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Abstract

We give an overview of probabilistic phenomena in metric discrepancy theory
and present several new results concerning the asymptotic behavior of discrepancies
DN (nkx) and sums

∑
ckf(nkx) for sequences (nk)k≥1 of integers.

1 Uniform distribution

We say that a sequence of real numbers (xk)k≥1 is uniformly distributed (u.d.) mod
1 if for every pair a, b of real numbers with 0 ≤ a < b ≤ 1

lim
N→∞

∑N
k=1 1[a,b)(xk)

N
= b− a.

Here 1[a,b) denotes the indicator function of the interval [a, b), extended with period
1. By a classical criterion by Weyl [78], a sequence (xk)k≥1 is u.d. mod 1 if and only
if

lim
N→∞

1
N

N∑
k=1

e2πihxk = 0 for all integers h 6= 0.

Using this criterion it follows immediately that the sequence (kx)k≥1 is u.d. mod 1 for
all irrational x, a result playing an important role in many areas of mathematics. It
also follows that (nkx)k≥1 is u.d. mod 1 for all irrational x in the following cases:

• nk = kb logc k, where 0 < b < 1, c ∈ R (Fejér)

• nk = logc k, where c > 1 (Fejér)

• nk = a0 + a1k + · · ·+ ank
n, where a0, . . . , an ∈ Z, n ≥ 1 (Van der Corput)

• nk = pk, the kth prime (Vinogradov).
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For further examples of uniformly distributed sequences of this type, see Kuipers and
Niederreiter [50]. On the other hand, note that (nkx)k≥1 is not uniformly distributed
mod 1 for nk = k! and x = e. However, Weyl [78] proved the following result:

Theorem 1.1 Let (nk)k≥1 be a sequence of distinct integers. Then the sequence
(nkx)k≥1 is u.d. mod 1 for all real numbers x with the exception of a set with Lebesgue
measure 0.

To decide if an explicitly given x belongs to the exceptional set can be a very difficult
problem. For example, the uniform distribution of (2kx)k≥1 mod 1 is equivalent
to the normality of x in base 2, and it is still an open problem if simple irrational
numbers like x =

√
2, e, π are normal or not.

Natural measures of the uniformity of a finite sequence (x1, . . . xN ) are the dis-
crepancy, resp. star discrepancy defined by

DN = DN (x1, . . . , xN ) := sup
0≤a<b≤1

∣∣∣∣∣
∑N

k=1 1[a,b)(xk)
N

− (b− a)

∣∣∣∣∣ ,
D∗N = D∗N (x1, . . . , xN ) := sup

0<a≤1

∣∣∣∣∣
∑N

k=1 1[0,a)(xk)
N

− a

∣∣∣∣∣ ,
respectively. It is easy to see that always D∗N ≤ DN ≤ 2D∗N and an infinite sequence
(xk)k≥1 is u.d. mod 1 if and only if DN = DN (x1, . . . xN ) → 0 as N → ∞. Easy
calculations show that always 1/N ≤ DN ≤ 1. For infinite sequences (xk)k≥1 the
lower bound can be improved to

NDN ≥ c logN for infinitely many N,

where c > 0 is an absolute constant (Schmidt [64]). Moreover, the last result is
best possible: there exist sequences (xk)k≥1 such that NDN ≤ C logN for all N .
A simple example is the sequence xk = kα where α is an irrational number with
bounded partial quotients, see [50]. Important tools to get upper bounds for the
discrepancy of a sequence (xk)k≥1 are the Erdős-Turán inequality

DN (xk) ≤ 6

(
1
m

+
m∑
h=1

1
h

∣∣∣∣∣ 1
N

N∑
k=1

e2πihxk

∣∣∣∣∣
)
, (N ≥ 1,m ≥ 1) (1.1)

and LeVeque’s inequality

DN (xk) ≤

 6
π2

∞∑
h=1

1
h2

∣∣∣∣∣ 1
N

N∑
k=1

e2πihxk

∣∣∣∣∣
2
1/3

(N ≥ 1) (1.2)

(we write DN (xk) for DN (x1, . . . , xN )). A lower bound, also expressed in terms of
exponential sums, is

DN (xk) ≥ C
1
N

∣∣∣∣∣
N∑
k=1

e2πixk

∣∣∣∣∣ , (1.3)

which is a special case of Koksma’s inequality (see Kuipers and Niederreiter [50] or
Drmota and Tichy [23]).
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2 Asymptotics of 〈nkx〉: a historical overview

Let 〈x〉 = x− [x] denote the fractional part of x ∈ R. To simplify the formulations,
in the sequel we consider only sequences (xn)n≥1 in (0, 1) and accordingly drop the
terminology “mod 1”. By Theorem 1.1 the sequence (nkx)k≥1 is uniformly distributed
for every sequence (nk)k≥1 of distinct integers and for almost all x and and thus its
discrepancy tends to 0. The first estimate for the convergence speed was given
independently by Erdős and Koksma [25] and Cassels [20], who showed that for any
sequence (nk)k≥1 of distinct integers and any ε > 0 we have

DN (nkx) = O

(
(logN)5/2+ε

√
N

)
a.e. (2.1)

Baker [10] improved the exponent 5/2 to 3/2 and Berkes and Philipp [15] constructed
a sequence (nk)k≥1 such that for almost every x the inequality

DN (nkx) ≥ C (logN)1/2√
N

(2.2)

holds for infinitely many N . These results describe fairly precisely how “large”
DN (nkx) can be, but in general the order of magnitude of DN (nkx) is different from
the bounds in (2.1) and (2.2) and to determine its exact asymptotics is a difficult
problem which has been solved only in a few cases. In the case nk = k Khinchin [48]
proved that for any nondecreasing function g : R+ → R+ the relation

NDN (nkx) = O ((logN)g(log logN)) a.e. (2.3)

holds if and only if
∑∞

n=1 g(n)−1 converges. In particular,

DN (nkx) = O

(
(logN)(log logN)1+ε

N

)
a.e. (2.4)

for every ε > 0 and this fails for ε = 0. In the same case nk = k, Kesten [46] showed
that

DN (nkx) ∼ 2
π2

logN log logN
N

in measure. (2.5)

For further refinements, see Schoissengeier [65]. Note that, in view of Khinchin’s
results, relation (2.5) does not hold if convergence in measure is replaced by almost
everywhere convergence. This behavior is typical for the partial sums of independent
random variables with infinite means, see e.g. Theorem C of the Appendix. The
exact link with probability theory is provided by an observation of Ostrowski [54] who
showed that the discrepancy of (kx)k≥1 is closely related to the sum

∑N
k=1 ak(x) of

continued fraction digits of x, which is a sum of nearly independent random variables
with infinite expectation. Another case when the order of magnitude of DN (nkx)
is known precisely is the lacunary case, i.e. when the sequence (nk)k≥1 grows very
rapidly. Philipp [56], [57] proved that if (nk)k≥1 satisfies the Hadamard gap condition

nk+1/nk ≥ q > 1 (k = 1, 2, . . .) (2.6)
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then
1

4
√

2
≤ lim sup

N→∞

NDN (nkx)√
2N log logN

≤ C(q) a.e. (2.7)

where C(q) is a constant depending only on q. Note that for a sequence (ξk)k≥1 of
independent, identically distributed (i.i.d.) nondegenerate random variables in (0, 1)
we have by the Chung-Smirnov law of the iterated logarithm

lim sup
N→∞

NDN (ξk)√
2N log logN

=
1
2

a.s. (2.8)

(see the Appendix). Thus Philipp’s theorem shows that for Hadamard lacunary
(nk)k≥1 the sequence (〈nkx〉)k≥1 behaves like a sequence of independent random
variables. The analogy with probability theory, however, is not complete: the limsup
in (2.7) is generally different from the constant 1/2 in (2.8) and, as Fukuyama [31]
showed, it depends sensitively on the number theoretic properties of nk. For exam-
ple, for nk = 2k the limsup in (2.7) equals

√
42/9, while for nk = 4k it is

√
10/27.

If nk = θk with a transcendental θ > 1, the limsup in (2.7) equals 1/2. For general
(nk)k≥1 the limsup is unknown even today, see Section 3 for more information on
this point. Fukuyama [32] also showed that the LIL for DN (nkx) is not permutation-
invariant: the limsup in (2.7) can change by permuting of the sequence (nk)k≥1. This
means a strong deviation from i.i.d. behavior characterized by (2.8), since asymp-
totic properties of i.i.d. sequences are permutation-invariant. These remarks show
that the behavior of DN (nkx) is only partly explained by the probabilistic picture;
as we will see, the properties of this sequence are determined by a complicated inter-
play of probabilistic, analytic and number theoretic factors which are not completely
understood even today.

Note that

DN (nkx) = sup
f∈F

1
N

∣∣∣∣∣
N∑
k=1

f(nkx)

∣∣∣∣∣ ,
where F denotes the class of class of centered indicator functions f = 1[a,b)− (b−a),
0 ≤ a < b ≤ 1. Thus an important prerequisite for understanding the behavior of
DN (nkx) in the lacunary case is to describe the behavior of sums

∑N
k=1 f(nkx) for

periodic measurable functions f and it is natural to study first the simplest case
of lacunary trigonometric series. Starting with the paper of Kolmogorov [49], the
study of lacunary trigonometric series played a prominent role in the early years of
modern probability theory. Salem and Zygmund [60] proved that if (nk)k≥1 satisfies
the Hadamard gap condition (2.6) and (ak) is a sequence of real numbers satisfying

aN = o(AN ) with AN =
1
2

(
N∑
k=1

a2
k

)1/2

, (2.9)

then (cos 2πnkx)k≥1 obeys the central limit theorem

lim
N→∞

λ{x ∈ (0, 1) : A−1
N

N∑
k=1

ak cos 2πnkx ≤ t} = (2π)−1/2

∫ t

−∞
e−u

2/2du, (2.10)
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where λ denotes the Lebesgue measure. Under the slightly stronger coefficient con-
dition

aN = o(AN/(log logAN )1/2) (2.11)

Weiss [77] proved (cf. also Salem and Zygmund [61], Erdős and Gál [26]) that
(cos 2πnkx)k≥1 obeys the law of the iterated logarithm

lim sup
N→∞

(2A2
N log logAN )−1/2

N∑
k=1

ak cos 2πnkx = 1 a.e. (2.12)

Comparing these results with the classical forms of the central limit theorem and law
of the iterated logarithm (see Theorem A of the Appendix), we see that under the
Hadamard gap condition the functions cos 2πnkx behave exactly like independent
random variables. Using deeper probabilistic tools, Philipp and Stout [59] proved
that if for the coefficients (ak) we assume the stronger condition aN = o(A1−δ

N ) for
some δ > 0, then on the probability space ([0, 1],B, λ) one can construct a Brownian
motion process {W (t), t ≥ 0} such that∑

k≤N
cos 2πnkx = W (AN ) +O(A1/2−ρ

N ) a.e. (2.13)

for some ρ > 0. The last relation implies not only the CLT and LIL for (cos 2πnkx)k≥1,
but a whole class of further limit theorems for independent random variables; for ex-
amples and discussion we refer to [59].

As was noted first by Erdős [24], the previous results become generally false if
we weaken the Hadamard gap condition (2.6). However, Erdős showed that the CLT
(2.10) remains valid with coefficients ak = 1 under the subexponential gap condition

nk+1/nk ≥ 1 + ck/
√
k, ck →∞ (2.14)

and this becomes false in the case ck = c, k = 1, 2, . . . . More generally, Takahashi
[70], [71] proved that if a sequence (nk)k≥1 of integers satisfies

nk+1/nk ≥ 1 + ck−α, 0 ≤ α ≤ 1/2 (2.15)

then for any sequence (ak) satisfying

aN = o(ANN−α) with AN =
1
2

(
N∑
k=1

a2
k

)1/2

(2.16)

we have the CLT (2.10) and this becomes false if we replace the o by O in (2.16).
He also proved the corresponding LIL (2.12) under a slightly stronger coefficient
condition, see [72], [73]. For α = 0 condition (2.16) reduces to (2.9) and for any
0 ≤ α < 1/2 it is still satisfied by the sequence ak = 1, k = 1, 2, . . ., but as α ap-
proaches 1/2, the class of sequences (ak) satisfying (2.16) becomes gradually smaller
and for α = 1/2 even the unweighted CLT becomes false. This shows that under
the subexponential gap condition (2.15) the behavior of the functions cos 2πnkx still
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resembles that of independent random variables, but with increasing α the indepen-
dence becomes gradually weaker and at α = 1/2 it disappears completely.

For general periodic f , the asymptotic theory of series
∑
ckf(nkx) is very different

(and much more difficult) than the theory of trigonometric series. For example, it is
easy to see that

lim
N→∞

1
N

N∑
k=1

cos 2πkx = 0

for all x ∈ (0, 1), but the question for which periodic measurable f the relation

lim
N→∞

1
N

N∑
k=1

f(kx) = 0 a.e. (2.17)

holds, is still open. Khinchin [47] conjectured that (2.17) holds for each f satisfying

f(x+ 1) = f(x),
∫ 1

0
f(x) dx = 0, (2.18)

a conjecture remaining open for almost 50 years until Marstrand [51] solved it in
the negative. Bourgain [19] found sufficient conditions for (2.17) in terms of metric
entropy, but even today we have no characterization of functions f satisfying (2.17).
Similarly, there is no satisfactory convergence theory for series

∑∞
k=1 ckf(kx); in par-

ticular it is unknown for which f the analogue of the Carleson convergence theorem
holds. Even the lacunary case exhibits a number of surprising phenomena. Kac [43]
proved that for a function satisfying

f(x+ 1) = f(x),
∫ 1

0
f(x) dx = 0, Var[0,1]f <∞, (2.19)

the central limit theorem

lim
N→∞

λ

{
x ∈ (0, 1) :

N∑
k=1

f(2kx) ≤ tσ
√
N

}
= Φ(t), t ∈ R,

holds provided

σ2 =
∫ 1

0
f2(x)dx+ 2

∞∑
k=1

∫ 1

0
f(x)f(2kx)dx 6= 0.

The corresponding law of the iterated logarithm

lim sup
N→∞

∑N
k=1 f(2kx)√

2N log logN
= σ a.e.

was proved by Maruyama [52] and Izumi [42]. However, Erdős and Fortet showed
(see [44], p. 646) that if

f(x) = cos 2πx+ cos 4πx, nk = 2k − 1 (2.20)
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then

lim
N→∞

λ

{
x ∈ (0, 1) :

N∑
k=1

f(nkx) ≤ t
√
N

}
=

1√
2π

∫ 1

0

∫ t/
√

2| cosπs|

−∞
e−u

2/2 du ds

and

lim sup
N→∞

∑N
k=1 f(nkx)√

2N log logN
=
√

2 cosπx a.e.

In other words, replacing 2k by 2k−1, the CLT and the LIL become false. Gaposhkin
[37] showed that the CLT and LIL hold for f(nkx) if nk+1/nk is an integer for all
k or if nk+1/nk converges to a number α such that αr is irrational for r = 1, 2, . . ..
These results show that the asymptotic behavior of sums

∑N
k=1 f(nkx) depends not

only on the growth speed of (nk)k≥1, but also on the number theoretic properties of
nk. An important step to clear up this phenomenon was made by by Gaposhkin [39],
who proved that under mild technical conditions on f , the sequence (nk)k≥1 satisfies
the central limit theorem

lim
N→∞

λ

{
x ∈ (0, 1) :

N∑
k=1

f(nkx) ≤ tσN

}
= Φ(t), t ∈ R.

with a suitable norming sequence σN provided the number of solutions of the Dio-
phantine equation

ank ± bn` = c (2.21)

is bounded by a constant K(a, b) for every fixed nonzero integers a, b, c. Note that
in the case nk = 2k − 1 the equation

2nk − n` = 1 (2.22)

has infinitely many solutions, and thus the Diophantine condition of Gaposhkin
clearly fails. Also, the validity of Gaposhkin’s criterion is easily checked in the
examples above, and in a number of further cases as well, e.g. if nk+1/nk → ∞,
a case settled earlier by Takahashi [67], [69]. However, will see in Section 3 that
Gaposhkin’s condition is far from necessary and the central limit problem for f(nkx)
remains open.

Just like in the trigonometric case, the probabilistic theory of f(nkx) extends
partly to subexponentially growing (nk)k≥1; for example, f(nkx) will satisfy the
CLT and LIL for arithmetically “nice” sequences (nk)k≥1. Let (nk)k≥1 be a so-
called Hardy-Littlewood-Pólya sequence, i.e. let (nk)k≥1 consist of the elements of
the multiplicative semigroup generated by a finite set (q1, . . . , qr) of coprime integers,
arranged in increasing order. Philipp [58] proved that for such sequences we have

1
4
√

2
≤ lim sup

N→∞

NDN (nkx)√
2N log logN

≤ C a.e. (2.23)

where C is a positive constant, depending only on the number τ of primes occurring
in the prime factorization of q1, . . . , qr. From this it follows easily that under (2.19)
we have

lim sup
N→∞

∣∣∣∑N
k=1 f(nkx)

∣∣∣
√

2N log logN
≤ C a.e. (2.24)
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for some constant C > 0; the exact value of the limsup was determined by Fukuyama
and Nakata [36]. Another case when the asymptotic behavior of f(nkx) is known
precisely is when f is sufficiently smooth. Dhompongsa [22] and Takahashi [74]
proved that if f satisfies (2.18) and f ∈ Lip(1

2 + ε) for some ε > 0, then the LIL
(2.24) remains valid under the subexponential gap condition

nk+1/nk ≥ 1 + ck−α, 0 < α < 1/2.

Gaposhkin [38] proved that under f ∈ Lip(1
2 + ε), Carleson’s theorem holds for the

system f(nx), i.e.
∑∞

k=1 ckf(kx) converges a.e. provided
∑∞

k=1 c
2
k < ∞. Berkes [14]

proved that both results become false for f ∈ Lip (1
2) and the behavior becomes even

more pathological for f ∈ Lip (1
2 − ε): there exist sequences (nk)k≥1 arbitrary close

to the exponential speed such that

lim sup
N→∞

∑N
k=1 akf(nkx)√
N(logN)ρ

= +∞ a.e.

for some constant ρ > 0 and a sequence ak = ±1. These results show the extreme
sensibility of the asymptotic behavior of f(nkx) on the smoothness properties of f
and the critical role of the Lip (1

2) class. Note that the structure of the Fourier series
of f plays also a crucial role: while the convergence behavior of

∑∞
k=1 ckf(kx) remains

unknown in general, precise convergence criteria can be given if all frequencies mk in
the Fourier series

f ∼
∞∑
k=1

(ak cos 2πmkx+ bk sin 2πmkx)

are lacunary (Gaposhkin [38]) or if they are coprime (Berkes [14]).

3 Some new results

As we have seen above, for rapidly increasing (nk)k≥1 the behavior of the sequence
(〈nkx〉)k≥1 resembles that of independent random variables, but the probabilistic
analogy is not complete, and the finer properties of sums

∑
ckf(nkx) and the dis-

crepancy DN (nkx) are determined by a combination of probabilistic, analytic and
number theoretic factors. In recent years there has been a considerable interest in
this field, leading to the solution of a number of old classical problems in the field,
and also leading to considerable new information and a better insight to the nature
of lacunary sequences. The purpose of this section is to review some recent results in
this field, obtained in Aistleitner [1]–[5], Aistleitner and Berkes [6], [7], Aistleitner,
Berkes and Tichy [8], [9] and Berkes, Philipp and Tichy [16].

As we discussed in Section 2, the asymptotic behavior of sums
∑N

k=1 f(nkx)
for periodic measurable functions f depends sensitively on the number theoretic
properties of the sequence (nk)k≥1. For example, the central limit theorem holds for
such sums if nk = 2k, or more generally, if the fractions nk+1/nk are integers for
all k and also if nk+1/nk → α, where αr is irrational for r = 1, 2, . . ., but it fails
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if nk = 2k − 1. Gaposhkin [37] proved that f(nkx) obeys the CLT if for any fixed
nonzero integers a, b, c the number of solutions (k, `) of the Diophantine equation

ank − bn` = c

is bounded by a constant K(a, b), independent of c. This criterion contains all the
above examples and many other interesting cases as well, but as the following example
shows, it is not necessary.

Example. Let mk = k2 and let the sequence (nk)k≥1 consist of the numbers 2mk−1,
k = 1, 2, . . ., plus the numbers 2mk+1−1 for the indices k of the form k = [nα], α > 2.
Let f be a periodic Lipschitz function with mean 0 and ‖f‖2 = 1. By a result of
Takahashi [67], the central limit theorem holds for f(mjx) with the norming sequence√
N . Clearly

∑N
k=1 f(nkx) =

∑M
j=1 f(mjx) +O(N1/α) where N − 2N1/α ≤M ≤ N

for N ≥ N0, which implies that f(nkx) also satisfies the CLT. On the other hand,
for infinitely many ` we have n` = 2mk − 1, n`+1 = 2mk+1 − 1 for some k and thus
n`+1 − 2n` = 1. The number of such `’s up to N is ∼ N1/α and thus the equation
2ni − nj = 1 has at least cN1/α solutions for the indices 1 ≤ i, j ≤ N .

Let
L(N, d, ν) = #{1 ≤ a, b ≤ d, 1 ≤ k, ` ≤ N : ank − bn` = ν} (3.1)

and
L(N, d) = sup

ν>0
L(N, d, ν),

where d is a positive integer. The following theorem solves the central limit prob-
lem for f(nkx) completely, thereby closing a long line of research starting with the
classical paper of Kac [43].

Theorem 3.1 (see [7]) Let (nk)k≥1 be a sequence of positive integers satisfying the
Hadamard gap condition (2.6) and let f(x) be a function satisfying (2.19). Assume
that

σ2
N :=

∫ 1

0

(
N∑
k=1

f(nkx)

)2

dx ≥ CN (3.2)

for a positive constant C > 0 and

L(N, d) = o(N) as N →∞ (3.3)

for any fixed d ≥ 1. Then

lim
N→∞

λ

{
x ∈ (0, 1) :

N∑
k=1

f(nkx) ≤ tσN

}
=

1√
2π

∫ t

−∞
e−u

2/2du. (3.4)

If f is a trigonometric polynomial of order r, it suffices to assume the condition
L(N, d) = o(N) for d = r.
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Here the Diophantine condition (3.3) is best possible: for any ε > 0 there exists
an integer d ≥ 1, a trigonometric polynomial f of order d and a lacunary sequence
(nk)k≥1 such that L(N, d) ≤ εN for sufficiently large N and the central limit theorem
fails for f(nkx). Condition (3.2) cannot be omitted, as is shown by the example
f(x) = cos 2πx− cos 4πx, nk = 2k, for which the Diophantine condition of Theorem
3.1 is satisfied, but the CLT is not.

Of special interest is the following case, where we can calculate the asymptotic
variance σ2

N explicitly. Slightly modifying the definition of L(N, d) in (3.1), let

L∗(N, d) = sup
ν≥0

L(N, d, ν).

For ν = 0 we exclude the trivial solutions a = b, k = ` from L(N, d, ν). Put also
‖f‖2 = (

∫ 1
0 f

2(x) dx)1/2.

Theorem 3.2 (see [7]) Let (nk)k≥1 be a sequence of positive integers satisfying the
Hadamard gap condition (2.6) and let f(x) be a function of bounded variation sat-
isfying (2.19) and ‖f‖2 > 0. Assume that for any fixed d ≥ 1, L∗(N, d) = o(N) as
N →∞. Then

lim
N→∞

λ

{
x ∈ (0, 1) :

N∑
k=1

f(nkx) ≤ t‖f‖2
√
N

}
=

1√
2π

∫ t

−∞
e−u

2/2du, (3.5)

i.e. the central limit theorem (3.4) holds with σN = ‖f‖2
√
N .

A corresponding LIL is given by the following result.

Theorem 3.3 (see [4]) Assume the conditions of Theorem 3.2 with the Diophan-
tine condition L∗(N, d) = o(N) replaced by

L∗(N, d) = O(N/(logN)1+ε)

for some ε > 0. Then we have

lim sup
N→∞

∑N
k=1 f(nkx)√

2N log logN
= ‖f‖2 a.e.

One paradoxical feature of lacunary behavior is the lack of permutational in-
variance. As the previous results show, for a periodic measurable function f and
rapidly growing (nk)k≥1, the sequence f(nkx) behaves like a sequence of i.i.d. ran-
dom variables, in fact it satisfies many classical asymptotic properties of such se-
quences. However, while an i.i.d. sequence remains i.i.d. after any permutation of
its terms, and thus its asymptotic properties are also permutation-invariant, the
properties of lacunary sequences f(nkx) change by permutation, as was first noted
by Fukuyama [32]. As the following theorem shows, permutation-invariance is also
closely connected with number theoretical factors, in fact, we give a necessary and
sufficient Diophantine condition for the permutation-invariance of the CLT and LIL
for f(nkx).
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Theorem 3.4 (see [9]) Let (nk)k≥1 be a sequence of positive integers satisfying the
Hadamard gap condition (2.6), let f satisfy (2.19) and let σ be a permutation of N.
Assume the Diophantine condition

L(N, d) = O(1) as N →∞. (3.6)

Then N−1/2
∑N

k=1 f(nσ(k)x) has a limit distribution iff

γ = lim
N→∞

N−1

∫ 1

0

(
n∑
k=1

f(nσ(k)x)

)2

dx

exists, and then

N−1/2
N∑
k=1

f(nσ(k)x)→d N(0, γ). (3.7)

If condition (3.6) fails, there exists a permutation σ such that the normed partial
sums in (3.7) have a nongaussian limit distribution.

Theorem 3.5 (see [9]) Let (nk)k≥1 be a sequence of positive integers satisfying the
Hadamard gap condition (2.6) and the Diophantine condition (3.6). Let f be a mea-
surable function satisfying (2.19), let σ be a permutation of N and assume that

γ = lim
N→∞

N−1

∫ 1

0

(
n∑
k=1

f(nσ(k)x)

)2

dx (3.8)

for some γ ≥ 0. Then we have

lim sup
N→∞

1√
2N log logN

N∑
k=1

f(nσ(k)x) = γ1/2 a.e. (3.9)

For analogous results for Hardy-Littlewood-Pólya sequences, see [8].
By the classical LIL of Philipp [56], [57], under the Hadamard gap condition the

discrepancy DN (nkx) satisfies

1
4
√

2
≤ lim sup

N→∞

NDN (nkx)√
2N log logN

≤ C(q) a.e. (3.10)

where C(q) is a constant depending only on q. However, the value of the limsup in
(3.10) remained unknown until very recently, when Fukuyama [31] has been able to
compute it for nk = θk, θ > 1. He proved that

lim sup
N→∞

NDN (θkx)√
2N log logN

= lim sup
N→∞

ND∗N (θkx)√
2N log logN

= Σθ a.e., (3.11)

where

Σθ = 1/2 if θris irrational for all r ∈ N,
Σθ =

√
42/9, if θ = 2

Σθ =

√
(θ + 1)θ(θ − 2)

2
√

(θ − 1)3
if θ ≥ 4 is an even integer,

Σθ =
√
θ + 1

2
√
θ − 1

if θ ≥ 3 is an odd integer.
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Note that in the case when θr is irrational for all r ∈ N, the value of the lim sup
is exactly the same as for i.i.d. random variables. Fukuyama and Nakata [36] also
calculated the exact value of the lim sup for a large class of Hardy-Littlewood-Pólya-
sequences.

The next theorem determines the value of the limsup for a large class of lacunary
sequences (nk)k≥1 of integers, and also shows that under a condition only slightly
stronger than the condition L∗(N, d) = o(N) in Theorem 3.2, the limsup in (3.10)
equals 1/2, i.e. the constant in the Chung-Smirnov LIL for the discrepancy of i.i.d.
random variables.

Theorem 3.6 (see [4]) Let (nk)k≥1 be a sequence of positive integers satisfying the
Hadamard gap condition, and assume that for any fixed d ≥ 1 there exists an ε > 0
such that

L∗(N, d) = O
(

N

(logN)1+ε

)
as N →∞. (3.12)

Then

lim sup
N→∞

NDN (nkx)√
2N log logN

= lim sup
N→∞

ND∗N (nkx)√
2N log logN

=
1
2

a.e. (3.13)

It is natural to expect that the Diophantine condition (3.12) in Theorem 3.6 can
be replaced by L∗(N, d) = o(N), but this remains open. However, the log factor
causes no problems in applications; in particular, Theorem 3.6 covers all classical ex-
amples where the CLT has been established for f(nkx) with the norming ‖f‖2

√
N .

For example, it is easy to see that condition (3.12) is satisfied if nk+1/nk → θ, where
θr is irrational for all r ∈ N, or if limk→∞ nk+1/nk = ∞. Note also that in (3.12)
L∗(N, d) cannot be replaced by L(N, d): for example, in the case nk = 2k we have
L(N, d) = O(1) (and thus the CLT holds for f(nkx)), but L∗(N, d) ≥ N − 1 and the
limsup in (3.13) equals

√
42/9 by Fukuyama’s theorem.

In all the cases covered by the above results, the lim sup is constant a.e., and it
is the same for DN as for D∗N . Answering an old question of Philipp [56], Aistleitner
[2], [3] showed that in general this is not the case. Let (nk)k≥1 be defined by

n2k−1 = 2k
2

n2k = 2k
2+1 − 1

}
k ≥ 1. (3.14)

Then (nk) = (2, 3, 16, 31, 512, 1023, . . . ). Obviously this sequence is lacunary, since

nk+1/nk ≥ 3/2, k ≥ 1.

For this sequence we have

lim sup
N→∞

NDN (nkx)√
2N log logN

=
3

4
√

2
a.e.

and

lim sup
N→∞

ND∗N (nkx)√
2N log logN

= Ψ∗(x) a.e.,
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where

Ψ∗(x) =



3
4
√

2
, 0 ≤ x ≤ 3/8, 5/8 ≤ x ≤ 1√

(4x(1− x)− x)√
2

, 3/8 ≤ x ≤ 1/2√
(4x(1− x)− (1− x))√

2
, 1/2 ≤ x ≤ 5/8,

see [2]. Note in particular that the limsup for D∗N (nkx) is not a constant a.e. If the
sequence (nk)k≥1 in (3.14) is replaced by

nk =


2k

2
for k ≡ 1 mod 4

2(k−1)2+1 − 1 for k ≡ 2 mod 4
2k

2+k for k ≡ 3 mod 4
2(k−1)2+(k−1)+1 − 2 for k ≡ 0 mod 4,

then also the value of the lim sup in the LIL for DN (nkx) is not equal to a constant
a.e. We note that independently and at the same time, Fukuyama [35] constructed
a sequence (nk)k≥1 with bounded gaps nk+1 − nk exhibiting the same pathological
behavior.

Most results in the theory of uniform distribution and discrepancy extend for se-
quences with values in Rd, although usually there is a price in accuracy to pay for the
high dimensional result. In contrast, there are very few results on the discrepancy
of sequences with multidimensional indices, even though the corresponding problem,
namely the uniform asymptotic behavior of random fields, has been extensively stud-
ied in probability theory. In view of this fact, it is of considerable interest to study
the multiparameter version of Philipp’s theorem, one of the basic results in metric
discrepancy theory.

Let Nd denote the set of d-dimensional vectors with positive integer components
and let (nk)k∈Nd be a sequence of integers with d-dimensional indices. Letting k =
(k1, . . . , kd) and k′ = (k′1, . . . , k

′
d), we say that k ≤ k′ if ki ≤ k′i, 1 ≤ i ≤ d and k < k′

if k ≤ k′ and k 6= k′. We say that (nk)k∈Nd is nondecreasing if nk ≤ nk′ provided
k ≤ k′. Let 1 denote the d-dimensional vector (1, . . . , 1) and for N = (N1, . . . , Nd) we
set |N| =

∏d
i=1Ni. The discrepancy DN(nkx) of the sequence (nkx)k≥1 is defined,

similarly to the one-parameter case, as

DN(nkx) = sup
0≤a<b≤1

∣∣∣∣∣
∑N

k=1 1[a,b)(nkx)
|N|

− (b− a)

∣∣∣∣∣ ,
where

∑N
k=1 =

∑
k: 1≤k≤N.

Theorem 3.7 (see [5]) Let (nk)k∈Nd be a nondecreasing sequence of positive inte-
gers for which

#{k ∈ Nd : 2r ≤ nk < 2r+1} ≤ Q, r = 0, 1, 2, . . . (3.15)
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with a constant Q. Then

lim sup
|N|→∞

|N|DN(nkx)√
|N| log log |N|

≤ CQ,d a.e., (3.16)

where CQ,d is a positive number depending on Q and d.

Note that a one-dimensional sequence (nk)k≥1 satisfies (3.15) if and only if it is
a finite union of sequences satisfying the Hadamard gap condition (2.6), so in this
case Theorem 3.7 yields Philipp’s LIL (3.10). It would be tempting to define the
Hadamard gap condition for (nk)k∈Nd by requiring that

nk′/nk > q > 1, k′ > k. (3.17)

However, with this definition Theorem 3.7 fails. In [5] it is shown that there exist
sequences satisfying (3.17) such that for almost all x ∈ (0, 1)

|N|DN(nkx) ≥ C|N|3/4

holds for infinitely many N.

As we noted earlier, weakening the Hadamard gap condition (2.6), Philipp’s LIL
(3.10) for the discrepancy of (nkx)k≥1 becomes generally false. The following theorem
yields upper bounds for DN (nkx) in the subexponential domain. Set

aN,r = #{k ≤ N : nk ∈ [2r, 2r+1)}, r ≥ 0, N ≥ 1

and

BN =

( ∞∑
r=0

a2
N,r

)1/2

, N ≥ 1. (3.18)

For fast growing sequences, BN will be “small”: for example, for a lacunary sequence
(nk)k≥1 the value of BN will be between

√
N and C

√
N . On the other hand, for very

slowly growing sequences the value of BN will be close to N .

Theorem 3.8 (see [6]) Let (nk)k≥1 be a nondecreasing sequence of positive integers
satisfying

aN,r = O
(

BN
(logN)α

)
(3.19)

for some constant α > 3, uniformly for r ∈ N. Then

lim sup
N→∞

NDN (nkx)√
B2
N log logN

≤ C a.e., (3.20)

where C is a positive constant.
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Condition (3.19) means that breaking the set {nk, 1 ≤ k ≤ N} into its parts
in the intervals [2r, 2r+1), r = 1, 2, . . ., their cardinalities aN,r are much smaller
than BN = (

∑∞
r=0 a

2
N,r)

1/2. Such “uniform negligibility” conditions are typical in
probability theory, in particular in the theory of the central limit theorem and the
law of the iterated logarithm (see the Appendix). Specifically, writing

Xr =
∑

nk∈[2r,2r+1)

1[a,b)(nkx),

condition (3.19) is a variant of the classical Kolmogorov condition for the LIL for
independent random variables. Thus Theorem 3.8 generalizes the classical heuristics
that for rapidly growing (nk)k≥1, the functions 〈nkx〉 “almost” behave like i.i.d. ran-
dom variables.

Note that in Theorem 3.8 we made no number theoretic assumptions on (nk)k≥1

and in this sense it is the exact sublacunary counterpart of Philipp’s LIL (3.10).
Similarly to (3.10), the limsup in (3.20) remains undetermined. In Theorem 3.6
we computed the precise constant in Philipp’s LIL under the assumption that the
number of solutions of the Diophantine equation

ank − bn` = c, 1 ≤ k, ` ≤ N

is “not too large” compared with N . The next theorem gives a similar result in the
sub-lacunary case, although the Diophantine conditions have to be slightly stronger.
Let (nk)k≥1 be an increasing sequence of positive integers and set

ar = #{j : nj ∈ [2r, 2r+1)}, r = 0, 1, . . .

We say that (nk)k≥1 satisfies

Condition (Kα), 0 ≤ α < 1, if there exists a constant Cα > 0 such that

aN ≤ Cα

 ∑
0≤j<N

aj

α

, N ≥ 1.

Condition (Dδ), 0 ≤ δ < 1, if there exists a constant Cδ such that for every N ≥ 1
and for fixed integers a, b with 0 < |a|, |b| ≤ N2 the number of solutions (k, `) of the
Diophantine equation

ank − bn` = c, 1 ≤ k, ` ≤ N

does not exceed CδN
δ, uniformly for all c ∈ Z, c 6= 0.

Condition (D0
γ), 0 ≤ γ < 1, if there exists a constant Cγ such that for every N ≥ 1

and for fixed integers a, b with 0 < |a|, |b| ≤ N2, the number of solutions (k, `) of the
Diophantine equation

ank − bn` = 0, 1 ≤ k, ` ≤ N, (a, k) 6= (b, `)
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does not exceed CγN
γ .

Condition (Kα) is an asymptotic negligibility condition, comparable to (3.19)
in Theorem 3.8. Condition (Dδ) and condition (D0

γ) are Diophantine conditions,
comparable to the conditions on L(N, d) and L∗(N, d) in Theorem 3.1, Theorem 3.2
and Theorem 3.6. The main difference between the conditions there and conditions
(Dδ) and (D0

γ) is that here we have numbers δ and γ in the exponent of N , and that
the size of the coefficients a, b increases as N goes to infinity. Condition (Dδ), similar
to a bound on L(N, d), ensures that the fluctuation behavior of the system is not too
wild, and condition (D0

γ) controls the asymptotic variance σ2
N .

Theorem 3.9 (see [1]) Let f be a function of bounded variation satisfying (2.19)
and assume that (3.2) holds. Let (nk)k≥1 be a sequence of positive integers satisfying
conditions (Kα) and (Dδ)with

α+ δ < 1. (3.21)

Let SN =
∑N

k=1 f(nkx). Then the sequence (SN )N≥1 can be redefined on a new
probability space (without changing its distribution) together with a Wiener process
W (t) such that

SN = W (σ2
N ) + o(N1/2−λ) a.s.,

where λ > 0 depends on α and δ.

Theorem 3.10 (see [1]) Let f be a function of bounded variation satisfying (2.19)
and ‖f‖2 > 0 and let (nk)k≥1 be a sequence of positive integers satisfying conditions
(Kα) and (Dδ)with

α+ δ < 1.

Assume that (nk)k≥1 additionally satisfies condition (D0
γ) for γ < 1. Then, letting

SN =
∑N

k=1 f(nkx), the sequence (SN )N≥1 can be redefined on a new probability
space (without changing its distribution) together with a Wiener process W (t) such
that

SN = W (τN) + o(N1/2−λ) a.s.,

where τ = ‖f‖22 and λ > 0 depends on α, δ and γ.

Theorem 3.11 (see [1]) Let (nk)k≥1 be an increasing sequence of positive integers
satisfying conditions (Kα) and (Dδ), for α + δ < 1, and condition (D0

γ) for γ < 1.
Then

lim sup
N→∞

NDN (nkx)√
2N log logN

= lim sup
N→∞

ND∗N (nkx)√
2N log logN

=
1
2

a.e.

In the language of probability theory, Theorem 3.9 and 3.10 are almost sure
invariance principles, showing that under certain conditions

∑N
k=1 f(nkx) can be

approximated by a Wiener process. Of course, these a.s. invariance principles imply
the central limit theorem and the law of the iterated logarithm for

∑N
k=1 f(nkx).

Condition (3.21) connects the density and the Diophantine behavior of (nk)k≥1: if the
sequence is very dense, the Diophantine condition has to be strong. If the sequence is
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sparse (e.g. if it is growing very rapidly), then we need weaker Diophantine conditions,
in accordance with the results for lacunary (nk)k≥1 in [4] and [7].

Finally we note that in Berkes, Philipp and Tichy [16] the asymptotic behavior
of the function

GN (t) = GN (t, x) = N−1
N∑
k=1

(
1[0,t)(nkx)− t

)
was investigated. Under Diophantine conditions on (nk)k≥1, functional versions of
the LIL for D∗N (nkx) were proved.

4 Random frequencies

As we have seen, the strong independence properties of lacunary trigonometric series
under the Hadamard gap condition (2.6) remain partially valid under the subexpo-
nential gap condition

nk+1/nk ≥ 1 + ck−α, 0 < α < 1/2

but they become gradually weaker as α approaches 1/2 and they disappear at α =
1/2. Near the critical gap condition

nk+1/nk ≥ 1 + ck−1/2 (4.1)

the behavior of (cos 2πnkx)k≥1, (sin 2πnkx)k≥1 becomes very complicated and ex-
hibits a number of unusual phenomena. For example, near (4.1) it can happen that
(cos 2πnkx)k≥1 satisfies the CLT, but fails the LIL, or that (cos 2πnkx)k≥1 satisfies
the LIL, but fails other classical asymptotic theorems for i.i.d. random variables (see
Berkes [13]). For sequences (nk)k≥1 growing slower than the speed required by (4.1),
the normed partial sums N−1/2

∑N
k=1 cos 2πnkx can have nongaussian limit distribu-

tions or no limit distribution at all and all general patters observed in the Hadamard
lacunary case disappear: the asymptotic properties of the sums

∑N
k=1 cos 2πnkx,∑N

k=1 sin 2πnkx and
∑N

k=1 e
2πinkx will depend strongly on the sequence (nk)k≥1, lead-

ing to difficult analytic problems for any individual (nk)k≥1. Noting that

∫ 1

0

(
N∑
k=1

cos 2πnkx

)p
dx = 2−(p−1)AN,p

where AN,p denotes the number of solutions (k1, . . . , kp) of the Diophantine equation

±nk1 ± · · · ± nkp = 0, (1 ≤ k1, . . . , kp ≤ N), (4.2)

we see that the behavior of
∑N

k=1 cos 2πnkx is still related to Diophantine equations.
However, for slowly increasing sequences (nk)k≥1 counting the number of solutions
of (4.2) is a very difficult combinatorial problem which has been solved only for a
few special sequences (nk)k≥1. In analytic number theory, one typically follows an
inverse path: from analytic estimates for exponential sums

∑N
k=1 e

2πinkx one draws

17



conclusions for the number of solutions of (4.2). One completely solved case is nk = k2

when Walfisz [75] and Fiedler, Jurkat and Körner [29] proved, using elliptic function
theory, that

N∑
k=1

cos 2πnkx = O
(√

N(logN)1/4+ε
)

a.e. (4.3)

and this becomes false for ε = 0. There are partial results for nk = kr, r = 3, 4, . . .
and other special sequences (nk)k≥1 like the sequence of primes (see e.g. [41]) but no
precise asymptotic results are known.

While dealing with the Diophantine equation (4.2) is extremely difficult for “con-
crete” sequences (nk)k≥1, sharp results exist for random sequences (nk)k≥1 (see e.g.
Halberstam and Roth [40]) and choosing the frequencies nk at random provides a
remarkable insight into the behavior of lacunary trigonometric sums and sums of
the form

∑
ckf(nkx) for slowly increasing (nk)k≥1. The simplest way to construct

an infinite random subset H of the positive integers is using “head or tail”, i.e. to
decide for each k if k belongs to the set H by flipping a fair penny. Denoting the so
obtained random sequence by (nk)k≥1, from the results of Salem and Zygmund [62]
for randomly signed trigonometric series

∑
± cosnx it follows that

lim
N→∞

λ{x ∈ (0, 1) :
N∑
k=1

cos 2πnkx ≤ t
√
N/2} = (2π)−1/2

∫ t

−∞
e−u

2/2du, (4.4)

and

lim sup
N→∞

(N log logN)−1/2
N∑
k=1

cos 2πnkx = 1 a.e. (4.5)

with probability one. By the strong law of large numbers we have nk ∼ 2k and thus
we see that even though the validity of the classical probabilistic theory of lacunary
trigonometric series breaks down at the subexponential gap condition (4.1), there
exist linearly growing sequences (nk)k≥1 satisfying the CLT and LIL (4.4) and (4.5).
Concerning the gaps nk+1 − nk of the so constructed random (nk)k≥1, from the
classical “pure heads” theorem of probability theory (see e.g. Erdős and Rényi [27])
it follows that lim supk→∞(nk+1 − nk)/ log2 k = 1 a.s., where log2 denotes logarithm
with base 2. Using a different random construction, Berkes [12] proved that for any
sequence ω(k) → ∞ there exists an increasing sequence (nk)k≥1 of positive integers
such that

nk+1 − nk = O(ω(k))

and still (4.4) and (4.5) are valid. This raises the question if there exists a sequence
(nk)k≥1 with bounded gaps, i.e. a sequence with

nk+1 − nk ≤ L, (k = 1, 2, . . .) (4.6)

for some L such that the CLT and LIL holds. Bobkov and Götze [18] proved that if
(4.6) holds, then

N−1/2
N∑
k=1

cos 2πnkx→d N (0, σ2) (4.7)
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cannot hold with σ2 = 1/2, and in fact with any σ2 > 1/2− 1/(2L). However, using
a delicate random construction, Fukuyama [33] showed that for any σ2 < 1/2 there
exists a sequence (nk)k≥1 with bounded gaps such that (4.7) holds, completing the
CLT theory for small gaps. Fukuyama [34] also showed that there exist sequences
(nk)k≥1 with bounded gaps such that the exact LIL

lim sup
N→∞

NDN (nkx)√
2N log logN

=
1
2

a.e. (4.8)

holds, a result even more surprising since here, unlike in the case of the CLT, we get
exactly the standard i.i.d. result for trigonometric sequences (nk)k≥1 with bounded
gaps. The explanation of the nice probabilistic behavior of f(nkx) for small gaps
is not the Diophantine behavior of (nk)k≥1 (since for such dense (nk)k≥1 the num-
ber of solutions of the Diophantine equation (4.2) is huge), but the randomness of
the (nk)k≥1. It would be nice to give nonrandom constructions having the same ef-
fect or to exhibit a property of slowly growing sequences (nk)k≥1 implying the near
independent behavior of cos 2πnkx or f(nkx).

Random constructions give substantial new information also for rapidly increasing
(nk)k≥1. As we noted, the CLT (4.4) holds under the subexponential gap condition

nk+1/nk ≥ 1 + ck/
√
k, ck →∞

but in general not if ck = c, k = 1, 2, . . .. In particular, the CLT holds if nk = eωk
√
k

with ωk → ∞, but the case nk = ec
√
k for fixed c > 0 remains open. Erdős [24]

conjectured that CLT holds if nk = eck
α

for any 0 < α ≤ 1/2. For α sufficiently
close to 1/2 this was proved by Murai [53], but the general conjecture is still open.
However, Kaufmann [45] proved that for any f satisfying (2.19), for nk = eck

α
for

all α > 0 and almost all c > 0, f(nkx) satisfies the CLT and LIL. In view of the
intractable number theoretic problem the CLT leads to for nonrandom c (see Berkes
[11]), this shows the power of random constructions.

Another random construction producing slowly increasing sequences (nk)k≥1 is
when the gaps nk+1 − nk are positive, bounded i.i.d. random variables, i.e. when
(nk)k≥1 is an increasing random walk. In the case when the common distribution
function of the nk+1− nk are absolutely continuous, Schatte [63] proved the discrep-
ancy LIL and Weber [76] and Berkes and Weber [17] proved various further results
for DN (nkx) both when the random walk generating (nk)k≥1 is absolutely continu-
ous or discrete. In the absolutely continuous case Berkes and Weber [17] proved that
under (2.19) f(nkx) obeys almost surely the analogue of the Carleson convergence
theorem, i.e.

∑∞
k=1 ckf(nkx) converges a.e. provided

∑∞
k=1 c

2
k <∞. In particular, for

such f and sequences (nk)k≥1 the Khinchin conjecture is true, i.e.

lim
N→∞

1
N

N∑
k=1

f(nkx) = 0 a.e. (4.9)

Concerning the Khinchin conjecture, a stronger result has been proved by Fukuyama
[30], who proved that under (2.18) relation (4.9) holds for nk = kα for almost every
α > 0 and if

∫ 1
0 f

2(x) dx <∞ then for almost all α > 0.
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5 Appendix

In this section we formulate some classical probability limit theorems used in this
paper.

Theorem A. Let X1, X2, . . . be a sequence of bounded independent random variables
with mean 0. Let SN =

∑N
k=1Xk and assume that B2

N =
∑N

k=1 EX2
k →∞ and

‖Xk‖∞ = o(Bk) as k →∞, (5.1)

then

B−1
N

N∑
k=1

Xk →d N (0, 1).

If instead of (5.1) we assume

‖Xk‖∞ = o(Bk/(log logBk)1/2) as k →∞, (5.2)

then

lim sup
N→∞

∑N
k=1Xk√

2B2
N log logB2

N

= 1 a.s.

Theorem A is the usual formulation of the central limit theorem and law of the
iterated logarithm, (5.1) is the classical “uniform asymptotic negligibility” condition
and (5.2) is the Kolmogorov condition. Here ‖ · ‖∞ denotes the sup norm. Note that
both conditions (5.1) and (5.2) are sharp. For a proof, see e.g. Petrov [55].

Theorem B. Let X1, X2, . . . be independent random variables having the uniform
distribution over (0, 1), let FN (t) = N−1

∑N
k=1 I{Xk ≤ t} denote the empirical dis-

tribution function of the sample (X1, . . . , XN ) and let TN = sup0≤t≤1 |FN (t) − t|.
Then

lim
N→∞

P{
√
NTN ≤ x} =

∞∑
k=−∞

(−1)ke−2k2x2
(x > 0) (5.3)

and
lim sup
N→∞

NTN√
2N log logN

=
1
2

a.s. (5.4)

For the proof, see e.g. Shorack and Wellner [66].

Theorem C. Let X,X1, X2, . . . be i.i.d. random variables with P(X = 2k) = 2−k,
k = 1, 2, . . . and let Sn =

∑n
k=1Xk. Then

lim
n→∞

Sn
n log2 n

= 1

in probability, but

lim inf
n→∞

Sn
n log2 n

= 1, lim sup
n→∞

Sn
n log2 n

=∞ a.s.
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The sequence (Xk)k≥1 corresponds to the so called St. Petersburg game, a simple
i.i.d. sequence with infinite means. For the proofs and further information, see Feller
[28] and Csörgő and Simons [21].
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der Diophantischen Approximationen. Math. Ann. 92, 115–125, 1924.
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