

by P , if P enters the side A of C ′ that does not meet G2 then it has to exit
that side again revisiting C ′, and we can replace the subpath of P that lies in
A by a subarc of C ′ with the same endpoints. Doing so for every such cycle C ′,
we transform P into a path P ′ in the auxiliary graph G′2 (see the definition of
G2), and it is straightforward to transform P ′ into a v–w path in G2 −C. This
completes the proof of (21).

We now consider separately the cases when b preserves or reverses spin in
G.

If b reverses spin, then recall that Γ2 was spanned by b, c := a−1ba and
d := aba−1, and note that all these generators are involutions. Note moreover
that, by construction, σ2 is a consistent embedding, and that all edges reverse
spin in σ2. Graphs of this kind are characterised in Section 9.1.1 below, and it
turns out (Corollary 9.3) that if G2 is 3-connected then it is finite or 1-ended,
so we can use our characterisation of those graphs from Section 7. We obtain
that in this case G2

∼= Cay
〈
b, c, d | b2, c2, d2, (bc)n, (cd)m, (db)p

〉
, n, m, p ≥ 2,

i.e. possibility (iv) of Theorem 7.6.
If Γ2 is not 3-connected, then by (21) we have c = d and G2

∼= Cay
〈
b, c | b2, c2, (bc)n

〉
,

where n ≥ 2 for if n = 1 then the endvertices of any b edge would separate G.

If b preserves spin, then recall that Γ2 was spanned by b and a∗ := aba.
Note that a∗ is not necessarily an involution, and that it preserves spin in σ2

by construction. We distinguish two cases, according to whether the order n of
a∗ is finite or infinite.

If n is finite, then G2 is one of the graphs we have already handled: by
Lemma 8.1, G2 has at most one end, and so it belongs to type (i) or (v) of
Theorem 7.5. Thus, if a∗2 = 1 (in which case G has hexagonal faces) then G2

∼=
Cay

〈
a∗, b | b2, a∗2, (a∗b)m

〉
, and if a∗2 6= 1 then G2

∼= Cay
〈
a∗, b | b2, a∗n, (a∗b)m

〉
,

n ≥ 3, m ≥ 2.
If n is infinite, then in particular a∗2 6= 1 and so G2 is 3-connected by (21).

By Lemma 8.4 G2 has at most one end, so we can apply Theorem 7.5 again,
but this time the conclusion is that no such graph G2 exists. Thus n must be
finite.

In all cases, we have succeeded in finding a planar presentation of G2. Simi-
larly to what we did in Section 8.1, we will now use this presentations and apply
Theorem 8.2 to obtain a planar presentation of G.

In order to apply Theorem 8.2 we will, similarly to the proof of Theo-
rem 8.3, let X be the set of all images of the graph G′2 defined above by
colour-automorphisms of G. Again, we define an auxiliary tree T with ver-
tex set X , this time joining two vertices with an edge whenever they share a
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tidy cycle. Note that (iii) of Theorem 8.2 is satisfied, this time Fi being a tidy
cycle. We let again F be the set of cycles of G induced by the relators in the
presentation of Γ2 obtained above after replacing the auxiliary letters c, d and
a∗ by the corresponding words. All these cycles are contained in G′2. Moreover,
F generates Cf (G′2) by Lemma 2.1. Thus, defining FH to be the image of F
under the automorphism of G that maps G′2 to its copy H ∈ X , we meet the
requirement that FH generate Cf (H), and Theorem 8.2 yields that

⋃
H∈X FH

generates Cf (G). Using the second sentence of Lemma 2.1 and the definition of
F we thus obtain presentations of Γ as follows.

If b reverses spin and G2 is 3-connected then the presentation
G2

∼= Cay
〈
b, c, d | b2, c2, d2, (bc)n, (cd)m, (db)p

〉
obtained above translates into

G ∼= Cay
〈
a, b | b2, (baba−1)n, (a2ba−2b)m, (baba−1)p

〉
. Note however that the

second and fourth relations both induce the tidy shortest dividing cycles of G,
and so n = p and the two relations coincide, so one of them can be dropped.
If b reverses spin and G2 is not 3-connected then similarly we obtain G ∼=
Cay

〈
a, b | b2, a2ba−2b, (baba−1)n

〉
, where the relation a2ba−2b is tantamount

to c = d, and the relation c2 was dropped as it translates into the trivial
a−1baa−1ba = 1.

If b preserves spin, then the presentations G2
∼= Cay

〈
a∗, b | b2, a∗2, (a∗b)m

〉
and G2

∼= Cay
〈
a∗, b | b2, a∗n, (a∗b)m

〉
obtained above easily translate into G ∼=

Cay
〈
a, b | b2, (a2b)2, (abab)m

〉
and G ∼= Cay

〈
a, b | b2, (a2b)n, (abab)m

〉
respec-

tively (note that (aba)n = (a2b)n). We thus have

Theorem 8.5. Let G = Cay
〈
a, b | b2, . . .

〉
be a 3-connected planar Cayley graph

with more than one end and suppose that a has infinite order. Then a reverses
spin. If b reverses spin then either

1. G ∼= Cay
〈
a, b | b2, a2ba−2b; (baba−1)n

〉
, n ≥ 2, which is the case when

G has hexagonal faces (and G2 is not 3-connected), or
2. G ∼= Cay

〈
a, b | b2, (a2ba−2b)m; (baba−1)n

〉
, n,m, p ≥ 2.

If b preserves spin then either
3. G ∼= Cay

〈
a, b | b2, (a2b)2; (ab)2m

〉
, m ≥ 2, which is the case when G has

hexagonal faces, or
4. G ∼= Cay

〈
a, b | b2, (a2b)n; (ab)2m

〉
, n ≥ 3, m ≥ 2.

In all cases, the presentation is planar.
Conversely, each of the above presentations, with parameters chosen in the

specified domains, yields a planar, 3-connected Cayley graph with more than one
end.

Proof. The forward implication was proved in the above discussion.
For the converse implication we follow the approach the proof of Theo-

rem 8.3. Given a presentation P as in (i)–(iv), we construct a Cayley graph
G as follows.

If P is of type (ii), then we begin by constructing the auxiliary Cayley
graph G2

∼= Cay
〈
b, c, d | b2, c2, d2, (bc)n, (cd)m, (db)n

〉
, where the parameters

n,m here coincide with those in P. By Theorem 7.6 (iv), G2 has an embedding
σ in which, in particular, the 2-coloured cycles induced by (bc)n bound faces.
Let G be the graph obtained from the twist-squeeze-amalgamation (as defined
in the Introduction, recall Figure 2) of G2 with respect to those cycles.
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Similarly, if P is of type (iv), we let G2
∼= Cay

〈
a∗, b | b2, a∗n, (a∗b)m

〉
, and

apply Theorem 7.5 (i) to obtain an embedding σ of G2 in which the 2-coloured
cycles induced by (a∗b)n bound faces. Let G be the graph obtained from the
twist-squeeze-amalgamation of G2 with respect to those cycles. It follows easily
from Sabidussi’s Theorem 3.1 that G is a Cayley graph; see [14] for details.

By Lemma 4.2 G is 3-connected in both above cases; this can be shown by
arguments similar to those of the proof of Theorem 8.3.

Next we claim that a has infinite order in G. To see this note that, by
construction, any a-coloured component of G meets infinitely many of the cycles
along which the twist-squeeze-amalgamation took place.

If P is of type (i) or (iii) instead, then our task is easier. Although we
could again follow the same approach, starting with a finite graph G2, it is
simpler to construct G directly as in Figure 15: choose the number of parallel
monochromatic double rays to be twice the parameter n or m in P, and direct
all edges of every second monochromatic double ray the other way if P is of
type (iii).

This completes the construction of G in all cases. The fact that G has indeed
the desired presentation P now follows from the forward implication which we
have already proved.

It follows easily from the proof of Theorem 8.5 that G has precisely two ends
if it is of type (i) or (iii), and it has infinitely many ends if it is of one of the
other two types.

We have now completed our analysis of the case where G has 2 generators
a, b. Let us remark the following, which is perhaps interesting in view of our
discussion in Section 1.3.

Corollary 8.6. Let G = Cay
〈
a, b | b2, . . .

〉
be a 3-connected planar Cayley

graph. Then every face of G has a finite boundary.

Proof. If G has only one end then this follows from our results of Section 7 (in
fact, this is known and holds no matter what the vertex degree is, see [18]).

If G has more than one end, then recall that all our presentations con-
tained a relator inducing a face-boundary. As a always reverses spin in this case
(see (4) and Lemma 8.4), and our embeddings are consistent, it follows easily
that any two face-boundaries of G can be mapped to each other by a colour-
automorphism. Thus all face-boundaries are induced by that relator, and so
they are finite.

9 The planar multi-ended Cayley graphs gener-
ated by 3 involutions

Having already described all planar cubic Cayley graphs on two generators, we
proceed to the planar cubic Cayley graphs on three generators. Recall that it
only remains to describe those that are 3-connected and multi-ended. We divide
them into two subclasses, those that have 2-coloured cycles and those that do
not, since different arguments are needed in these two cases.
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9.1 Graphs with 2-coloured cycles

We have to distinguish three further subcases, according to how the 2-coloured
cycles behave with respect to spin.

9.1.1 2-coloured cycles in two spin-reversing colours

We start this section by pointing out that certain choices of spin behaviour
cannot give rise to Cayley graphs of the type we are studying. We will make
use of these results in subsequent subsections, where we characterise the choices
that do give rise to Cayley graphs.

Lemma 9.1. Let G ∼= Cay
〈
b, c, d | b2, c2, d2, . . .

〉
be planar, multi-ended and

3-connected. If (bc)n = 1 for some n ∈ N, and both b, c reverse spin, then G has
a dividing cycle.

Proof. Note that under these assumptions, b, c span finite cycles that bound
faces of G, see Figure 16. If the remaining faces are also finite then we are done
by Lemma 7.3.

If there is an infinite face F , then it must be incident with one of the bc
cycles C, so let e = zy be an edge of C incident with F , and assume without
loss of generality that e is coloured c, see Figure 16. Let v = zb be the vertex of
C − y adjacent with z. Since G is 3-connected, there is a path P in G− {z, v}
from y to the neighbour x of z outside C. Then yPxzy is a cycle D. Note that
there is a side A of D containing F , and so A is infinite.

Figure 16: Finding a dividing cycle in the proof of Lemma 9.1.

We would like to show that G−A is also infinite, which would mean that D
is dividing. To show this, consider the colour-automorphism g of G mapping z
to v. Then g maps e to some other c edge f of C, and it maps F to some infinite
face F ′ incident with f . Note that D cannot contain f by its construction. Thus
F ′ and the finite face F ′′ bounded by C lie in the same side of D. But that
side cannot coincide with A, because as e ∈ E(C), C separates F ′′ from F ⊆ A.
Thus both sides of D are infinite, since they contain the distinct infinite faces
F, F ′.
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Lemma 9.2. Let G ∼= Cay
〈
b, c, d | b2, c2, d2, . . .

〉
be planar, multi-ended and

3-connected. Then at least one of the colours, d say, preserves spin. Moreover,
if both b, c reverse spin then either (bd)n = 1 or (cd)n = 1 holds for some n ≥ 2.

Proof. If at least two of the colours preserve spin then there is nothing to show,
so suppose G is such a graph in which two colours reverse spin. We distinguish
two cases. If two of the colours, b and c say, span finite cycles, that is, if (bc)n = 1
holds, then we can assume that both b, c reverse spin for otherwise our claim
is already proved. We can then apply Lemma 9.1, which yields that G has a
dividing cycle. If no two of the colours span finite cycles, then we can imitate
Lemma 8.4 (see Figure 9) to prove that G has a dividing cycle. Thus G has a
dividing cycle in both cases. Moreover, we can assume in both cases that b and
c reverse spin.

Choose a shortest dividing cycle C with a facial subpath F of maximum
length among all shortest dividing cycles of G. We distinguish three cases
according to how F ends, which are very similar to the cases in Lemma 8.1:
either F ends with an edge coloured b or c, or both end-edges of F are coloured
d and d reverses spin, or both end-edges of F are coloured d and d preserves
spin. In the first two cases it is easy to obtain a shortest dividing cycle C ′ that
crosses C similarly to the first two cases of Lemma 8.1 (see Figure 6): consider
the colour-automorphism of G exchanging the endvertices of the last edge e of
F . But this crossing contradicts Corollary 6.1. Thus the third case must occur;
in particular, we have shown the first part of our claim, asserting that d must
preserve spin.

Now suppose that the second part of our claim is false, that is, d-edges are
in no 2-coloured cycles. Then C must be 3-coloured. Now let e be the last edge
of F , and recall that e is coloured d. Assume without loss of generality that the
colour of the edge f of F preceding e is c. Note that the edge h following e on C
must be coloured c too, since e is the last edge of a facial path and e preserves
spin (Figure 17). We can use this fact to show that C has no subpath P of the
form db: for then we could map the d-edge of P to e by a colour-automorphism
of G to obtain a translate C ′ of C that crosses C. Indeed, the image of the b
edge g of P would then lie in the side of C containing the face F incident with
F . Moreover, C ′ would have to leave F with an edge that lies in the other side of
C, because C ′ is not allowed to have a path longer than F incident with F and
g ∈ E(C ′) is incident with F (Figure 17). But this kind of crossing contradicts
Corollary 6.1, which proves our claim that C has no subpath of the form db.

As C must be 3-coloured, this implies that C has a subpath of the form
dc(bc)kd for some k ≥ 1. Now exchanging the endvertices of the first c edge of
such a subpath by a colour-automorphism of G yields again a crossing. We can
now use an argument similar to the the proof of (11) for p even (Figure 10) to
obtain a contradiction: choosing C so as to maximise the length of a subpath
P ⊆ C of the form dc(bc)kd, and considering a crossing as above, (3) implies
the existence of a shortest dividing cycle with a longer path of this kind. This
completes the proof of the second part of our claim.

With Lemma 9.2 we immediately obtain

Corollary 9.3. There is no planar 3-connected multi-ended Cayley graph of the
form Cay

〈
b, c, d | b2, c2, d2, . . .

〉
in which all edges reverse spin.
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Figure 17: The facial path F in the proof of Lemma 9.2.

9.1.2 2-coloured cycles in two spin-preserving colours

In this section we study the planar 3-connected Cayley graphs of the form
G = Cay

〈
b, c, d | b2, c2, d2, . . .

〉
that have a cycle induced by a relation of the

form (bc)n and both b and c preserve spin.
It is not hard to check that a graph of this kind must be infinite, because

every such cycle has a translate of itself in each of its sides, and, by the same
argument, every such cycle is dividing (Figure 18); in particular, G is multi-
ended.

Figure 18: A 2-coloured cycle with spin-preserving edges, and some of its translates.

We will again consider a subgroup Γ2 of Γ(G) as we did in Sections 8.1 and
8.2.2: this time we let Γ2 be the subgroup of Γ(G) generated by bc, (bc)−1, d.
Let a := bc, and note that an = 1. Again, we will define the auxiliary subgraph
G′2 ⊆ G and use it to obtain a Cayley graph G2 of Γ2 with an embedding
induced by that of G using a construction and arguments very similar to those
of Section 8.1.

To begin with, note that if x, y are two elements of Γ2, then there is an
x–y path P in G the b and c edges of which can be decomposed into incident
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pairs. Thus, since b and c preserve spin, whenever such a path P meets a bc
cycle C of G, the two edges of P incident with C lie in the same side of C
(Figure 18). In other words, P cannot cross any bc cycle C of G. Now given
the embedding σ of G, we can modify G and σ to obtain a Cayley graph G2 of
Γ2, with respect to to the generating set {a, d}, and an embedding σ2 of G2 as
follows. For every bc cycle C of G that contains a vertex in Γ2, delete all vertices
and edges in the side of C that does not meet Γ2. Let G′2 be the graph obtained
after doing so for every such cycle. Then, suppress all vertices of G′2 that now
have degree two; that is, replace any bc path xPy of length two whose middle
vertex now has no incident d-edge by a single x-y edge, directed the same way
as P and bearing the colour a, to obtain the Cayley graph G2 of Γ2.

Using Lemma 4.1 it is easy to see that G2 is 2-connected since G was.
We are now in the fortunate situation of having obtained a Cayley graph

of a type that we have already handled: G2 is generated by two elements,
and has monochromatic cycles induced by the relation an. Moreover, by the
construction of the embedding σ2, the a-edges preserve spin. Thus we can apply
Lemma 8.1, which yields that G2 has at most one end. So G2 is one of the graphs
in Theorem 7.5, and as a preserves spin cases (iii) and (iv) can be eliminated.
The degenerate case (v) of Theorem 7.5 cannot occur, because it would imply
that G is not 3-connected as opposite vertices of a bc cycle would separate in
that case.

Having obtained a planar presentation of Γ2, we can now use the same
method as in 8.1, namely to apply Theorem 8.2, to yield a planar presentation
of Γ.

Theorem 9.4. Let G = Cay
〈
b, c, d | b2, c2, d2, . . .

〉
be a planar 3-connected

Cayley graph with more than one end, and suppose that bc has a finite order n
and both b, c preserve spin. If d preserves spin then

G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcd)m; (bc)n

〉
, n ≥ 3, m ≥ 2.

If d reverses spin then
G ∼= Cay

〈
b, c, d | b2, c2, d2, (bcdcbd)m; (bc)n

〉
, n ≥ 3,m ≥ 1.

In both cases, the presentation is planar.
Moreover, G is the Mohar amalgamation of G2

∼= Cay
〈
a, b | b2, an, (ab)m

〉
or G2

∼= Cay
〈
a, b | b2, an, (aba−1b)m

〉
with itself along the a coloured cycles.

Conversely, each of these presentations, with parameters chosen in the spec-
ified domains, yields a Cayley graph as above.

Proof. For the forward implication we apply Theorem 8.2 as in the previous
sections. This time the common cycles giving rise to the edges of the auxiliary
tree T on the copies of G′2 are the 2-coloured cycles induced by (bc)n. Recall
that we obtained a presentation of G2 in the above discussion from Theorem 7.5:
we have G2

∼= Cay
〈
a, d | d2, an, (ad)m

〉
, n ≥ 3, m ≥ 2 if d preserves spin and

G2
∼= Cay

〈
a, d | d2, an, (ada−1d)m

〉
, n ≥ 3,m ≥ 1 if d reverses spin, with a = bc

in both cases. Applying Theorem 8.2, and replacing a back yields the desired
planar presentations.

To prove the converse implication, given one of these presentations of the first
type we construct the Mohar amalgamation G of G2 := Cay

〈
a, b | b2, an, (ab)m

〉
with itself along the a coloured cycles —see Introduction. By Sabidussi’s the-
orem G is a Cayley graph; see [14] for details. Lemma 4.2 yields that G is 3-
connected since, by Theorem 7.1, G2 is 3-connected. We can thus apply the for-
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ward implication to prove that the presentation we started with is indeed a pre-
sentation of G. If we are given a presentations of the second type instead, then
we proceed similarly, except that we now let G2 := Cay

〈
a, b | b2, an, (aba−1b)m

〉
.

9.1.3 2-coloured cycles with mixed spin behaviour

In this section we study the planar, infinite, 3-connected Cayley graphs of the
form G = Cay

〈
b, c, d | b2, c2, d2, . . .

〉
that have a cycle of the form (bc)r and

precisely one of b, c preserves spin. Let us assume that b preserves spin while c
reverses spin (Figure 19).

Figure 19: A 2-coloured cycle with mixed spin behaviour.

We proceed similarly to Section 9.1.2: let Γ2 be the subgroup of Γ(G) gen-
erated by bcb, c, d. Let b∗ := bcb, and note that b∗2 = 1 and (b∗c)n = 1 where
n = r/2 (r must be even). Define the auxiliary subgraph G′2 ⊆ G and use it to
obtain a Cayley graph G2 of Γ2 with an embedding σ2 induced by σ similarly
to what we did in Section 9.1.2 and Section 8.1: for every bc cycle meeting Γ2

delete all vertices in its side not meeting Γ2, then suppress vertices of degree 2.
Note that in this case we replace paths of length 3 by edges when suppressing,
while in Section 9.1.2 the corresponding paths had length 2.

By the construction of σ2 the new edges, coloured b∗, reverse spin while
the c and d-edges retain their spin behaviour of σ. This means that the new
b∗c cycles have all their edges reversing spin. Thus G2 is the kind of graph we
studied in Section 9.1.1 or Section 7 if it is 3-connected. Let us check that this
is indeed the case.

Proposition 9.5. G2 is 3-connected.

Proof. Using Lemma 4.1 and the fact that (b∗c)n is a relation in Γ2 easily implies
that G2 is 2-connected since G is. Recall that G2 has 2-coloured cycles of the
form (b∗c)n, both b∗, c reverse spin in σ2, so that every such cycle is a face
boundary in σ2. But by the results of [13], if κ(G2) = 2 then G2 belongs to one
of the types (iv), (v), (vi) or (ix) of Theorem 5.1, and of those types, only (vi)
and (ix) can have a finite 2-coloured face boundary; see [13, Observation 5.8].

If G2 belongs to type (ix), which means that it is a finite cycle with some
additional parallel edges, then there are three cases to be considered. If n = 1,
which means that b∗ = c and b∗, c span 2-cycles, then any two vertices separating
G2 also separate G, contrary to our assumption that the latter is 3-connected.

40



If b∗ = d or c = d instead, then it is straightforward to check that G must be
finite, which we are also assuming is not the case

Thus G2 belongs to type (vi), and so either G2
∼= Cay

〈
b∗, c, d | b∗2, c2, d2, (b∗c)n, (b∗d)m

〉
,

n,m ≥ 2 or G2
∼= Cay

〈
b∗, c, d | b∗2, c2, d2, (b∗c)n, (cd)m

〉
, n, m ≥ 2. In the for-

mer case the b∗ edges are hinges and in the latter the c edges are hinges. We
claim that the endvertices of such a hinge also separate G.

For this, let {x, y} be the endpoints of a hinge of G2, let C be the b∗c cycle
of G2 containing x, y, and let K be the component of G2 − {x, y} that does
not meet C; such a component exists because {x, y} cannot separate C as xy
is an edge of C. If G− {x, y} has a K–C path P , then P can be modified into
a K–C path in G2 − {x, y} as follows: for every bc cycle D met by P that is
disjoint from C, note that both endpoints of P lie in the same side of D, for
G2 cannot meet both sides of any such cycle by the construction of G2. This
means that if P enters the side A of D not meeting G2, then it must exit that
side again. Thus, we can replace a subpath of P that has endvertices v, w on D
and whose interior lies in A by a v-w subarc of D to obtain a path that does not
meet the ‘wrong’ side A of D. Similarly, if P meets the side of C not containing
K, then we replace the part of P in that side by a subarc of C, this time being
careful enough to pick that subarc that does not contain x and y. Performing
such a modification recursively as long as P meets both sides of a bc cycle D,
we modify P into a path P ′ with the same endvertices that meets at most one
of the sides of any bc cycle. It follows easily that P ′ is a path in G′2. Moreover,
P ′ does not meet x, y by construction. But then P ′ contradicts the fact that
{x, y} separates C from K in G2. This completes the proof of our claim that
G2 is 3-connected.

Now G2 might be finite or 1-ended, in which case we can use our classification
of Section 7, or multi-ended, in which case we can apply Lemma 9.2, which yields
that d must preserve spin. Thus, in the case where d reverses spin, we obtain
the following classification.

Theorem 9.6. Let G = Cay
〈
b, c, d | b2, c2, d2, . . .

〉
be an infinite planar 3-

connected Cayley graph such that bc has a finite order n and precisely one of b, c
preserves spin (b say) and d reverses spin. Then G ∼= Cay

〈
b, c, d | b2, c2, d2, (cd)m, (dbcb)p; (bc)2n

〉
,

n,m, p ≥ 2. This presentation is planar.
Moreover, G is a twist-squeeze-amalgamation of Cay

〈
b∗, c, d | b∗2, c2, d2, (b∗c)n, (cd)m, (db∗)p

〉
with itself.

Conversely, each of these presentations, with parameters chosen in the spec-
ified domains, yields a planar 3-connected multi-ended Cayley graph.

Proof. By the above discussion, G2 cannot be multi-ended since we are assuming
that d reverses spin. Since all edges of G2 reverse spin, we obtain a presentation
of G2 from Theorem 7.6 (iv) or (v), and by Proposition 9.5 we can exclude
(v). Thus we are left with G2

∼= Cay
〈
b∗, c, d | b∗2, c2, d2, (b∗c)n, (cd)m, (db∗)p

〉
,

n,m, p ≥ 2.
For the forward implication we apply Theorem 8.2 as in the last section.

This yields that we can obtain a presentation of G by replacing b∗ with bcb in
the above presentation of G2, except that we replace the relation b∗2 by b2. It
is easy to see that the asserted presentation is planar.
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For the converse implication we proceed as in the proof of Theorem 9.4:
let G2 := Cay

〈
b∗, c, d | b∗2, c2, d2, (b∗c)n, (cd)m, (db∗)p

〉
and let G be the twist-

squeeze-amalgamation of G2 with itself along the b∗c cycles. Again G is a Cayley
graph by Sabidussi’s theorem; see [14] for details. Lemma 4.2 yields that G is
3-connected since, by Theorem 7.1, G2 is 3-connected. We can thus apply the
forward implication to prove that G has the desired presentation.

It remains to consider the case when d preserves spin. Again we have to
distinguish various cases. The most interesting case is when G2 is 3-connected
and multi-ended, and so applying Lemma 9.2 to G2 we obtain that G2 has 2-
coloured cycles containing d; we then have to distinguish two subcases according
to which of b∗, c participates in those cycles. Let us first consider the case
when this is c, and so (cd)p is a relation for some p. Interestingly, we can
now apply Theorem 9.6 to G2 rather than G: recall that G2 is 3-connected
by Proposition 9.5, and that σ2 has spin behaviour as in the requirements of
that theorem, except that the roles of the letters are now interchanged. Thus,
substituting d by b and b∗ by d we can apply Theorem 9.6 to obtain a planar
presentation of G2, namely

G2
∼= Cay

〈
d, c, b∗ | d2, c2, b∗2, (dc)2n, (cb∗)m, (b∗dcd)p

〉
, n,m, p ≥ 2. (22)

In the second subcase, when (b∗d)p is a relation rather than (cd)p, we can
repeat the same arguments to obtain a similar presentation but with c and b∗

interchanged. Thus, in this case we have

G2
∼= Cay

〈
d, c, b∗ | d2, c2, b∗2, (db∗)2n, (b∗c)m, (cdb∗d)p

〉
, n,m, p ≥ 2. (23)

Note that these two cases are distinct: if the order of b∗d is finite then the
order of dc is infinite and vice-versa. Indeed suppose that the order of b∗d is
finite, and recall that d preserves spin while b∗, c reverse spin in G2. We will
show that an infinite cdcdc . . . walk W , starting at an arbitrary vertex, meets
infinitely many of the finite b∗d-cycles. Indeed, suppose there is a last b∗d-cycle
C met by W . Then W cannot have met a b∗d-cycle in each side of C, for C
separates its sides. But W arrived at C along a c edge, traversed a d-edge of
C, and left C by another c edge. Now as d preserves spin, those two c edges
lie in different sides of C, and are incident with b∗d-cycles other than C. This
contradiction proves our claim. The same argument proves the reverse claim.

Thus we have obtained a presentation of G2 in the case where d preserves
spin too, and can now use this to deduce a presentation of G.

Theorem 9.7. Let G = Cay
〈
b, c, d | b2, c2, d2, . . .

〉
be a planar 3-connected

Cayley graph and suppose that bc has a finite order n, precisely one of b, c
preserves spin (b say), and d preserves spin. Then precisely one of the following
is the case:

1. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcbdcd)m; (bc)2n

〉
, n ≥ 2,m ≥ 1.

2. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcbdcd)p; (dc)2n, (bc)2m

〉
, n,m, p ≥ 2;

3. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcbdcd)p; (dbcb)2n, (bc)2m

〉
, n,m, p ≥ 2.

These presentations are planar.
Conversely, each of the above presentations, with parameters chosen in the

specified domains, gives rise to a planar 3-connected Cayley graph as above.
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Proof. The Cayley graph G2 (as defined in the beginning of this section) is
3-connected by Proposition 9.5. We distinguish two cases.

Case I: G2 has at most 1 end.
Recall that both b∗, c reverse spin while d preserves spin in G2. Thus we are

in type (iii) of Theorem 7.6, and so G2
∼= Cay

〈
b∗, c, d | b∗2, c2, d2, (b∗c)n, (b∗dcd)m

〉
,

n ≥ 2,m ≥ 1. Applying Theorem 8.2 again we obtain

G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcbc)n, (bcbdcd)m

〉
, n ≥ 2,m ≥ 1,

and rewriting (bcbc)n as (bc)2n we obtain possibility (i) of the statement. Clearly,
this is a planar presentation.

Case II: G2 is multi-ended.
In this case we have already obtained a presentation for G2 in the above

discussion; see (22) and (23). By the same technique as in the first case, and a
little bit of rearranging (a relation of the form (WZ)n is equivalent to (ZW )n),
we obtain the claimed presentations (ii) and (iii). It is easy to see that these
presentations are planar using the spin behaviour; see Figure 19.

The converse implication can be established as in the proof of Theorem 9.6,
by explicitly constructing G as a twist-squeeze-amalgamation of the correspond-
ing G2. This time we have to apply the converse implication of Theorem 9.6 to
obtain the desired G2.

We observe the following fact, which follows from Corollary 9.3 and Theo-
rems 9.4, 9.6 and 9.7, and is interesting in view of the forthcoming counterex-
amples to Conjecture 1.2.

Corollary 9.8. Let G = Cay
〈
b, c, d | b2, c2, d2, . . .

〉
be a planar 3-connected

Cayley graph containing a 2-coloured cycle. Then every face of G is finite.

9.2 Graphs without 2-coloured cycles

In this section we consider the cubic multi-ended planar Cayley graphs G ∼=
Cay

〈
b, c, d | b2, c2, d2, . . .

〉
that have no 2-coloured cycles. Similarly to our anal-

ysis of the graphs on three generators that do have 2-coloured cycles (Sec-
tion 9.1), we will have to distinguish cases according to the spin behaviour of
the generators.

Recall that our analysis of the graphs with 2-coloured cycles in Section 9.1
was very intimately connected with those cycles: in all non-trivial cases, we
used such cycles to split G by finding a subgraph G′2 in which those cycles
bound faces. In the current case, the absence of 2-coloured cycles makes our
task harder. However, we will still be able to use similar methods. We will be
able to find a good substitute for the 2-coloured cycles: namely, the minimal
dividing cycles.

9.2.1 All edges preserve spin

In this section we consider a 2-connected multi-ended Cayley graph G ∼= Cay
〈
b, c, d | b2, c2, d2, . . .

〉
with no 2-coloured cycles, that has a consistent embedding σ in which all edges
preserve spin. We do not demand that G be 3-connected here, because the re-
sults of this section are needed for the characterization of graphs of connectivity
2 in [13].
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Before we can state our main result of this section we need to define the
concept of a non-crossing pattern. Intuitively, a non-crossing pattern is a finite
word P in the letters b, c, d such that whenever P is a relation of a planar cubic
Cayley graph G all vertices of which have the same spin, no cycle of G induced
by P bounds a face, and no two cycles of G induced by P cross. Making a
formal definition out of this intuitive idea is a bit tricky in the absence of a
concrete Cayley graphG.

For this, let H be a plane graph the edges of which are coloured with the
colours b, c, d in such a way that no vertex is incident with more than one edge
of the same colour, and let C ⊆ H be a cycle in H. We will say that C complies
with P (in H), if one of the words obtained by reading the colours of the edges
of C, as we cycle once along C once in a straight manner, is P and moreover all
vertices of C that have degree 3 in H have the same spin. Given two cycles C, R
in H both complying with P, we will say that R is a rotation of C if R∩C is a
(possibly closed) path. The intuition of this definition is derived from the fact
that H can be though of as a Cayley graph in which C, R are induced, starting
at the same vertex, by relations that are obtained from each other by rotating
the letters.

We can now give the formal definition of a non-crossing pattern.

Definition 9.9. A non-empty word P in the letters b, c, d is called a non-
crossing pattern if it satisfies the following conditions:

1. P contains all three letters b, c, d;
2. Pcontains no consecutive identical letters;
3. P is not of the form (bcd)n up to rotation and inversion, and
4. if C is a cycle complying with P then no rotation of C crosses D.

This definition might look somewhat abstract at first sight, but in fact there
is an easy algorithm that recognises non-crossing patterns.

It will be easier to understand the necessity of the requirements of Definition
9.9 if one considers the usage of non-crossing patterns in the following theorem:
we impose (i) because b, c, d are involutions. With (ii) we prevent 2-coloured
cycles, which we have handled in earlier sections. We require (iii) to prevent P
from being a face boundary. Finally, (iv) is the important property of P from
which our results yield their strength.

We can now state the main result of this section, yielding a complete de-
scription the corresponding Cayley graphs.

Theorem 9.10. Let G = Cay
〈
b, c, d | b2, c2, d2, . . .

〉
be a 2-connected multi-

ended Cayley graph. Suppose G has a consistent embedding in which all edges
preserve spin, and that each of the elements bc, cd, db has infinite order. Then
precisely one of the following is the case:

1. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcd)2; (bcdc)n

〉
, n ≥ 2 (faces of size 6);

2. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcd)k;P〉

, k ≥ 3 (faces of size 3k ≥ 9);
3. G ∼= Cay

〈
b, c, d | b2, c2, d2;P〉

, (no finite faces),

where P is a non-crossing pattern.
Conversely, for every n or k in the specified domains, and every non-crossing

pattern P, the above presentations yield a planar Cayley graph as above.
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In the first 2 cases G is always 3-connected. In case (iii) κ(G) = 2 if P is
regular and κ(G) = 3 otherwise. If κ(G) = 2 then G has a hinge if and only if
P is strongly regular.

The above presentations are less explicit than the presentations we have
obtained so far because of the presence of P. This is not a shortcoming of our
analysis: there is no word with arithmetic parameters capturing all non-crossing
patterns, but all non-crossing patterns are needed to make Theorem 9.10 true.
However, as we will see in the forthcoming proof, non-crossing patterns have a
rather simple structure and they are similar to each other. Since there is an
algorithm that recognises them, the set of non-crossing patterns, and thus the
set of Cayley graphs described in Theorem 9.10, can be effectively enumerated.

The rest of this section is devoted to the proof of Theorem 9.10, which is
completed in page 65. The reader who does not wish to see the details yet
could skip the rest of this section, as well as Section 9.2.3 which is similar, and
continue with Section 10 in page 79.

Faces and dividing cycles

Let G be a graph as in Theorem 9.10 fixed throughout this section and let Γ be
its group. Note that as we are assuming that all colours preserve spin,

every facial walk is of the form . . . bcdbcd . . . or the inverse (Figure 20). (24)

Figure 20: The local situation around a vertex in the case that all edges preserve spin
and no 2-coloured cycles exist.

This means that any two face boundaries look locally the same, but in fact
more is true: it is easy to check that

Any two face boundaries of σ can be mapped to each other by a colour-
automorphism of G. (25)

Indeed, recall that σ is a consistent embedding in which all edges preserve spin.
Thus, for every vertex x, the three colour-automorphisms of G exchanging x
with its neighbours can be used to map any of the three face boundaries incident
with x to each other.

In particular, all faces in σ have the same size, which by (24) is a mul-
tiple of 3. It cannot be equal to 3 though, for this would mean that G ∼=
Cay

〈
b, c, d | b2, c2, d2, bcd

〉
and this graph has hinges, which we are assuming is

not the case for G. Thus we have proved that

For some n ∈ N ∪ {∞}, every face of σ has size N = 3n + 6. (26)
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As already mentioned, our analysis of the graphs without 2-coloured cycles
will be based on their shortest dividing cycles. We begin by showing that they
do exist:

G has a dividing cycle. (27)

Indeed, if all faces in σ are finite, then this follows immediately from Lemma 7.3.
If there is an infinite face in σ, then since σ is consistent, every vertex is incident
with an infinite face by Lemma 3.2. Let F be an infinite face of G, let vexe′w
be a facial walk incident with F comprising two edges e, e′, and let f be the
third edge incident with x. Since we are assuming that G has no hinge, there is
a w–v path P in G that avoids both endvertices x, x′ of f . We claim that the
cycle C = vxwPv is dividing. Indeed, by its construction C separates F from
x′, and as F is infinite and x′ must be incident with an infinite face too by the
above remark, both sides of C contain infinitely many vertices. This completes
the proof of (27).

So let C be a shortest dividing cycle of G. Our next claim is that

any maximal 2-coloured subpath of C containing at least 3 edges con-
tains an odd number of edges. (28)

This can be proved by an argument very similar to the one we used in the proof
of (11) for the case when p is even.

Using this we are now going to prove that

C has no facial subpath containing more than 3 edges. (29)

To see this, let F be a longest facial subpath of C, and suppose to the contrary
that ||F || > 3. We may assume without loss of generality that no other shortest
dividing cycle C ′ has a facial subpath longer than ||F ||, for otherwise we could
have chosen C ′ instead of C.

Recall that, by (24), every facial walk is of the form . . . bcdbcd . . . or the
inverse (Figure 20). Since all colours behave the same way in this case, we may
assume without loss of generality that F starts with a subpath F4 of the form
bcdb. Let F be the face incident with F . Consider the colour-automorphism g of
G mapping the fourth vertex y of F4 to its first vertex x, and let C ′ := gC; see
Figure 21. It is easy to check that C ′ crosses C: indeed, note that C ′ contains
an edge e incident with both x and F , and so C ′ must leave F before C as no
shortest dividing cycle can have a longer subpath incident with F than F . This
crossing however contradicts Corollary 6.1. This contradiction proves (29).

Figure 21:

46



The dominant colour.

Our next assertion shows that even though in this case G has no 2-coloured
cycle, it must have cycles that are not far from being 2-coloured:

There is a colour a ∈ {bcd} such that for every shortest dividing cycle
C of G, every other edge of C is coloured a. In particular, |C| is even. (30)

Let P be a maximal 2-coloured subpath of C. Obviously, P contains at least
two edges. Moreover, P cannot consist of precisely two edges, because then the
subpath P ′ of C comprising P and its two incident edges would be facial by
(24), and this would contradict (29) since ||P ′|| = 4. Thus, ||P || is at least 3,
and it is odd by (28). This means that the first edge of P has the same colour
a as its last edge. Assume without loss of generality that a = c.

The path P is a good starting point in our attempt to prove (30): every
other edge of P is coloured c since it is 2-coloured. And indeed, we will be able
to extend it by adding further 2-coloured subpaths of C, retaining the property
that every other edge is coloured c, until exhausting all of C. For this, let
e′, e be the last two edges of P and let f, f ′ be the two edges of C succeeding
P , appearing in C in that order (Figure 22). Note that as P was chosen to
be maximally 2-coloured, e′ and f have different colours. This, combined with
(29), implies that f ′ must be coloured c, for otherwise the subpath of C spanned
by e′, e, f, f ′ is facial.

Figure 22: The situation around P in the proof of (30).

Thus e, f, f ′ span a 2-coloured subpath of C. Let P ′ be the maximal 2-
coloured subpath of C containing these three edges. By (28) ||P ′|| is odd.
Moreover, it does not contain e′ as f and e′ have different colours. Thus P ′

starts and ends with a c-edge. Consider the path P ∪ P ′, and note that every
other edge of this path is coloured c. Now starting with this path instead of P
and repeating the above arguments, we find a longer odd subpath of C every
other edge of which is coloured c. Continuing like this we prove that every other
edge of C bears the same colour. Let us call this colour the dominant colour
of C. Note that the dominant colour of a cycle is always unique in the current
case, since no 2-coloured cycles exist.

We just proved that every shortest dividing cycle of G has a dominant colour.
It remains to prove that they all have the same dominant colour. So suppose
that C, D are shortest dividing cycles of G with distinct dominant colours c, d
respectively, say. Since all cycles are 3-coloured, both C, D contain a b edge, and
we may assume that this b edge is the same edge e in both cases, for otherwise
we could have considered translates of C, D through e. Now e is surrounded
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by two c edges in C, and it is surrounded by two d-edges in D. As e preserves
spin, this means that C and D cross each other at e. By the remark preceding
Corollary 6.1, we can obtain a new shortest dividing cycle C ′ by combining C
and D, following one of them up to e and then switching to the other. But C ′

then contains a cbd subpath (with the edge e in the middle), and can be chosen
so that it also contains a cdc subpath of C, contradicting the fact that every
other edge of C ′ must bear the same colour. This contradiction proves that the
dominant colour is the same for every shortest dividing cycle of G indeed, and
completes the proof of (30).

From now on we assume that the dominant colour of the shortest dividing
cycles of G is c.

Similarly to the case when G has two generators, we will have to consider
the case when G has hexagonal faces separately (see Section 8.2.1). Recall that
by (26) every face of σ has size at least 6.

If G has no face of size 6 then no two shortest dividing cycles of G cross. (31)

Indeed, by our discussion in Section 6, in particular by (2), such a crossing gives
rise to a finite region bounded by a cycle in C ∪D. As this region contains only
faces of size larger than 6, we obtain a contradiction to Euler’s formula (17) in
a way similar to the proof of (16). This proves (31).

The hexagonal grid case.

Let us now consider the case when one, and thus by (26) all, of the faces in σ
have size 6. We proceed as in Section 8.2.1 to prove that

If G has a face of size 6 then it has a shortest dividing cycle induced by
(bcdc)n. (32)

Indeed, similarly to (19), we can prove that every shortest dividing cycle C
contains the same amount of edges from each non-dominant colour b, d. And
again, rerouteing C around some of its incident hexagons if needed, in other
words, replacing subarcs of the form bcd by dcb, which we are allowed to do
since bcd(dcb)−1 is a relation (inducing a hexagonal face), we modify C into a
cycle of the same length that is induced by a word of the form (bcdc)n and is
still dividing. This completes the proof of (32).

Note that translates of such a cycle cannot cross, and so we have obtained
something similar to (31) for graphs with hexagonal faces.

We already have enough information to finish off the case when the faces of
G are hexagonal. It is now not hard to check that the relation (bcdc)n we just
obtained combined with the one inducing the face boundaries, and of course the
involution relations for the generators, yield a planar presentation of Γ:

G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcd)2; (bcdc)n

〉
, n ≥ 2.

This can be proved for example by showing that the underlying graph is iso-
morphic to one of the graphs in case (i) or (iii) of Theorem 8.5; to see this, look
at G through a lens that identifies colours b and d. The details are left to the
reader.
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Note that if we let n = 1 in the above presentation we would obtain a graph
in which c edges are hinges, contradicting our assumptions on G.

Conversely, for every n ≥ 2 one can show that the above presentation corre-
sponds to a planar 3-connected Cayley graph with hexagonal faces by explicitly
constructing such a graph: it consists of 2n ‘parallel’ double rays coloured b, d
in an alternating fashion, joined by edges coloured c.

Back to the main case: no hexagons.

For the rest of this section we will be assuming that N > 6.

The weak colour.

We now turn our attention to the behaviour of the non-dominant colours in the
shortest dividing cycles of G: it turns out that, in general, one of them is more
‘dominant’ than the other. More precisely:

Suppose that some shortest dividing cycle of G has a bcb subpath. Then
no shortest dividing cycle of G has a dcd subpath. (33)

To see this, suppose that some shortest dividing cycle C of G has a bcb subpath
and some shortest dividing cycle D of G has a dcd subpath. We may assume
without loss of generality that these two subpaths traverse the same c-edge e,
for otherwise we can consider a translate of one of the two. As e preserves spin,
C and D cross each other at e, contradicting (31).

Proposition (33) implies that at least one of the non-dominant colours a ∈
{b, d} cannot appear too often in any shortest dividing cycle: between any two
a-coloured edges in any shortest dividing cycle, there are edges of both other
colours. We call this colour the weak colour of G, and we call the other non-
dominant colour the semi-dominant colour of G, unless both non-dominant
colours appear with the same frequency, in an alternating fashion, in which case
both non-dominant colours are called weak . Note that if this is the case, then
every shortest dividing cycle is induced by a word of the form (bcdc)n.

The argument of the proof of (33) can be repeated to prove something
stronger:

Suppose that some shortest dividing cycle of G has a bWb subpath,
where W is any word in the letters b, c, d. Then no shortest dividing
cycle of G has a dWd subpath.

(34)

Indeed, such a word W must start and end with the dominant colour c, and it
is straightforward to check, using the fact that c preserves spin, that if some
shortest dividing cycle C had a bWb subpath and some shortest dividing cycle
D had a dWd subpath then some translate of D would cross C, contradicting
(31).

Maximal common subpaths and the word Z.

We have already seen that two shortest dividing cycles cannot cross each other.
However, they may be tangent, that is, they may have a common subpath
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provided one is contained in the other. Our next assertion restricts the possible
common subpaths.

Let P be a maximal common subpath of two distinct shortest dividing
cycles C, D of G, and let P ′ be another maximal common subpath of two
distinct shortest dividing cycles C ′, D′. Let WP ,W ′

P be words inducing
P, P ′ respectively. Then one of these words is a prefix , i.e. an initial
subword, of the other.

(35)

The word ‘maximal’ here is meant with respect to inclusion: P is a maximal
common subpath of C, D if P ⊂ C,D and for every path Q properly containing
P either Q 6⊂ C or Q 6⊂ D holds.

This proposition implies that there is a unique word Z = Z(G), namely the
maximal word for which there are two distinct shortest dividing cycles of G and
a common subpath of theirs induced by this word, that governs all the possible
intersections of shortest dividing cycles: every maximal common subpath of two
shortest dividing cycles is induced by a prefix of Z (or Z itself).

To prove (35), let P, C, D, P ′, C ′, D′ be as in the assertion, and suppose
that none of WP ,W ′

P is a prefix of the other. We may assume without loss of
generality that P and P ′ have the same initial vertex x, for otherwise we can
translate C ′, D′ by a colour-automorphism of G to achieve this (Figure 23).

Figure 23: The hypothetical situation when two maximal common subpaths of short-
est dividing cycles are not a subpath of each other.

Easily, both P and P ′ must begin (and end) with an edge e, incident with
x, of the dominant colour c. Moreover, one member of each of the pairs C, D
and C ′, D′ contains the b edge incident with x and the other member contains
the d-edge, for P and P ′ are maximal common subpaths. Now since we are
assuming that neither of WP ,W ′

P is a prefix of the other, there is a common
vertex y ∈ P ∩ P ′ after which the two paths split for the first time. Again, the
common edge f leading into y must bear the dominant colour c, and so one of
the paths P, P ′ follows the b edge and the other follows the d-edge incident with
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y (Figure 23). Consider the common subpath Q := xPy = xP ′y, and note that
Q is a subpath of all four cycles C,D, C ′, D′. Moreover, for each of the four
ways to choose a non-dominant edge e′ incident with x and a non-dominant
edge f ′ incident with y, one of these cycles contains e′Qf ′ as a subpath. In
particular, if WQ is a word inducing Q, then both the words bWQb and dWQd
are induce subpaths of shortest dividing cycles. But this contradicts (34), and
so (35) is proved.

Proposition (35) implies that Z(G) is symmetric. Indeed, Z−1 also induces
a common subpath of shortest dividing cycles, so it must be a prefix of Z. This
implies that the element of Γ described by Z is an involution.

Next, we claim that

For every path P in G induced by Z there are precisely two shortest
dividing cycles C, D containing P . Moreover, C ∩ D = P , that is, C
and D have no common edge outside P .

(36)

Indeed, by the definition of Z and P there are at least two shortest dividing
cycles C, D containing P . If there was a third one C ′ then, as G is cubic,
C ′ would have an edge f incident with P in common with one of C, D. But
this would contradict the maximality of Z as f ∪ P would then be a common
subpath.

If C and D have a further common edge e outside P , then by the above
argument e is not incident with P . This means that we can choose subpaths
C ′, D′ of C,D such that C ′∪D′ is a cycle shorter that C. Thus this cycle cannot
be dividing, and so one of its sides contains only finitely many vertices. This
leads to a contradiction as in the proof of (31).

Face incidences and the word A.

Having analysed the ways that shortest dividing cycles can intersect each other
let us now see how a shortest dividing cycle can intersect a face boundary. It
turns out that there are shortest dividing cycles nicely arranged around each
face boundary F , each of them using precisely three consecutive edges of F .
Recall that by (24) every facial walk is of the form . . . bcdbcd . . . or the inverse.

For every face boundary F and every bcd subpath P of F there is a
shortest dividing cycle C containing P and no other edge of F . (37)

Indeed, the fact that every cycle is 3-coloured and (30) imply together that every
shortest dividing cycle contains a bcd subpath. Translating this subpath to P
we thus obtain a shortest dividing cycle C containing P . By (29) C contains
none of the two edges of F incident with P . It remains to check that C can
also not contain an edge e of F not incident with P . But if this was the case
then the colour-automorphism g of G mapping the first vertex of P to its last
vertex would translate C to a cycle C ′ = gC that crosses C: indeed, note that g
fixes F as F is a concatenation of translates of P , and so C ′ must also contain
a further edge e′ = ge on F . An easy topological argument now shows that C
and C ′ cross indeed, contradicting (31). This proves (37).

This motivates us to define the word A := bcd, which will play an important
role in the sequel.
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The word (AZ)n inducing the shortest dividing cycles.

It turns out that there is a word inducing all the shortest dividing cycles of G:

For some n ≥ 2, every shortest dividing cycle of G is induced by the
word (AZ)n. In particular, any two shortest dividing cycles can be
mapped to each other by a colour-automorphism of G.

(38)

To prove this, pick a pair C, C ′ of shortest dividing cycles that have a common
path P induced by Z, and let x be an endvertex of P . Let F be the face-
boundary containing the b and d-edge incident with x. We claim that each of
C, C ′ contains a bcd (or dcb) subpath of F incident with x; in other words, C
and C ′ are as in (37) (Figure 24).

Figure 24: The situation arising in the proof of (38).

To begin with, note that as x was by definition a last common vertex of C
and C ′, one of them, C say, contains the b edge incident with x and the other
contains the d-edge. By (29) C cannot have a subpath on F containing more
than three edges. So it suffices to show that C does not leave F after having
traversed less than three edges. If this is the case though, then the shortest
dividing cycle D containing the bcd subpath Q of F starting at x, which cycle is
provided by (38), is distinct from C. Thus, D cannot contain all of P because
then it would have a common subpath with C properly containing P and this
would contradict the choice of P . So D leaves P at some of its interior vertices,
which means that D enters a side of one of C, C ′ not containing F . On the
other hand, D also meets the side of each of C, C ′ that does contain F ; see
(Figure 24). This means that D crosses one of C,C ′, contradicting (31).

This proves that, as claimed, C contains the bcd subpath of F incident with
x. By the same argument we can prove that C ′ contains the dcb subpath of F
incident with x, but we will not need this. This is a good start for the proof of
(38): we just proved that C contains an AZ subpath.

Now consider the colour-automorphism g of G mapping x to the other end-
vertex y = xbcd of Q. Repeating the above arguments we see that one of
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gC, gC ′, in fact it must be gC ′, also contains Q. We claim that one of C, gC ′

must contain all three paths P, Q, gP . For suppose that C misses part of gP
and gC ′ misses part of P . Then, as C is not allowed to cross gC by (31), it
leaves gP entering the side of gC ′ not containing F . Similarly, gC ′ leaves P
entering the side of C not containing F . But if each of C, gC ′ meets the side
of the other not containing a face then the two cycles must cross each other
contradicting (31). This proves our claim that one of C, gC ′ must contain all
three paths P, Q, gP . Note that by the definition of Z and the fact that both
these cycles contain Q, this immediately implies that C = gC ′.

We just proved that C has a ZAZ−1 = ZAZ subpath. Now repeating the
previous arguments at the other end of P we prove that C has a AZAZ or
A−1ZAZ subpath. The latter possibility can however not occur, for it would
mean that C crosses C ′ when leaving P ; this can be seen by observing the spin
of the end-vertices of P . Thus C has a (AZ)2 subpath. Continuing like this,
we prove that C is induced by (AZ)n. Moreover, n 6= 1 for otherwise we would
easily obtain, with the above arguments, that the faces have size 6 which we are
assuming is not the case.

By the same arguments, we can prove that C ′ is induced by (A−1Z)n, but
as Z = Z−1 this means that C ′ is induced by (AZ)n too.

We started with C,C ′ being arbitrary shortest dividing cycles having a sub-
path induced by Z. Thus if we could prove that every shortest dividing cycle
of G has such a subpath this would complete the proof of (38). This is indeed
the case. For let D be a shortest dividing cycle and let R be a maximum-length
subpath of D shared with another shortest dividing cycle D′ 6= D. Easily, R
has at least one edge. By (35), R is an initial subpath of some path P induced
by Z which is a maximal common subpath of two shortest dividing cycles C, C ′.
Now if |R| 6= |P | then D 6= C,C ′. But D shares an edge e not contained in but
incident with P with one of C, C ′, for these two cycles together use all edges
incident with the first vertex of P . This means that a common subpath of D
and one of C,C ′ is eR, contradicting the maximality of R. This proves that
every shortest dividing cycle of G has a subpath induced by Z and completes
the proof of (38).

The subgroup Γ2, societies, and the subgrpaph G′2.

Let a, z be the elements of Γ corresponding to the words A,Z respectively, and
let Γ2 be the subgroup of Γ spanned by a, b. This subgroup, and the above
results relating A and Z to shortest dividing cycles, will allow us to follow an
approach similar to that of the previous sections, the shortest dividing cycles
now playing the role of the monochromatic cycles of Section 8.1 or the 2-coloured
cycles of Section 9.1.

As in those sections, we are going to show that G is a union of subdivisions
of isomorphic copies of the Cayley graph G2 of Γ2 with respect to the generating
set {a, z}. We would like to define this kind of subdivision G′2 of G2 similarly
to previous sections, by deleting for each shortest dividing cycle C meeting
Γ2 all vertices in one of the sides of C, and then suppress vertices of degree
2 to obtain G2 from G′2. However, things are more complicated now and we
need some preparatory work before we can show that this operation yields G2

indeed. They reader may choose to skip this preparatory work and continue
reading after (41), perhaps after having a look at the following vital definition.
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Definition 9.11. Let C be a shortest dividing cycle of G, and let x be a vertex
of C such that the word (AZ)n induces C if the starting vertex is x. Then, we
call the set of vertices of C that can be reached from x by subarc of C induced
by a prefix of (AZ)n a society of C.

Note that, by (38), every shortest dividing cycle has at least one society.
One of the major points of this paper, to be proved in the sequel, is that every
shortest dividing cycle has precisely two societies, one corresponding to each of
its sides as indicated by our next claim:

For every shortest dividing cycle C of G and every society S of C, one
of the sides of C contains all edges incident with C at an element of S. (39)

This can be seen by observing the spin behaviour or by using (31), see Figure 24.
Let us next check that shortest dividing cycles do not separate cosets of Γ2

(compare this with the behaviour of 2-coloured cycles in earlier sections).

For every shortest dividing cycle C of G and every left coset ∆ of Γ2 in
G, at most one of the sides of C contains elements of ∆. (40)

Suppose to the contrary there are elements x, y ∈ ∆ in distinct sides of C, and
let W = w1 . . . wk be a word with letters wi ∈ {A, A−1, Z} inducing a x–y path
P = xPy in G. Assume that W has minimum length among such words. Define
the corners of P to be its vertices reachable from x by paths induced by prefixes
of W , and note that every corner of P lies in ∆ by definition. Moreover, by the
minimality of W the only corners of P that do not lie on C are x and y.

By the definition of Z and (37) there is for every letter wi a shortest dividing
cycle Ci containing the corresponding subpath Pi of P induced by wi. Even
more, Ci and Ci+1 have a common subpath Qi induced by Z for every relevant i,
and the endvertices of Qi are corners of P . It might be the case that Ci = Ci+1.
As x, y lie in distinct sides of C, and no Ci can cross C by (31), C bounds C1

from Ck, i.e. C1, Ck lie in distinct closed sides of C. This means that there is
an i such that either C bounds Ci from Ci+1, or Ci+1 = C and Ci 6= C. If
the former is the case then Qi must clearly be a subarc of C.. But then one
of Ci, Ci+1 has a common subpath with C that properly contains Q since G is
cubic, and this contradicts the maximality in the definition of Z. If the latter is
the case, then Qi is contained in C = Ci+1, and so Ci must leave C immediately
before and after Qi. But (39) now implies that P leaves C entering the side
from which it approached C, contradicting our assumptions. This proves (40).

Using this we can prove the following observation. A metaedge is a path of
G induced by one of the words A,Z.

Let P 6= P ′ be metaedges. If both P, P ′ have endvertices in Γ2 then
they are independent.

(41)

Recall that two paths are called independent if their interiors are disjoint.
To prove this, let C,C ′ be a shortest dividing cycle containing P, P ′ respec-

tively, which exists by (36) and (37). Suppose first that both P, P ′ are induced
by the word A. Let F ,F ′ be the face whose boundary contains P, P ′ respec-
tively, and note that F 6= F ′ since P 6= P ′. It is easy to see that C separates F
from F ′, because none of F ,F ′ can contain the other. But then, C separates
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the vertices of Γ2 that lie on the boundary of F from the vertices of Γ2 that lie
on the boundary of F ′, which contradicts (40).

Suppose now that P is induced by the word Z. Let D 6= C be a further
shortest dividing cycle containing P , provided by (36). By (31) the closure
of one of the sides of C ′ contains both C,D. Thus, by an easy topological
argument, one of C, D, call it K, separates the other from C ′. But then both
sides of K meet Γ2 as each of C ′, C, D contains a vertex in Γ2 not contained in
K. Again, this contradicts (40), and so (41) is established.

By (41) the Cayley graph G2 of Γ2 with respect to the generating set {a, z}
has a topological embedding in G: we can obtain G2 from G by substituting for
every two adjacent vertices x, y of G2 the x–y path in G induced by A,A−1 or
Z by an x-y edge labelled a or z accordingly. This yields indeed a topological
embedding of G2 in G since by (41) all these paths are independent. Starting
with G2 and replacing each edge back by the corresponding path induced by
A,A−1 or Z we obtain the subdivision G′2 of G2 alluded to earlier. Compared
with G2 the graph G′2 has the advantage that it is a subgraph of G while still
capturing the structure of G2. As in earlier sections, this will come in handy
later, when we will try to yield a presentation of Γ from a presentation of Γ2.

Moreover, for every coset ∆ of Γ2 in Γ we find an isomorphic copy of G′2
in G whose vertices of degree 3 are precisely the elements of ∆: such a copy
can be obtained by mapping any vertex of Γ2 to any vertex in ∆ by a colour-
automorphism of G. For every such copy define its corners to be its vertices of
degree 3; in other words, the elements of the corresponding coset.

A planar presentation of Γ2.

Note that G2 is a cubic Cayley graph on two generators a, z, and our embedding
σ of G induces, when combined with the aforementioned topological embedding
of G2 in G, an embedding σ2 of G2 in the sphere. It is straightforward to
check that both a, z preserve spin in σ2, for example using the fact that all
vertices of G have the same spin in σ. It is also not hard to see that G2 is
2-connected: apply Lemma 4.1 using the fact that (az)n is a relation by (38).
Now if a has finite order, then Lemma 8.1 implies that G2 has at most one
end, and so we can obtain a planar presentation of G2 from Theorem 7.5 (i):
G2

∼= Cay
〈
a, z | z2, ak, (az)n

〉
, k ≥ 3, n ≥ 2. Note that n can be read off (38)

in this case.
If a has infinite order, then G2 cannot be 3-connected by Lemma 8.4. Thus

κ(G2) = 2, and we can obtain a planar presentation of G2 from Theorem 5.1
(i): G2

∼= Cay
〈
a, z | z2, (az)n

〉
, where again n is as in (38). Cases (ii) and (iii)

of Theorem 5.1 cannot arise here, because we already know from (38) that az
has finite order and this is not the case in these groups; see [13] for more details.

As in earlier sections we are going to plug these presentations into Theo-
rem 8.2 to obtain a presentation of Γ.

Splitting G into copies of G′2.

Before we can apply Theorem 8.2 we need a couple of further preparatory ob-
servations. Call a cycle of a copy of G′2 basic if it is a shortest dividing cycle of
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G. Also call the corresponding cycle of G2 basic.

For every pair of distinct copies H, H ′ of G′2 there is a unique basic cycle
C of H that bounds H from H ′.

(42)

For this, let e be an edge in E(H ′)\E(H), which must exist if H,H ′ are distinct,
and let P be a (possibly trivial) e–H path in G. Let f be the unique edge in
P ∪ e incident with a vertex v of H. Then v is not a corner of H because
f 6∈ E(H). Thus v lies in the interior of a path Q of H induced by A or Z. If
Q is induced by A, then the unique basic cycle C of H containing Q bounds f
from the face boundary F of G containing Q. By (39) H meets the side of C
containing F\Q as this side contains Q′. By (40), H does not meet the other
side of C which contains f . Applying (40) again but this time on the coset of
H ′, we obtain that H ′ only meets the side of C that does contain f since P
must lie in that side. Thus H −C and H ′ −C lie in distinct sides of C, and so
C is as desired.

In the other case, where Q is induced by Z, a similar argument applies except
that now there are two basic cycles of H containing Q, and we have to choose
C to be the one bounding f from the other.

The uniqueness of C follows easily from the fact that for every other basic
cycle D of H we now know that C bounds D from H ′.

Using (42) we can prove the following.

For every copy H of G′2 and every basic cycle C of H there is a copy
H ′ 6= H of G′2 such that C ⊆ H ′ and C bounds H from H ′. (43)

To see this, recall that C bounds a face F of H by (40). Let P be a maximal
subpath of C that is contained in a basic cycle C ′ of some copy H ′ of G′2 that
lies in F ∪ C. To see that such copies exist, note that as C is dividing in G,
there is an edge xy of G such that x ∈ V (C) and y lies in F . Easily, x is not
a corner of H for otherwise xy would lie in H. So let M be the coset of G2

containing x, and let HM be the corresponding copy of G′2. Then HM must be
contained in F ∪ C by (40), and it meets C at x. Thus any basic cycle of HM

containing x is a candidate for C ′.
We claim that P = C (in particular, P is a closed path). Suppose to the

contrary that P has distinct endvertices v, w ∈ V (C). Consider the copy J of
G′2 corresponding to the coset of Γ2 containing v, and note that, again by (40),
J lies in F ∪ C too as it contains an edge e, incident with v, that lies in F
(Figure 25). Moreover J contains the edge f ∈ E(C) incident with v that does
not lie in P .

Figure 25: The situation in the proof of (43).
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By (42) there is a basic cycle D of J that bounds J from H. Thus, easily,
E(H) ∩ E(J) ⊆ D; in particular, E(C) ∩ E(J) ⊆ D. Let P ′ be the maximal
common subpath of C and J containing f , and note that P ′ ⊆ D too. By
the maximality of P , and as P ′ contains the edge f 6∈ E(P ), we have P 6⊆ P ′.
By an easy topological argument, D now crosses C ′ contradicting (31). This
contradiction proves our claim that P = C, which immediately implies (43).

It is straightforward to strengthen (43) to demand that there is a colour-
automorphism g of G such that H ′ = gH and C = gC; just use the fact that
C ′ in the above proof is a translate of C by (38). Thus, any society S of C is
mapped by g to a further society S′ of C, which is distinct from S as, by (39)
and the choice of H ′, it follows that S and S′ point into distinct sides of C. Note
that C cannot have a third society, as this would have to share a side with one of
S, S′ easily yielding a contradiction to (31). Thus, every shortest dividing cycle
has two dual societies, one for each of its sides. This remarkable fact is one of
the main ideas of this paper, and it is not peculiar to the current section: dual
societies were implicit in all cases we have seen so far. For example, the vertices
on the big cycle of Figure 1 (iii) pointing to one of its sides form a society,
and the reader will easily spot the dual societies of the cycles of Figure 2 (ii)
corresponding the 4-cycles of Figure 2 (i).

Back to our analysis of G, we note that for every vertex x of G there is a
coset of Γ2 containing x, and so there is a copy Hx of G′2 in G containing x as
a corner. We will use these graphs Hx in our application of Theorem 8.2.

For this, let T be the graph with vertex set {Hx | x ∈ G} in which two
vertices Hx,Hy are joined by an edge if they share a basic cycle bounding
Hx from Hy. We claim that T is a tree. It is easy to see that T is acyclic,
since any cycle would yield a topological impossibility. To prove that T is
connected, suppose it is not and choose vertices Hx, Hy in distinct components
of T minimizing the distance from Hx to Hy in G. Let C0 be the basic cycle of
Hx bounding it from Hy as provided by (42). Let H1 be the other vertex of T ,
provided by (43), containing C0. If H1 lies in the component of T containing
Hy then we obtain a contradiction, since H1 is joined to Hx by an edge of
T . If not, then we can repeat the above procedure, replacing Hx by H1, to
obtain H2 and C2 bounding H2 from Hy. Continuing like this, we obtain a
sequence H0 = Hx,H1,H2, . . . of vertices of T all of which lie in the component
of Hx, and a sequence of basic cycles Ci bounding Hy from H0, . . . , Hi. But
after finitely many steps we must obtain some Ci that is disjoint from C0, for
all Ci have the same length and G is locally finite. This means that if P is a
shortest Hx–Hy path in G, then Ci intersects P at a vertex z 6∈ V (Hx) for Ci

bounds Hy from Hx. But then the distance from Hi to Hy is shorter than the
distance from Hx to Hy, which contradicts the choice of the pair Hx,Hy. This
contradiction proves that T is a tree as claimed.

We can now apply Theorem 8.2. As in earlier sections, we choose for every
Hx the generating set Fx induced by the presentation of Γ2 we obtained above.
This easily yields the following presentations:

• G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcd)k; (bcdZ)n

〉
, k ≥ 3, n ≥ 2 (faces of size

3k ≥ 9);

• G ∼= Cay
〈
b, c, d | b2, c2, d2, (bcdZ)n

〉
, n ≥ 2 (no finite faces).
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Indeed, recall that either G2
∼= Cay

〈
a, z | z2, ak, (az)n

〉
, k ≥ 3, n ≥ 2, which

is the case if a has finite order, or a has infinite order and G2
∼= Cay

〈
a, z | z2, (az)n

〉
.

By the above discussion, and replacing bcd back for a, we then obtain G ∼=
Cay

〈
b, c, d | b2, c2, d2, Z2, (bcd)k, (bcdZ)n

〉
, k ≥ 3, n ≥ 2 in the first case and

G ∼= Cay
〈
b, c, d | b2, c2, d2, Z2, (bcdZ)n

〉
, n ≥ 2 in the second. In both cases we

can omit the relation Z2 though because, as mentioned earlier, (35) implies that
Z is a symmetric word and so Z2 can be deduced from the relations b2, c2, d2.
Our presentations are planar by (31).

Note that these presentations coincide with (ii) and (iii) of Theorem 9.10.
Presentation (i) corresponds to the case when G has hexagonal faces and was
obtained in our earlier discussion for that case. This completes the proof of the
forward implication of Theorem 9.10.

The converse implication

It remains to prove the converse implication of Theorem 9.10 for presentations
of type (ii) and (iii): given a non-crossing pattern P and a k ∈ {3, 4, . . .}∪{∞},
we have to show that the Cayley graph G = Cay

〈
b, c, d | b2, c2, d2, (bcd)k;P〉

has the desired properties.
As in the forward implication, we can prove the existence of a dominant

and a weak colour in P; this time, instead of using Corollary 6.1 like in the
proof of (29) we can just use the fact that cp is non-crossing by assumption.
The existence of the word Z can be proved as above too using this assumption.
Thus, similarly to, (38), we can prove that

P is of the form (AZ)n (44)

up to rotation and inversion, where again A = bcd and Z is a symmetric word.
This means that every cycle C ‘induced’ by P has a society in the sense of
Definition 9.11. A pending edge of C is an edge incident with but not contained
in C. Similarly to (39) we have:

For every cycle C complying with the pattern P, and every side A of C,
there is a society S of C such that all pending edges of C incident with
S lie in A.

(45)

Indeed, if s, t are subsequent elements of S whose pending edges lie in distinct
sides of C, then it is easy to construct a rotation of C containing the s–t path
‘induced’ by A or Z.

If k < ∞, i.e. if our given presentation is of type (ii), we apply the converse
of Theorem 7.5 (i) to obtain a (finite or 1-ended) 3-connected planar Cayley
graph G2 of the group Γ2 =

〈
a, z | z2, ak, (az)n

〉
, each face of which is induced

by ak or (az)n. If k = ∞, i.e. if we are in type (iii), we apply the converse of
Theorem 5.1 (i) to obtain the planar 2-connected Cayley graph G2 of the group
Γ2 =

〈
a, z | z2, (az)n

〉
. The embedding of the latter graph is not unique; we

choose an embedding in which each cycle induced by (az)n bounds a face. This
graph, and the desired embedding, can be obtained from a 3-regular tree by
replacing every vertex with a cycle of length 2n alternating in the colours a, z,
and letting the cycles replacing two adjacent vertices of the tree share a single
a-edge. Note that G2 has infinite faces too, bounded by a-coloured double rays.

In both cases, replace each a-edge of G2 by a path of length three with edges
coloured bcd respecting the directions of the a-edges, and replace each z edge
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of G2 by a path along which the colours of the edges read as the letters in Z.
Let G′2 be the resulting edge-coloured graph. Notice the similarity with the G′2
used for the forward implication of Theorem 9.10.

We will use similar ideas as in the proof of the forward implication, except
that instead of finding copies Hx of G′2 as subgraphs of a given graph G, we
now have to construct them from scratch. In the end we will have to check that
their union is a Cayley graph, and that it has the desired properties.

Let H0 := G′2. As earlier, we call any cycle of G′2 a basic cycle if the
corresponding cycle of G2 was induced by (az)n. We will construct a sequence
(Hi)i∈N by inductively glueing a copy of G′2 in each face of Hi−1 bounded by
a basic cycle. In order to be able to do so we will need the following assertion,
which is reminiscent of (43).

For every cycle C complying with the pattern P and every side A of C,
there is a society S of C such that all pending edges of C incident with
S lie in A.

(46)

We will imitate the proof of (43), except that we now have no underlying graph
G in which we can look for C ′, and so we will have to make do with rotations
of C. Note that by (44) there is at least one society T of C, so we can assume
that the pending edges of C incident with S lie in the wrong side B 6= A of C.
We may also assume that every vertex x of C is incident with a pending edge,
for otherwise we may attach such an edge, embedding it so that x has the right
spin and giving it the colour missing from x, without affecting the compliance
of C with P. So let xy be a pending edge of C such that x ∈ V (C) and y lies
in A, which exists by (iii) of Definition 9.9. Let t be a vertex in T such that
the colours of the two edges of C incident with t are the same as the colours of
the two edges of C incident with x (one of which colours must be the dominant
colour c). To see that such a t exists, note that T has by definition two vertices
joined by a bcd subpath of C, and as c is the dominant colour, one of these
vertices is incident with a b and a c edge and the other is incident with a d and
a c edge of C. Let D be the t–x rotation of C, and recall that D does not cross
C.

By the construction of D, x is a member of a society of D. Thus we can
ask for a maximal subpath P of C that is contained in some rotation D of C
such that some society member x of D lies in C and has a pending edge in
A. As in the proof of (43) (recall Figure 25) we claim that P = C. Suppose,
to the contrary, that P has distinct endvertices v, w ∈ V (C). By the previous
arguments, we can construct a rotation D′ of C having v as a society vertex.
Note that D′ contains the edge f ∈ E(C) incident with v that does not lie in
P .

Let P ′ be the intersection of C and D′. By the maximality of P , and as P ′

contains the edge f 6∈ E(P ), we have P 6⊆ P ′, and so there is an interior vertex
z of P at which D′ leaves C. It follows that D′ crosses D, as can be easily seen
by looking at the edges incident with the endpoints of the path P ∩ P ′ = zPv.
But as D and D′ share some edges they are a rotation of each other, and this
crossing contradicts the definition of P. This proves that P = C as claimed.
Combined with (45), this easily implies (46) as P = C has by definition a society
member with a pending edge in A.

Note that a society as in (46) is uniquely determined once we fix the side A:
if there were two distinct such societies S, T on C then it would be easy to find
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s, s′ ∈ S and t, t′ ∈ T with s′ = sz, t′ = tz such that s, t, s′, t′ appear in that
order on C, but then the corresponding rotations of C would cross. This means
that

for every cycle C complying with P there are precisely two societies on
C, with pending edges on opposite sides. This societies are disjoint. (47)

Back to our construction of Hi, let B be a basic cycle of H0 one of the sides
FB of which is a face of H0. Note that all corners of H0 have the same spin
since this was the case in G2. Thus B complies with P, and we may apply (47)
to obtain two distinct societies of B. One of these societies must be the set of
corners of B by the construction of G′2; we will use the other society S to extend
H0: build an isomorphic (respecting edge-colours) copy HB of G′2 that has B as
a basic cycle too, and in which the vertices in S are corners, embedding HB in
the closure of FB . Let Hi be the union of Hi−1 with all these graphs HB , one
for every facial basic cycle B of H0 as above. Note that every corner of H1 has
the same spin; we use this fact as an induction hypothesis in the construction of
(Hi)i∈N. The following steps H2, H3, . . . of this construction are similar to the
last one: we consider all basic cycles B bounding a face of Hi−1, and embed a
copy of G′2 in that face attaching it at the yet unused society of B. All basic
cycles comply with P at every step by our induction hypothesis, and so we can
always apply (47). Since the newly attached pending edges of any B as above
are put in the ‘right’ side of B, our induction hypothesis is preserved. Note that
a basic cycle B considered in step i will not be reconsidered in any subsequent
step as it does not bound a face any more.

Let G :=
⋃

i∈N Hi. By construction G is planar. To see that it is cubic,
each vertex x being incident with all three edge-colours b, c, d, note that if x
has an incident pending edge e in Hi, then e lies in a face bounded by a basic
cycle Bi of Hi. Thus in the next step, e will either lie in HBi ⊆ Hi+1 or inside
a face of some basic cycle Bi+1 6= Bi. It follows easily that e lies in some Hj

for otherwise there is an infinite sequence (Bi)i∈N of nested distinct cycles of
the same length with a common vertex x, which cannot be the case in a locally
finite graph.

Furthermore, all vertices of G have the same spin since this was the case in
each Hi.

We claim that G is a Cayley graph. This will follow from the following two
assertions and Sabidussi’s theorem.

For every two basic cycles C, D of G, any societies S, T of C, D respec-
tively, and any members s ∈ S, t ∈ T , there is a colour-automorphism g
of G such that gC = D and gS = T and gs = t.

(48)

To begin with, it easy to construct a colour-preserving isomorphism g′ from C
to D with g′S = T and g′s = t. We will extend g′ to a colour-automorphism
of the whole graph G. By the construction of G there are copies HC and HD

of G′2 in G in which the members of S and T are corners. Indeed, if C was
constructed in step i, and S has pending edges in the side of C that is a face
of Hi, then we explicitly constructed HC in the definition of Hi+1. If S has
pending edges in the other side, then we take HC to be the copy of G′2 in the
construction of Hi containing C. The same goes to D.
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Now let g0 be a colour-preserving isomorphism from HC to HD that coincides
with g′ on C. Such a colour-preserving isomorphism exists because HC and HD

are both copies of G′2, and any basic cycle of G′2 can be ‘rotated’ by the action
of Γ2.

Having defined g0 we proceed inductively, in ω steps, to define extensions
g1 ⊂ g2,⊂, . . ., as follows. In each step i > 0 consider each new basic cycle B
in the domain of gi−1, let B′ := gi−1B, and note that precisely one of the two
societies SB of B —provided by (47)— has the property that its pending edges
lie in the domain of gi−1. Let SB be the other society of B. Similarly, let SB′

be the society of B′ whose pending edges do not lie in the range of gi−1. Then
let gi map HB to HB′ , extending gi−1, where HB and HB′ are defined as HC

above, but this time with respect to the societies SB and SB′ .
Let g :=

⋃
gi : G → G. To see that g is surjective notice the similarity in the

definitions of gi and Hi. Injectivity follows easily by considering the embedding
of G and its subgraphs HB . Thus g is the desired colour-automorphism.

It is easy to see that

for every v ∈ V (G) there is a basic cycle B of some Hi such that v is in
a society of B.

(49)

Indeed, let i be the first index such that all three edges of v lie in Hi. Then by
the construction of Hi there was a basic cycle B that had v as a society vertex.

Combining (48) with (49), we see that for every v, w ∈ V (G) there is a
colour-automorphism of G mapping v to w. Sabidussi’s theorem thus yields
that G is a Cayley graph as claimed.

It follows immediately from Lemma 4.1 that G is 2-connected.
Finally, we claim that each pair of colours spans double rays in G, in other

words, each of bc, cd, db has infinite order. To see this, let P be a component of
G spanned by two colours. Note that for every basic cycle C of G, if P meets
C then P crosses C; this is easy to see using the fact that all vertices have the
same spin and every other edge of C bears the dominant colour c. Pick a basic
cycle C0 meeting P , and let x1 be the first vertex of P after leaving C0. Let C1

be a basic cycle containing x1, and let x2 be the first vertex of P after leaving
C1. Continue like this to define infinite sequences xi and Ci. By our previous
remark, each Ci bounds Ci−1 from Ci+1; thus the Ci are all distinct, and so P
is infinite proving our claim.

To sum up, starting with an arbitrary non-crossing pattern P and an arbi-
trary value k ∈ {3, 4, . . .}∪ {∞}, we constructed a plane Cayley graph with the
properties required by the forward implication of Theorem 9.10. Thus we can
now apply the forward implication, which yields that G has one of the presenta-
tions of the assertion. As we constructed G to have faces of size 3k, and dividing
cycles induced by P, it follows that this presentation is indeed the intended one.
This completes the proof of the backward implication of Theorem 9.10. It only
remains to prove the last statement about κ(G).

The connectivity of G

In this section we determine the connectivity of each of the graphs of The-
orem 9.10 of type (ii) or (iii); we have already seen that those of type (i) are
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3-connected. The most interesting result is that such a graph can be 3-connected
even if its faces have infinite size.

We will say that our non-crossing pattern P is regular if it is, up to rotation,
of the form P ∼= (dc(bc)m)n. Note that in this case we have

Z = c(bc)m−1, (50)

by (38) and the definition of A.
We begin with a basic observation that will be useful later.

Z contains the letter d if and only if P is not regular. (51)

Indeed, if P is regular then any d-edge e uniquely determines a cycle through e
induced by P. As Z induces the intersection of two distinct cycles induced by
P, the forward implication follows.

For the backward implication, suppose now that P is not regular, which
means that P has two 2-coloured bc ‘subpaths’ P, Q of distinct lengths sur-
rounded by d-edges. Now given a d-edge e = uv of G, we can let P induce
two cycles C, D of G by starting at u, say, and reading P once starting at the
beginning of P and once at the beginning of Q. Then C, D are distinct, and
they both contain e. The definition of Z and (35) now immediately imply that
Z contains the letter d as claimed.

Let N be the size of the faces of G, and recall that N = 3k is finite if G is of
type (ii) and it is infinite if G is of type (iii). The main result of this subsection
is

Lemma 9.12. If N < ∞ or P is not regular then G is 3-connected.

Proof. If for every copy HC of G′2 as in the construction of G from page 60, all
vertices in V (HC)\{x, y} lie in a common component of G − {x, y} for every
pair of vertices {x, y} ⊂ V (G), then G is 3-connected by Lemma 4.2. Thus we
can assume that V (HC)\{x, y} is disconnected in G− {x, y} for some HC and
some pair of vertices {x, y}. This implies in particular that x, y ∈ V (HC), for
HC is 2-connected.

Let us first consider the case where both x, y are corners of HC . Then N
cannot be finite, because in this case G2 in 3-connected, and so no two corners of
its subdivision G′2 ∼= HC can disconnect it. Thus we may assume that N = ∞,
and so G2 = Cay

〈
a, z | z2, (az)n

〉
. We claim that x, y must lie on a common

basic cycle of HC . For if not, then the vertices of each basic cycle remain
connected after removing x, y. Moreover, as HC is the union of basic cycles,
of which any two incident ones D, D′ have two corners in common, x, y cannot
disconnect D from D′ unless x, y ⊂ V (D). But if x, y leaves every basic cycle
connected, and every two adjacent ones are connected to each other, then it
leaves their union HC connected. Thus we can indeed assume that x, y lie in
V (D) for some basic cycle D of HC , and since they are corners of HC they lie
in a common society S of D.

It also follows from the previous argument that either x, y are the common
corners of two basic cycles D, D′, in which case they are joined by a subpath of
D induced by Z, or both components R, Q of D− {x, y} contain a vertex of S,
in other words, x, y are not neighbouring society vertices. In both cases,

each of R, Q contains the interior of at least one Z-path with endvertices
in S.

(52)
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The following assertion will now easily imply the existence of an R–Q path in
the copy HD of G′2 containing the dual society S of S, provided by (47), as
corners.

If P is not regular then the interior of every Z-path in some society S
contains an A-path between vertices of the dual society. (53)

To prove (53), note that if it fails then for some u, v ∈ S and the u–v path P
induced by Z, any vertex z ∈ S ∩P is at distance less that four from one of u, v
for A has length three. As every second edge of P bears the dominant colour
c, this distance must be precisely two, so assume that d(u, z) = 2 (Figure 26).
Easily, P must start and end with the dominant colour c by the definition of
Z. Similarly, the second edge of P cannot bear the weak colour d, for no basic
cycle has a dcd subpath by (33). Thus z = ucb. Consider the two basic cycles
C, C ′ containing P , as well as the basic cycle D containing the Z-path starting
at z.

Figure 26: The cycles C, C′ and D in the proof of (53).

Now recall that P contains a d-coloured edge by (51), and so we can let e be
the d-coloured edge of P that is closest to u. Let B, B′, B′′ be the maximal bc
2-coloured subpaths of C,C ′ and D respectively containing z. Note that both
B, B′ start at e by the definition of the latter, and precisely one of them stops
at u. Thus |B| 6= |B′|. Note also that B′′ starts at z and cannot go past e,
so that |B′′| < |B|, |B′|. This means that |B|, |B′|, |B′′| are pairwise distinct,
and so one of them contains at least 2 more b edges than some other. But this
contradicts (34). This contradiction proves (53).

Let T be the Z-path incident with x, say, and assume without loss of gen-
erality that T ⊆ R ∪ {x}, which we may by (52). Then (53) yields a pair of
elements v, w of S that both lie in the interior of T . Now assume v is closer to
x than w on T , and let v′ = vZ be the element of S joined to v by a Z-path
T ′ ⊂ D. Note that by the choice of v′ and (52) we must have v′ ∈ Q. This
means that the copy HD of G′2 containing the dual society S as corners contains
a P–Q path L in G − {x, y}: consider the basic cycle D′ of HD containing T ′

that is not D itself, and let L = D′ − T̊ ′ be the other v-v′ subarc of that basic
cycle. But this path L easily contradicts our assumption that HC meets two
distinct components of G− {x, y}.

This contradiction implies that x, y cannot both be corners of HC , and so
we may assume that y, say, is not a corner of HC from now on.

Note that x, y cannot disconnect any two corners of HC from each other
because, as the reader will easily check, G′2 cannot be disconnected by removing
a vertex and an edge. This implies that x, y lie on a common path B of HC
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induced by Z or A, disconnecting part of B from the rest of HC . Let D be a
basic cycle of HC containing B. Note that D−{x, y} has two components R,Q
one of which, R say, is a proper subpath of B.

Now consider the other copy HD ⊃ D of G′2 provided by (43). If HD has a
corner in R, then HD contains an R–Q path L as above, and such a path easily
implies that HC cannot meet two distinct components of G − {x, y} contrary
to our assumptions. If, on the other hand, HD has no corner in R, then HD

contains a further basic cycle D1 6= D such that {x, y}∪R is contained in some
path B1 of D1 induced by Z or A. We claim that {x, y} must also disconnect
R from HD − R in G. Indeed, if it does not, then there is a path from R to
(D − R) ⊂ HD in G − {x, y}, and this path contradicts our assumption that
{x, y} disconnects R from HC ⊃ D in G− {x, y}. This proves our claim.

Now repeating these arguments on D1 and the corresponding copy of G′2
instead of D and HC , and iterating, we either obtain a contradiction after
finitely many such steps, or an infinite sequence Di of distinct basic cycles
containing R. But as G is locally finite, such a sequence cannot exist and we
have a contradiction in any case.

Lemma 9.12 implies that once P is non-regular, G is 3-connected even if all
its faces have infinite boundary:

Corollary 9.13. For every non-regular non-crossing pattern P, the graph
Cay

〈
b, c, d | b2, c2, d2;P〉

is 3-connected and has no finite face boundary.

Since non-regular non-crossing patterns do exist, take for example (d cbc d cbcbc)n,
we obtain examples of planar 3-connected Cayley graphs no face of which is
bounded by a cycle, which is interesting in view of our discussion of Section 1.3.

Our next result is that if P is regular and the faces have infinite size then
G is not 3-connected. This means that Lemma 9.12 is best possible.

Lemma 9.14. Let G = Cay
〈
b, c, d | b2, c2, d2; (b(cb)md)n

〉
, m ≥ 1, n ≥ 2.

Then κ(G) = 2. Moreover, G has a hinge (coloured c) if and only if m = 1.

Proof. Recall that G is 2-connected by Lemma 4.1. Let us check that G is not
3-connected.

In our proof of the converse implication of Theorem 9.10 we constructed G as
the union of the sequence of its subgraphs Hi, and we will base our proof on that
sequence. Recall that when N = ∞, G′2 = H0 was obtained from the Cayley
graph G2 = Cay

〈
a, z | z2, (az)n

〉
after replacing each a-edge by a bcd-path and

replacing each z edge by a path induced by Z = c(bc)m−1, where we used (50).
Consider a basic cycle C of H0, and two d-edges e, f of C. We claim that these
two edges separate G.

To see this, let P,Q be the two components of C − {e, f}. Note that no
basic cycle D of H0 meets both P and Q, which can be seen by applying (51)
to the pair C, D. This means that {e, f} separates H0, as the latter is the
union of its basic cycles. Similarly, {e, f} separates HC , the copy of G′2 that
we glued along C in the construction of H1, into two components containing
P and Q respectively. It now follows easily that {e, f} separates G into two
components containing P and Q respectively, as G can be obtained from H0∪HC

by inductively glueing copies of G′2 along some basic cycle, and so none of these
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copies meets both P and Q. Now choosing one endvertex from each of e, f yields
a separator of G, which means that G is not 3-connected.

It remains to prove that G has a hinge (coloured c) if and only if m = 1.
Firstly, it is easy to see that, in every case, no edge coloured b or d is a hinge:
for if uv is such an edge, then consider the Z-path P starting at u, and the
two basic cycles C,C ′ containing P (Figure 26). Note that three of the four
vertices adgecent with uv lie in C ∪ C ′ and are thus in a common component
K of G − {u, v}. Moreover, the fourth vertex x, which is adjacent with v, is
connected to the neighbours of u by a path that avoids u since G is 2-connected.
Thus, x also lies in K. This proves that uv is not a hinge as it fails to disconnect
its neighbourhood. Let us now consider the case when uv is a c-edge instead.
If m > 1, then by (50) the path P defined as above has length greater than 1,
and the we can apply the same arguments to show that uv is not a hinge. If
m = 1 however, we have Z = c, and so the endvertices of any c edge separates
in G′2 the two basic cycles containing it. This easily implies that any c edge is
a hinge of G.

Lemma 9.14 combined with Lemma 9.12 determine κ(G) for each of the
graphs G as in Theorem 9.10 (ii), (iii).

9.2.2 All edges reverse spin

If G is 3-connected and all its edges reverse spin, then by Lemma 9.2 G cannot
be multi-ended. Thus we can proceed with the next case.

9.2.3 Mixed spin behaviour

The last case we have to consider is that of a planar, multi-ended 3-connected
Cayley graph G ∼= Cay

〈
b, c, d | b2, c2, d2, . . .

〉
with no 2-coloured cycles, with

both spin-preserving and spin-reversing colours. The main result of this section,
characterizing these graphs, is the following.

Theorem 9.15. Let G = Cay
〈
b, c, d | b2, c2, d2, . . .

〉
be a planar 3-connected

multi-ended Cayley graph with both spin-preserving and spin-reversing edges.
Suppose that all three of bc, cd and db have infinite order. Then precisely one of
the following is the case.

1. G ∼= Cay
〈
b, c, d | b2, c2, d2, (bdbcdc)k; (c(bc)nd)2m

〉
, k ≥ 2, n, m ≥ 1, n +

m ≥ 3;
2. G ∼= Cay

〈
b, c, d | b2, c2, d2, (bdbcdc)q; (c(bc)n−1d)2m, (c(bc)nd)2r

〉
, n, r,m, q ≥

2;
3. G ∼= Cay

〈
b, c, d | b2, c2, d2; (c(bc)n−1d)2m, (c(bc)nd)2r

〉
, n, r,m ≥ 2.

All these presentations are planar.
Conversely, for every k, n, m in the specified domains the above presentation

yields a Cayley graph as above.

The rest of this section is devoted to the proof of Theorem 9.15, so let us
fix a Cayley graph G as in its assertion. Our analysis will be similar to that of
Section 9.2.1.

It follows from Lemma 9.2 that only one of the colours b, c, d can be spin-
reversing. Assume from now on that this colour is d. This implies that

every facial walk is of the form . . . bdbcdc . . .. (54)
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The shortest dividing cycles

As in the previous section our analysis will be based on the shortest dividing
cycles of G.

Proposition 9.16. For every shortest dividing cycle C of G, there is a colour
a ∈ {bcd}, such that every other edge of C is coloured a. (In particular, |C| is
even.)

As earlier, we will call this colour a the dominant colour of C.

Proof. We begin by showing that

no facial subpath of a shortest dividing cycle contains two d-edges. (55)

For let P be a facial subpath of an shortest dividing cycle chosen so as to
maximize the number pd of d-edges in P , and suppose that pd ≥ 2. Let e = uv
be the last d-edge of P , and let C be a shortest dividing cycle containing P .
Then the colour-automorphism of G exchanging u and v maps C to a shortest
dividing cycle D, and it is not hard to see, using (54), that D crosses C. However,
as in the proof of Corollary 6.1, such a crossing gives rise to a new shortest
dividing cycle C ′ containing a facial subpath P ′ ⊇ P with more than pd d-
edges, contradicting the choice of P . This proves (55).

Now let C be any shortest dividing cycle of G. Note that as C contains all
three colours, it must contain two adjacent edges coloured b and c unless every
other edge of C is coloured d. In the latter case our assertion is already proved,
so assume from now one that the former is the case. So let P be a maximal
bc-coloured subpath of C with ||P || ≥ 2. If ||P || = 2 then both edges e, f of C
incident with P are coloured d, and so e∪ P ∪ f is, by (54), a facial subpath of
C containing two d-edges contradicting (55). Thus ||P || ≥ 3.

Similarly to the proof of (11) we can now prove that

every maximal bc-coloured subpath of a shortest dividing cycle of G has
odd length. (56)

It follows that ||P || is odd, and so P starts and ends with the same colour,
c say. Let x be the last vertex of P , let e be the d-edge of C following P , and
let f be the edge of C after that. We claim that the colour of f is c. For if
it is b, then the colour-automorphism exchanging the endvertices of e maps C
to a cycle C ′ crossing C. Note that the maximal bc-coloured subpath Q of C ′

starting at x has odd length by (56). Now let C ′′ be the translate of C ′ obtained
by mapping x to w := xcb (Figure 27). Note that C ′′ also crosses C, and by (3)
we can replace a subpath of C containing e by a subpath of C ′′ not containing e
to obtain a new shortest dividing cycle D. As each of Q and P had odd length,
D has a maximal bc-coloured subpath of even length contradicting (56). This
contradiction proves our claim that the colour of f is c.

Our next assertion will allow us to determine the colour of the edge of C
following f .

No shortest dividing cycle of G has a 2-coloured subpath of length at
least four containing d-edges. (57)

To prove this, let Q be a 2-coloured subpath of a shortest dividing cycle con-
taining d-edges that maximises |Q| among all such paths, and suppose that Q
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Figure 27: The construction of D in the proof of Proposition 9.16.

contains at least four edges. Let D be a shortest dividing cycle containing Q.
Then, exchanging the endvertices of one of the d-edges e of Q by a colour-
automorphism of G we obtain one of the two situations depicted in Figure 28.
In both cases though, (3) implies the existence of a shortest dividing cycle con-
taining a 2-coloured path that extends Q contradicting its maximality. This
contradiction proves (57).

Figure 28: The situation in the proof of (57).

Now as P ends with a c edge, and f is also coloured c, (57) implies that
the edge of C following f is coloured b. Let P1 be the maximal bc-coloured
subpath of C containing f . Then ||P1|| ≥ 2, and by (56) ||P1|| is odd. Thus, P1

starts and ends with a c edge, as was the case for P . This allows us to apply
the same arguments to P1 to show that it is followed by a d-edge and another
odd bc-coloured path P2, and so on. This proves that every other edge of C is
coloured c as desired.

As in Section 9.2.1 it is important to know whether G has a hexagonal face.
Fortunately, it does not:

Proposition 9.17. G has no hexagonal face.

Proof. Suppose, to the contrary, that G does have a hexagonal face-boundary
H. Let C be a shortest dividing cycle of G. We distinguish two cases according
to the spin-behaviour of the dominant colour a of C.

If a is the spin-reversing colour d, then our approach is similar to that of
Section 8.2.1. Let R be bc-double-ray incident with H. Considering the colour-
automorphisms mapping R to itself it is easy to check that every face boundary
incident with R must be a hexagon too, as it can be mapped to H. We can
proceed as in Section 8.2.1 to prove an assertion similar to (19) there. For this,
we superimpose a new dummy colour o to each edge of G coloured b or c, and
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direct all edges bearing that colour ‘to the right’, as in Figure 15. We can
now repeat the proof of (19) to show that o appears in C the same number of
times in each direction, and use this fact to construct a new shortest dividing
cycle C ′ that ‘reads’ (odo−1d)n. Note however that the way we directed the o
edges combined with the fact that d reverses spin implies that such a cycle C ′

contains only two of the colours b, c, d, contradicting our assumption that G has
no 2-coloured cycle.

If a is one of the spin-preserving colours, c say, then as C must contain all
three colours, it must have a bcdc subpath. But such a subpath can be shortcut
by a db path since, by (54), bdbcdc is the relation inducing the hexagonal face-
boundary H. This contradicts the minimality of C.

Using this fact we can now enrich our knowledge about the shortest dividing
cycles. Let C be a shortest dividing cycle of G, and let T be the set of translates
of C by colour-automorphisms of G.

No two elements of T cross. (58)

Suppose, to the contrary, two elements D,D′ of T cross. We will now use the
ideas of Section 8.2.1 to obtain a contradiction from Euler’s formula (17). By
(2) there is a subpath P of D and a subpath P ′ of D′, with common endvertices
u, v, such that P ∪P ′ is a cycle K bounding a region B containing finitely many
vertices. We repeat the construction of H ′ of Section 8.2.1: let again H be the
finite plane subgraph of G spanned by K and all vertices in B. Let H ′ be the
graph obtained from two copies of H by joining corresponding vertices of degree
two by an edge, and note that H ′ is cubic. Consider an embedding of H ′ in the
sphere such that the two copies of H occupy two disjoint discs D1, D2, and the
newly added edges and their incident faces lie in an annulus Z that joins these
discs. Since by Proposition 9.17 all faces within these discs have size greater
than 6, contributing a negative curvature to (17), it suffices to show that the
total curvature of the faces in Z does not exceed 12 to obtain a contradiction to
(17). The faces in Z have even size by construction, so that it suffices to show
that Z cannot contain more than six 4-gons. The presence of spin-reversing
edges makes this task slightly harder than in Section 8.2.1, and we need a new
argument.

We are going to reduce Z to a small auxiliary graph Z ′ by performing op-
erations that leave the curvature, as well as the spin-behaviour of the colours,
invariant. We will end up with only few possibilities for Z ′, in which it will
be easy to count the 4-gons. The first of these operations suppresses a pair of
spin-preserving edges on opposite sides of Z. Let e be an edge of Z coloured
b or c which is an interior edge of P or P ′ such that both edges f1, f2 of P
or P ′ incident with e bear the other spin-preserving colour (this could be the
dominant colour for example). Let e′, f ′1, f

′
2 be the corresponding edges on the

other side of Z. Note that because of the spin-behaviour, precisely one of the
endvertices of e is adjacent to its counterpart in e′ by a d-edge g. The situation
is thus as in the left part of Figure 29. Now let us delete e, e′ and g, and identify
f1 with f2 and f ′1 with f ′2 to obtain a new graph Z∗. Note that Z∗ has the same
‘curvature’ as Z: indeed, Z∗ has one face less than Z, and precisely 6 edges less
than Z in the count of the sum of face-sizes of (17) (g is counted twice because
it lies in two face boundaries). Thus, this operation is indeed neutral as far as
Euler’s formula is concerned.

68



We can perform a similar operation whenever Z, or any auxiliary graph Z∗

obtained after performing the above operation a number of times, has a subpath
of the form cdcdc or bdbdb on its boundary: the right part of Figure 29 shows
how to remove this kind of subpath and its counterpart affecting neither the
total curvature nor the spin-behaviour of the colours on the boundary of Z.

We now distinguish two cases according to which colour is dominant in C
(and thus in any element of T ).

If the dominant colour is a spin-preserving one, let us say c, then we can
apply the operation of the left half of Figure 29 repeatedly to eliminate from
Z each b edge that was an interior edge of P or P ′. Then, we can apply the

e

e′f ′
1

f
1

f
2

f ′
2

g

Figure 29: Two operations that simplify Z without changing its curvature.

operation of the right half of Figure 29 repeatedly to eliminate pairs of d-edges,
thus leaving an auxiliary graph Z ′ with very few edges: the vertices u, v (recall
that these where the common endpoints of P and P ′) and their incident c edges
split Z ′ into two parts, each of which contains no b edge that is not incident
with u or v, and contains at most one pair of d-edges not incident with u, v. In
fact, it must contain precisely one pair of d-edges not incident with u, v, for any
attempt to construct such a part without such d-edges leads to a contradiction
to the spin-behaviour as displayed in Figure 30. It follows that each of those
parts must be one of the three graphs in the upper row of Figure 31. Now as

Figure 30: Some failed attempts to create a building block for Z′. Note that the c
edges in the middle are not spin-preserving as they should. The dashed edges are not
part of Z′ and are only a visual aid.

u and v are incident with one edge of each colour, Z ′ is either the union of the
two leftmost graphs of the upper row of Figure 31, or the union of two copies
of the rightmost one. Thus Z ′ is one of the graphs of the bottom row. In both
cases, it has precisely six 4-gons and two 6-gons, accounting for a contribution of
12 ‘curvature’ units to Euler’s formula (17). To sum up, the contribution of the
faces of H ′ that lie inside Z to the left part of (17) equals 12. The contribution
of the remaining faces of H ′ is strictly negative, since each such face has size
larger than 6. This contradicts (17) in the case when the dominant colour is a
spin-preserving one.
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Figure 31: The possible combinations for Z′.

We now turn to the case when the dominant colour of C is d. In this case we
can still use the reducing operation in the right half of Figure 29. In addition,
we can use two further operations, shown in Figure 32, that can recursively
suppress any path of the form cdbdc, or bdcdcdbdb, and similarly with the roles
of b and c interchanged. After performing such operations as often as possible,
we are left with a graph Z ′ which again we think of as the union of two parts
joined at u and v. Each of those parts has now at most three pairs of d-edges
not incident with u or v, for if it has more then one of the above operations
can be applied. We are left with few possibilities, and an easy case study (for
which Figure 32 might still be helpful) shows that none of these two parts can
contain more than three 4-gons, again leading to a contradiction of (17). This
completes the proof of (58).

Figure 32: Further reducing operations for the case that d is the dominant colour of
C.

We can now apply (58) to exclude d as a dominant colour:

The spin-reversing colour d is not dominant in any shortest dividing
cycle of G. (59)

Indeed, if d was the dominant colour of a shortest dividing cycle C, then C
would contain a d-edge e incident with both a b and a c edge of C. But then
the colour-automorphism of G that exchanges the endvertices of e would map
C to a shortest dividing cycle C ′ that crosses C, contradicting (58).

In fact, we can prove a bit more about dominant colours:

If C, B are shortest dividing cycles of G then they have the same dom-
inant colour.

(60)
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Indeed, if not, then by (59) we can assume that the dominant colour of C is c and
that of B is b. Note that as all cycles must be 3-coloured, C must have a subpath
of the form cdcbc and B must have a subpath of the form bdbcb. Translating one
of those paths to the other as in Figure 33 we obtain a crossing of two shortest
dividing cycles. By (3) this implies the existence of a new shortest dividing cycle
containing a subpath of the form dbcd. But this contradicts Proposition 9.16
and so (60) is proved.

C

B

Figure 33: The crossing cycles in the proof of (60).

By (59) and (60) all shortest dividing cycles of G have the same, spin-
preserving, dominant colour. Assume from now one that this colour is c. We
can now describe the shortest dividing cycle precisely:

Every shortest dividing cycle of G is induced by the word (c(bc)nd)2m

for fixed n,m ≥ 1.
(61)

Let C be a shortest dividing cycle, and define a bc-interval of C to be a maximal
subpath of C not containing a d-edge. Note that (61) is equivalent to saying
that all bc-intervals of shortest dividing cycles of G have the same length 2n+1.
Suppose, to the contrary, that C has a d-edge e such that the two bc-intervals on
either side of e have different lengths. Then, observing the spin behaviour of the
edges, it is easy to see that the colour-automorphism of G that exchanges the
endvertices of e maps C to a shortest dividing cycle that crosses C (Figure 34),
contradicting (58). In particular, C does not contain a dcd subpath, for such a
subpath contains a bc-interval of length 1, and C has some bc-interval of length
at least 3 as it is 3-coloured. This proves that every shortest dividing cycle
C has the desired form (c(bc)nd)m, with n ≥ 1, and it only remains to show
that n and m cannot vary for a different shortest dividing cycle D. The fact
that n cannot vary can be proved with a similar argument, by considering a
colour-automorphism that maps a d-edge of D to a d-edge of C (see Figure 34
again). It follows that m cannot vary either, since all shortest dividing cycles
have the same length by definition. The fact that C has an even number of
d-edges, giving rise to the exponent 2m, can easily be proved by observing the
spin behaviour of the edges.

The subgroup Γ2 and the subgrpaph G′2.

Define the words B := bcdcb and Z := c(bc)n−1, where n is supplied by (61).
Note that every face boundary of G is, by (54), of the form . . . dBdBdB . . ..
Moreover, every shortest dividing cycle is, by (61), of the form (BZdZ)m (com-
pare this with (38)).
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e

C

Figure 34: Finding a crossing if two bc-intervals of C have different lengths in the
proof of (61).

Let b∗ be the element of Γ corresponding to the word B and let z be the
element of Γ corresponding to the word Z. Let Γ2 be the subgroup of Γ generated
by {b∗, z, d}.

As in (40) we still have:

for every shortest dividing cycle C of G and every coset ∆ of Γ2 in G,
at most one of the sides of C contains elements of ∆.

(62)

To prove this, one can use similar arguments as in the proof of (40), however,
there is an easier way: it is easy to check, just by observing the spin behaviour,
that no path induced by a word in the letters b∗, z, d can cross a cycle C induced
by the word (BZdZ)m, the word inducing the shortest dividing cycles.

Next, we check that

for every path P in G induced by Z there are precisely two shortest
dividing cycles C, D containing P . Moreover, C ∩ D = P , that is, C
and D have no common edge outside P .

(63)

The first part of this assertion is much easier to prove than the corresponding
assertion (36) in the previous section: it follows immediately from (61). The
second part can be proved like (36): if C, D have a common edge outside P ,
then using a subpath of each we can form a cycle K shorter than |C|, and using
Euler’s formula as in (58) we can prove that K is dividing, a contradiction.

The following assertion strengthens (62) and can be proved like (41). A
metaedge is a path of G induced by one of the words B,Z, d.

Any two metaedges of Γ2 are independent. (64)

This means that, as in earlier sections, the Cayley graph G2 of Γ2 with
respect to the generating set {b∗, z, d} has a topological embedding in G: we
can obtain G2 from G by substituting, for every two vertices x, y of G2 that are
adjacent by a b∗ or z edge, the x–y path in G induced by B, Z with an x-y edge
of the corresponding colour b∗, z. This yields indeed a topological embedding
of G2 in G since by (64) all these paths are independent. Starting with G2 and
replacing each b∗ or z edge back by the corresponding path induced by B or Z
we obtain a subdivision G′2 ⊆ G of G2 that will be useful later.

Note that every edge of G2 corresponds to an involution. Moreover, every
b∗ or d-edge of G2 is spin-reversing while every z edge is spin-preserving; this
can be deduced from the spin behaviour of the original edges of G.
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The planar presentation of G

As in earlier sections we will express G as a union of copies of G′2, and then
apply Theorem 8.2 in order to deduce a presentation of G from a presentation
of G2.

In this section we define a society as in Definition 9.11 of the previous section,
except that we now base this definition on the word (BZdZ)m, which induces
the shortest dividing cycles in the current case.

To begin with, we claim that

every shortest dividing cycle C of G contains precisely two distinct so-
cieties.

(65)

Indeed, recall that C is induced by the word (c(bc)nd)2m by (61). Note that
for every two ‘consecutive’ d-edges d1, d2 on C, the two b edges incident with
d1 lie in one side of C, while the b edges incident with d2 lie in the other side
of C. Thus there is a bipartition {D1, D2} of the set of d-edges of C such that
all b edges incident with an element of Di lie in the same side of C. It is now
straightforward to check that the endvertices of all the edges in each of the Di

lie in a common society of C, and these two societies are distinct for i = 1, 2.
This allows us to create a structure tree T on the set of left Γ2 cosets in Γ as

we did in Section 9.2.1: join two such cosets with an edge, if the corresponding
copies of G′2 share a shortest dividing cycle of G. It follows from (62) that T
is acyclic, and from (65) that it is connected. Thus once more, we can apply
Theorem 8.2, with the Hi being the vertices of T and the Fi being the shortest
dividing cycles of G giving rise to the edges of T . This yields that given any
presentation of Γ2 we can transform it into a presentation of Γ by replacing
any occurrence of the letters b∗, z by the corresponding words B = bcdcb and
Z = c(bc)n−1 and adding the involution relations b2, c2.

So let us find a presentation of Γ2. We distinguish three cases according to
the connectivity and number of ends of G2.

Case I: G2 is 3-connected and finite or 1-ended. In this case we apply Theo-
rem 7.6 (iii) to G2, which yields G2

∼= Cay
〈
b∗, z, d | b∗2, z2, d2, (b∗d)r, (b∗zdz)m

〉
,

r ≥ 2,m ≥ 1. Note that b∗ and d are interchangeable in this presentation, while
z, being the only spin-preserving colour, plays a special role.

Substituting b∗, z as suggested above we obtain the following presentation
for Γ:

G ∼= Cay
〈
b, c, d | b2, c2, d2, (cbdbcd)k; (c(bc)nd)2m

〉
, k ≥ 2, n, m ≥ 1.

This is a planar presentation: the relation (cbdbcd)k corresponds to face-
boundaries, and the last relation corresponds to shortest dividing cycles. We
will prove in the next subsection that n + m ≥ 3 must hold in this case.

Case II: G2 is 3-connected and multi-ended. In this case we can apply
Lemma 9.2, which yields that G2 must have a 2-coloured cycle involving the only
spin-preserving colour z. We have already characterized the graphs of this type:
Theorem 9.6 yields that G2

∼= Cay
〈
b∗, z, d | b∗2, z2, d2, (b∗d)q, (dzb∗z)m; (zb∗)2r

〉
,

r,m, q ≥ 2, or (exchanging b∗ and d in the above presentation and rearranging)
G2

∼= Cay
〈
b∗, z, d | b∗2, z2, d2; (b∗d)q, (dzb∗z)m; (zd)2r

〉
, r,m, q ≥ 2.

Substituting b∗, z as above we obtain in the first case

G ∼= Cay
〈
b, c, d | b2, c2, d2; (cbdbcd)q; (c(bc)nd)2m, (c(bc)n+1d)2r

〉
with n ≥ 1 and r,m, q ≥ 2,
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where we used the fact that (c(bc)n−1bcdcb)2r = (c(bc)ndcb)2r = (c(bc)n+1d)2r.
In the second case we obtain

G ∼= Cay
〈
b, c, d | b2, c2, d2; (cbdbcd)q; (c(bc)nd)2m, (c(bc)n−1d)2r

〉
, with n, r,m, q ≥ 2.

In the latter presentation we are demanding n ≥ 2 because if n = 1 then G has
2-coloured cycles contrary to our assumption.

Note that these two presentations are the same, as can be seen by exchanging
m with r and n with n + 1. Thus we omit the first one. We have now obtained
possibility (ii) of Theorem 9.15.

Case III: G2 is not 3-connected.
It follows from Lemma 4.1 that G2 must be 2-connected. Thus, in this case

G2 is one of the graphs of Theorem 5.1. Since it has three generators, it has
to belong to one of the types (iv)–(ix) of that theorem. We will be able to
eliminate most of these types as a possibility for G2, leaving only type (v) as a
possibility.

It is made clear in [13] that for every graph of type (iv), all edges partici-
pating in the 4-cycles induced by the relation (bc)2 must preserve spin in any
embedding. But our G2 has an embedding in which two of the colours reverse
spin, and so G2 cannot be of this type.

For a graph of type (vi), the colour participating in both relations has the
property that any edge e of that colour is a hinge, and it separates the graph
in two components each of which sends two edges of the same colour to e. Let
us check that G2 cannot have a hinge e = uv. If uv is coloured d or b∗, then
note that it is contained in a basic cycle C, and each of its endvertices u, v is
incident with a basic cycle Du, Dv 6= C. Now note that (C ∪Du ∪Dv)− {u, v}
is connected, which means that if G2 − {u, v} is disconnected, then G2 was
already disconnected before removing {u, v}, a contradiction. If uv is coloured
z instead, then note that the d-edge incident with u and the b∗-edge incident
with v lie in a common component of G2 −{u, v} because there is a basic cycle
containing these two edges and uv. But this contradicts the property of the
separating colour described above. Thus in all cases we obtain a contradiction
if G2 is of type (vi).

It also follows from the analysis in [13] that for every consistent embedding
of a graph of type (vii) at least two colours preserve spin, and so again the
embedding of G2 we have implies that G2 cannot be of that type either.

Suppose now G2 is of type (viii), which means that G2
∼= Cay

〈
b∗, z, d | b∗2, z2, d2, (dzb∗z)m

〉
.

Then replacing b∗ and z as above, we obtain the following presentation for G:
G ∼= Cay

〈
b, c, d | b2, c2, d2, (c(bc)nd)2m

〉
, n ≥ 2. Note however, that the latter

presentation is identical with that of Theorem 5.1 (vii); thus, by the converse
implication of that theorem, G is not 3-connected in this case contradicting our
assumption.

If G2 is of the degenerate type (ix), then there must be a pair of edges of G2

that have common endvertices. No z-edge can participate in such a pair, because
ZB and Zd are both subwords of the word ZdZB inducing the shortest dividing
cycles. But if a d and a b∗ edge form such a pair, then the corresponding cycle
of G bounds a hexagonal face, which cannot be the case by Proposition 9.17.
Thus G2 is not of type (ix) either.

The only possible candidate left is type (v), and this possibility can indeed
occur as we will see in the next subsection. In this case we have either
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G2
∼= Cay

〈
b∗, z, d | b∗2, z2, d2, (b∗z)2r, (zb∗zd)m

〉
, r,m ≥ 2, or

G2
∼= Cay

〈
b∗, z, d | b∗2, z2, d2, (dz)2r, (zb∗zd)m

〉
, r,m ≥ 2,

depending on which of the two spin reversing colours b∗, d forms 2-coloured
cycles with z. Replacing b∗ and z as above, we obtain the following two presen-
tations respectively:

G ∼= Cay
〈
b, c, d | b2, c2, d2; (c(bc)n+1d)2r, (c(bc)nd)2m

〉
, n ≥ 1, r,m ≥ 2, or

G ∼= Cay
〈
b, c, d | b2, c2, d2; (c(bc)n−1d)2r, (c(bc)nd)2m

〉
, n, r,m ≥ 2.

Again, there is no difference between these two presentations except for the
naming of the parameters, and we can omit the first one. We have thus obtained
possibility (iii) of Theorem 9.15.

This completes the proof of the forward implication of Theorem 9.15.

The converse implication

In this section we show that for every presentation as in Theorem 9.15 the
corresponding Cayley graph is planar and 3-connected. Our approach is very
similar to that of the proof of Theorem 9.10 (page 58), and it more or less goes
through the proof of the forward implication the other way round.

Consider first a Cayley graph of type (i):

G ∼= Cay
〈
b, c, d | b2, c2, d2, (cbdbcd)k, (c(bc)nd)2m

〉
, k ≥ 2, n,m ≥ 1.

We are going to construct an embedding of G. For this, consider first the
auxiliary Cayley graph G2 = Cay

〈
b∗, z, d | b∗2, z2, d2, (b∗d)k, (b∗zdz)m

〉
. Then

Theorem 7.6 (iii) yields an embedding σ2 of G2 in which only z preserves spin,
and G2 is 3-connected by Theorem 7.1. Modify G2 into a further auxiliary graph
G′2 by replacing each b∗ edge of G2 by a path of length 5 with edges coloured
bcdcb (recall that this was the word B), and replacing each z edge of G2 by a
path of length 2n − 1 with edges coloured c(bc)n−1 (the word Z). Note that
these words are symmetric, and so it does not matter at which end of those
paths we start colouring the new edges.

Note that every cycle of G2 induced by (b∗zdz)m has turned into a cycle of
G′2 induced by the word of (61). Moreover, every such cycle bounds a face of G′2.
We call these cycles the basic cycles of G′2. A corner of G′2 is a vertex of degree
3. By (65) every basic cycle B of G′2 contains precisely two distinct ‘societies’.
Note that precisely one of these societies SB consists of corners of G′2, while the
elements of the other society TB are non-corners. Now for every basic cycle B
of G′2, construct a copy HB of G′2 such that B ⊆ HB and the elements of TB

are corners of HB , and embed HB in the face of G′2 bounded by B. Repeat
this inductively ad infinitum for each of the newly appeared basic cycles. Let
G be the resulting plane graph and σ its embedding. It follows from Sabidussi’s
Theorem that G is a Cayley graph: assertions (48) and (49) are still valid, and
imply that the colour-automorphisms of G act transitively on its vertices.

We will now prove that G is 3-connected using Lemma 4.2. For this, let
(Hi)i∈N be an enumeration of the copies of G′2 in G, and for every i let Ki be
the set of corners of Hi. The requirements (i) and (ii) of Lemma 4.2 are satisfied
for k = 3 since G2 is 3-connected. We will show that the third requirement (iii)
is satisfied unless n = m = 1. Indeed, if the latter is the case, then we have
Z = c and so the z edges of G2 are also edges of G. Moreover, any basic cycle C
is induced by (b∗zdz)m, and so after subdividing it only contains one metaedge.
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Note that such a metaedge contains all elements of one of the societies of C.
This implies that removing the first and last edge of this metaedge disconnects
the two copies of G′2 that share C in G, which means that G is not 3-connected
in this case.

If on the other hand one of n,m is greater than 1, then each basic cycle C
contains more than one metaedge, and it follows that C contains at least four
edges joining its two societies. Thus requirement (iii) of Lemma 4.2 is satisfied
too, and so G is 3-connected in this case.

Next, we claim that G has no 2-coloured cycle unless n = m = 1. We begin
with showing that bd and cd have infinite order independently of the values of n
and m. For this, note that for every b-edge e of G there is a b∗ metaedge starting
with e, and a basic cycle Ce containing this metaedge. The spin behaviour
implies that the two d-edges incident with e lie in distinct sides of Ce. Now
given a path P of G the edges b1d1b2d2 . . . of which alternate in the colours b, d,
consider the cycles Cbi obtained as above, and note that Cbi 6= Cbi+1 ; indeed if
Cbi

= Cbi+1 then di is a chord of Cbi , i.e. an edge having both vertices on that
cycle, but a basic cycle cannot have a chord since k > 1. Note moreover that,
by our previous remark about the spin, Cbi−1 and Cbi+1 lie in distinct sides of
Cbi . This immediately implies that P cannot be a closed path, and so bd has
infinite order indeed.

Similarly, note that for every path P induced by b c(bc)n b there is a basic
cycle C that contains the interior of P and the first and last edge of P lie
in distinct sides of C. Adapting the above argument we conclude that bc has
infinite order too.

If n > 1 then for every dcd-path there is a basic cycle C containing only
the middle edge, and the two incident d-edges lie in distinct sides of C, which
again allows us to prove that cd has infinite order. If n = 1, then note that
if G has a finite cd-cycle C, then C is also a cycle of G2 since Z = c in this
case. Moreover, since c preserves spin, some of the b∗-edges incident with C lie
in one of its sides and some of them lie in its other side; the situation around C
looks like Figure 19 after adapting the colours. If no such edge is a chord of C
then, easily, C is a dividing cycle, which contradicts the fact that G2 is at most
1-ended. If C has a chord e = uv, then consider the shortest subarc P of C
with endvertices u, v. If ||P || > 3, then there is a colour-automorphism G2 that
fixes C, maps u to a vertex u′ of P that has an incident b∗-edge in the side of
C in which e also lies, and maps v to a vertex v′ outside P (use Figure 19 again
to see this). But then the edges uv, u′v′ must cross, yielding a contradiction.

Note that ||P || 6= 1 because k > 1. If ||P || = 3, and so P is induced by cdc,
then P ∪ e is a face-boundary of G2. But every face-boundary of G2 is induced
by one of the relators (b∗d)k, (b∗zdz)m in its presentation. Thus m must equal
1 in this case. To sum up, we proved that if n+m ≥ 3 then cd has infinite order
(in G) too. The interested reader will be able to check that this assertion is best
possible: if n = m = 1 then cd must have finite order in G. We do not need
this fact for our proof though since n = m = 1 is already forbidden because of
the connectivity.

The fact that G has the desired presentation now follows from the forward
implication of Theorem 9.15, which we have already proved, since we checked
that G has the desired properties.
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Consider now a presentation of type (ii):

G ∼= Cay
〈
b, c, d | b2, c2, d2, (bdbcdc)q; (c(bc)nd)2m, (c(bc)n+1d)2r

〉
, n ≥ 1, r,m, q ≥ 2

We can then construct an embedding of G by the same method, except that we
have to start with a different G2: this time we let
G2

∼= Cay
〈
b∗, z, d | b∗2, z2, d2, (b∗d)q, (dzb∗z)m, (zb∗)2r

〉
, and it follows from

Theorem 9.6 that G2 is again planar and 3-connected, and has the desired
spin behaviour. Otherwise, the construction remains the same.

The parameter m is now large enough to make sure that the requirements
of Lemma 4.2 for k = 3 are satisfied in all cases, and so G is 3-connected.
Moreover, we can prove that G has no 2-coloured cycle by the same arguments,
and our task is made easier by the fact that m ≥ 2 now.

Finally, consider a presentation of type (iii):

G ∼= Cay
〈
b, c, d | b2, c2, d2, (c(bc)n−1d)2m, (c(bc)nd)2r

〉
, n, r,m ≥ 2.

We use the same approach again, except that it is now trickier to show that the
resulting Cayley graph G is 3-connected. In this case we start our construction
letting G2

∼= Cay
〈
b∗, z, d | b∗2, z2, d2, (b∗z)2r, (zb∗zd)m

〉
, which corresponds to

type (v) of Theorem 5.1 and has connectivity 2. It is proved in [13, Proposi-
tion 5.7] that this G2 has the following properties:

1. G2 has a consistent embedding σ2 in which z preserves spin while b∗, d
reverse spin (see [13, Figure 10]). In this embedding, each vertex is incident
with two faces bounded by a cycle induced by the relator (zb∗zd)m and
one face that has infinite boundary.

2. G2 cannot be separated by removing two edges e, f unless both e, f are
coloured d, and it cannot be separated by removing a vertex and an edge
e unless e is coloured d;

3. If a pair of vertices s, t of a cycle C of G2 induced by (zb∗zd)m separates
G2, then both s, t are incident with a d-edge of C;

4. G2 has no hinge;

5. for every cycle C of G2 induced by the word (zb∗zd)m, and every b∗ edge
vw of C, there is a v–w path in G2 meeting C only at v, w, and

6. If two cycles C, D of G2 induced by the word (zb∗zd)m share an edge uv,
then there is path from C to D in G2 − {u, v}.

Construct G and an embedding of its using G2 and σ2 (provided by (i) as in
the previous cases.

Although κ(G2) = 2, we will be able to prove

Proposition 9.18. G is 3-connected.

Proof. We will apply Lemma 4.2, with Ki being, as usual, the set of corners of
a copy Hi of G′2 in G, and (Hi)i∈N being an enumeration of these copies.
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So let us check that Ki is 3-connected in G. To begin with, note that Hi is
the union of basic cycles, that is, cycles induced by the word (zb∗zd)m, because
this word contains all colours, and so every edge is in a basic cycle.

For every basic cycle C of Hi, Ki ∩ C is 3-connected in G. (66)

Indeed, suppose there are vertices s, t ∈ V (G) separating two vertices x, y ∈
Ki ∩ C. Since C is a cycle, both s, t must lie on C, with each of the two
components of C − {s, t} containing one of x, y. It follows easily from (ii) that
none of s, t can be an interior vertex of a b∗ or z metaedge contained in C, and
so s, t ∈ Ki ∩ C. By (iii) each of s, t is incident with a d-edge of C, and these
two d-edges ds, dt are distinct by (iv). Note that by the choice of the words
Z, B, the b∗ metaedge bs containing ds is contained in C, and note also that dt

is not contained in bs as the latter contains only one d-edge. Thus, each of the
two components S1, S2 of C − {s, t} contains one of the endvertices p, q of bs.
Now by (v), there is a path P joining p to q in the copy of G′2 sharing C with
Hi which path has no interior vertex on C. Thus s, t 6∈ V (P ), and P connects
the two components of C − {s, t}. This contradicts our assumption that s, t
separate x, y in G, and proves (66).

s

s
q p

d

b

PS1 S2

s

Figure 35: The path P accounting for the 3-connectedness of G.

Next, we claim that

for every v, w ∈ Ki, there is a finite sequence of basic cycles C0, . . . Ck

of Hi such that v ∈ C0, w ∈ Ck, and Ci shares a metaedge with Ci+1

for every relevant i.
(67)

Indeed, since the word (zb∗zd)m inducing the basic cycles involves all three
colours, any two edges of Hi sharing a vertex lie in a common basic cycle, and
so (67) can be proved by induction on the length of a v–w path in G2.

Now (vi) yields that for every two basic cycles C, D of Hi sharing a metaedge,
C is 3-connected to D in Hi. Combining this with (67) and (66) implies that
Ki is 3-connected in G: given v, w ∈ Ki, and a sequence Ci as in (67), we
can construct a v–w path in G avoiding any fixed pair of vertices by combining
paths joining two suitable vertices of Ci for every relevant i; see the proof of
Lemma 4.2 for a more detailed exposition of this argument.

Thus we have proved that the set of corners Ki of any copy Hi of G′2 in G is
3-connected in G. Moreover, for any two copies Hi,Hj of G′2 sharing a basic
cycle C, it is clear that Ki is 3-connected to Kj because C contains more than
2 pairwise disjoint paths joining its two societies, and each of Ki,Kj contains
a distinct society of C. We can thus apply Lemma 4.2 to prove that G is
3-connected.
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This completes the proof of the converse implication of Theorem 9.15.
The graphs of the last type (iii) also have the surprising property that we

already encountered in Corollary 9.13 that none of their faces is bounded by a
cycle:

Corollary 9.19. For every n, r,m ≥ 2, the graph
G ∼= Cay

〈
b, c, d | b2, c2, d2; (c(bc)n−1d)2m, (c(bc)nd)2r

〉
is 3-connected and has

no finite face boundary.

Proof. Recall that in order to construct a G as above, we started with the graph
G2 and its embedding σ2, and inductively glued copies of G2 inside the basic
cycles. By (i) σ2 had faces with infinite boundary, and these faces were left
intact by our construction, except for subdividing the edges in their boundary.
Thus G also has at least one face with infinite boundary at every vertex. But
as two of the colours b, c preserve spin in G, such a face can be mapped to
any other by a colour-automorphism of G, implying that every face has infinite
boundary.

10 Outlook

In Section 1.2 we showed two examples of a word extension. This operation was
implicit throughout the paper whenever we used a presentation of G2 to obtain
one of G. It would be interesting to study word extensions in greater generality.
One aim could be to refine Stallings’ theorem into a theorem about all Cayley
graphs rather than a theorem about their groups: prove that every multi-ended
Cayley graph can be obtained from simpler Cayley graphs by means of certain
operations including word extensions. A modest first step in this direction would
be to prove that every multi-ended cubic Cayley graph is a word extension of a
cubic Cayley graph of a subgroup. To put it in a different way:

Problem 10.1. Every multi-ended cubic Cayley graph G = Cay(Γ, S) contains
a subdivision of a cubic Cayley graph G2 of a proper subgroup of Γ, and G is
the union of the translates of G2 under Γ.

One of the most important ideas in this paper was the use of societies (De-
finition 9.11), and realising that they can be found in each of our multi-ended
graphs. It would thus be interesting to prove that they appear in all multi-ended
planar Cayley graphs, not just the cubic ones. It also seems promising to try
to generalise the concept to non-planar Cayley graphs, perhaps using the ideas
of [11]. For example, the big cycle of Figure 1 (iii) accommodates two dual
societies, each being the set of its vertices sending edges to one of its sides. This
graph was the result of a word extension of the graph of Figure 1 (i), where a
generator a was replaced using the word a2

∗; see Section 8.1. But we could have
used the word a3

∗ instead, in which case each edge of the original cycle would be
subdivided into three, we would have three ‘dual’ societies, and removing the
cycle would leave three infinite components. Thus the resulting graph is not
planar, but still it can be analysed by our methods.

Theorem 1.1 shows that every cubic planar Cayley graph admits a planar
presentation with at most 6 relators. This motivates

79



Problem 10.2. Let f(n) ∈ N ∪ {∞} be the smallest cardinal such that every
n-regular planar Cayley graph admits a planar presentation with at most f(n)
relators. Is f(n) finite for each n? If yes how fast does it grow with n?

In this paper we constructed surprising examples of planar 3-connected Cay-
ley graphs in which no face is bounded by a cycle. Thus one can ask

Problem 10.3. Is there, for every k ∈ N, a planar k-connected Cayley graph
in which no face is bounded by a cycle?
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