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Abstract

Let X = X1, X2, . . . be a sequence of random variables, let W be a Brownian motion
independent of X and let Zk = W (Xk). We call a numerical sequence (tk) an upper
(lower) class sequence for {Zk} if

P (Zk > tk for infinitely many k) = 0 (or 1, respectively).

At a first look one might be tempted to believe that a “separating line” (t0k), say, between
the upper and lower class sequences for {Zk} is directly related to the corresponding
counter part (s0

k) for the process {Xk}. E.g. by using the law of the iterated logarithm
for the Wiener process a functional relationship

t0k =
√

2s0

k log log s0

k (1)

seems to be natural. When Xk = |W2(k)| for a second Brownian motion W2 then we are
dealing with an iterated Brownian motion, and it is known that the multiplicative constant√

2 in (1) needs to be replaced by 2 × 3−3/4, contradicting to this simple argument.
We will study this phenomenon from a different angle by letting {Xk} be an i.i.d.

sequence. It turns out that the relationship between the separating sequences (s0

k) and
(t0k) in the above sense, depends in an interesting way on the extreme value behavior of
{Xk}.

1 Introduction

Let W+
1 , W−

1 and W2 be independent Brownian motions, and set W1(t) = W+
1 (t) for t ≥ 0

and W1(t) = W−
1 (−t) for t < 0. The process {W1(W2(t)), t ≥ 0} is called iterated Brownian

motion, and was introduced by Burdzy [1]. It has been proven in this paper that

lim sup
t→0

W1(W2(t))

t1/4(log log(1/t))3/4
=

25/4

33/4
a.s. (2)

This has been significantly generalized by Csáki et al. [2], [3], who obtained results similar to
(2) for a general class of iterated processes. They also proved a global version of (2),

lim sup
t→∞

W1(W2(t))

t1/4(log log t)3/4
=

25/4

33/4
a.s. (3)
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and

lim sup
t→∞

W1(|W2(t)|)
t1/4(log log t)3/4

=
25/4

33/4
a.s.

(The asymptotic behavior of W1(W2(t)) and W1(|W2(t)|) needs not always be the same as
has been shown in [6] and [7] for the so-called “other law of the iterated logarithm”.)

The interesting feature of relation (3) is the following: by the law of the iterated logarithm
(LIL) for W2 there exists for any h > 0 an almost surely (a.s.) finite random variable T0 such
that

W2(t) ≤ (1 + h)
√

2t log log t for all t > T0.

From this relation and the LIL for W1 one obtains the upper bound

lim sup
t→∞

W1(W2(t))

t1/4(log log t)3/4
≤ 21/4 a.s., (4)

where 21/4 ≈ 1.189, while 25/43−3/4 ≈ 1.043. This shows that the LIL behavior of the two
independent processes W1 and W2 cannot be simply combined to obtain a similar result for
the process W1(W2).

In this paper we try to explore the just described phenomenon from a different angle. To
this end we switch to a discrete-time version of (3):

lim sup
k→∞

W1(W2(k))

k1/4(log log k)3/4
=

25/4

33/4
a.s., (5)

where k runs through the set of positive integers. Let Xk = W2(k), k ≥ 1. Then {Xk} is a
(strongly dependent) sequence of random variables, having normal distribution with mean 0
and variance k, and (5) has the form

P

(

W1(Xk) > (1 + h)
25/4

33/4
k1/4(log log k)3/4 i.o

)

= 0 or 1,

depending on h > 0 or h < 0, respectively. (Here i.o. stands for “infinitely often”.) Letting

t0k =
25/4

33/4
k1/4(log log k)3/4

one can say in other words that {(1 + h)t0k} belongs to the upper class of {W1(Xk)} if h > 0
and it belongs to the lower class if h < 0. Short we will write (tk) ∈ U({W1(Xk)}) for an
upper class sequence and (tk) ∈ L({W1(Xk)}) for a lower class sequence. In this sense (t0k) is
a separating sequence, between upper and lower class sequences for {W1(Xk)}. Of course, the
phrase “separating sequence” has to be given with much care. There exists not the separating
sequence dividing upper and lower classes. E.g. for a Wiener process {W (k) , k ≥ 1} the
law of the iterated logarithm suggests as a candidate s0

k =
√

2k log log k as a dividing line
between U({W (k)}) and L({W (k)}). The Kolmogorov-Erdős-Petrovski integral test states
that

√
kϕ(k) belongs to the upper or lower class of {W (k)} according as

I(ϕ) :=

∫ ∞

1
t−1ϕ(t)e−ϕ(t)2/2dt < ∞ or = ∞, (6)
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and gives thus a much sharper characterization of upper and lower class sequences than the
LIL does (see e.g. Feller [4] and [5]). It implies e.g. that (s0

k) ∈ L({W (k)}) and that (s1
k)

defined by
s1
k =

√

2k log log k + 3(1 + h) log log log k

is in U({W (k)}) if h > 0 and in L({W (k)}) if h ≤ 0. Adding further logp k terms (where
logp is the p-times iterated logarithm) one can get sharper and sharper characterization of
upper and lower class behavior. To clarify the usage of the notion “separating sequence” we
introduce the following definition.

Definition 1 Let {Xk} be any random sequence and (ak) a positive and non-decreasing se-
quence. We call (s0

k) a UL-separating sequence with respect to (ak) for {Xk} if for any h > 0
there exists (su

k) ∈ U({Xk}) and (sℓ
k) ∈ L({Xk}) such that

sℓ
k ≤ s0

k ≤ su
k and lim

k

sℓ
k

su
k

ak ≥ 1

1 + h
.

If ak = 1 for all k ≥ 1 we say that (s0
k) is UL-separating for {Xk}.

Roughly speaking, the sequence (ak) tells us how sharp our separating line (s0
k) is. For exam-

ple s0
k =

√
2k log log k defines an UL-separating sequence for {W (k)}. (Choose sℓ

k = s0
k and

su
k = (1 + h)s0

k.) If {Xk} is an i.i.d. sequence with P (Xk > x) = x−1 for x ≥ 1, then by the
Borel-Cantelli lemma s0

k = k log k is UL-separating for {Xk} with respect to ((log log k)1+γ)

for any γ > 0. (Choose sℓ
k = s0

k and su
k = s0

k(log log k)1+γ .) More generally, s0
k = k

∏P
p=1 logp k

is UL-separating for {Xk} with respect to ((logP+1 k)1+γ) for any γ > 0. Note also that if
(s0

k) is UL-separating for {Xk} with respect to some (ak), then if bk ≥ ak for k ≥ 1, we have
that (s0

k) is UL-separating for {Xk} with respect to (bk).

In this paper we propose to study general random processes of the form {W (Xk)}, where
W is a Brownian motion and {Xk} is a sequence of random variables, independent of W . We
are interested in finding a relation between sequences (s0

k) and (t0k) which are UL-separating
for {Xk} and {W (Xk)}, respectively. For example, if Xk = W2(k) then we have just seen
that s0

k =
√

2k log log k is UL-separating for {Xk}. On the other hand we have by (5) that

t0k =
2

33/4

√

s0
k log log s0

k . (7)

is UL-separating for {W1(Xk)}.

Clearly, the behavior of {W (Xk)} can be very involved in a general model, and we shall
thus restrict ourselves in this attempt to the case when {Xk} is an i.i.d. sequence. We will
show that in this case the relationship between (s0

k) and (t0k) depends on the tail structure of
the Xk’s. This leads to the field of extreme value theory (a classical monograph is e.g. Lead-
better, Lindgren, and Rootzén [9]). The arguably most important theorem in extreme value
theory, known as Fisher-Tippet-Gnedenko-Theorem, states that if for a sequence {Xk} of i.i.d.
random variables with maximum Mn = max{X1, . . . ,Xn} there exists a two-dimensional se-
quence (an, bn)n≥1 such that

a−1
n (Mn − bn)

d−→ G (8)
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(
d−→ denotes convergence in distribution) for some non-degenerate distribution function G,

then G belongs either to the Gumbel, Fréchet or Weibull family of distributions (also called
type I, type II and type III distributions). The Weibull distribution (or type III distribution)
can only appear if the Xk’s are bounded, which is not of interest in our situation. Type I
and type II distributions can appear in different situations, but a typical case for which the
(normalized) maximum has type I distribution is when the Xk’s have exponential tails, and a
typical case for the (normalized) maximum having type II distribution is when the Xk’s have
Pareto tails.

Roughly speaking, our Theorem 1 below shows, that the argument leading to (4) is optimal
in the case when {max1≤k≤n Xk} has type I limiting behavior. This is, when (s0

k) is UL-
separating for {Xk}, then

t0k =
√

2s0
k log log s0

k

is UL-separating for {W (Xk)}. One could say that this (t0k) is “natural” or “unbiased” in
contrast to the (t0k) given in (7). Theorem 2 shows that the situation is radically different if
the limit of {max1≤k≤n Xk} is of type II. In this case it turns out that (t0k) is biased in the
sense that

t0k =
√

s0
k .

2 Results

As we have pointed out in the introduction our results need to be related to results in extreme
value theory, which we shall now briefly recall. Let {Xk} be an i.i.d. sequence. If (8) holds,
then the distribution G belongs to one of three types of so called max-stable distributions,
which are given (up to location and scale) by

Type I: G(x) = exp(−e−x), −∞ < x < ∞;

Type II: G(x) =

{
0, x ≤ 0;
exp(−x−α), for some α > 0, x > 0;

Type III: G(x) =

{
exp(−(−x)α), for some α > 0, x ≤ 0;
1, x > 0.

If the maximum of an i.i.d. sequence {Xk} satisfies (8), then depending on which of the G’s
appears in the limit we say that {Xk} belongs to type I, II or III. If {Xk} belongs to type
III, then {Xk} needs to be bounded from above, and we are not interested in this case. Let
xF = sup{x : F (x) < 1}. Then {Xk} is
(A) of type I, if and only if there exists a strictly positive function g(t) such that

lim
t→xF

1 − F (t + xg(t))

1 − F (t)
= e−x for all x > 0.

(B) of type II, if and only if xF = ∞ and

lim
x→∞

tαP (X1 > tx)/P (X1 > x) = 1, for some α > 0 and for all t > 0.

In case of (A) we write {Xk} ∈ DG and in case of (B) we write {Xk} ∈ DF .
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The classes DG and DF are slightly to general for our investigations. E.g. DG still con-
tains bounded sequences {Xk} which we want to exclude from our analysis. We thus define
the following subclasses D′

G and D′
F which exclude such cases and provide some technical

simplifications for the proofs. We recall that a function q(x) is slowly varying (at ∞) if

lim
x→∞

q(λx)/q(x) = 1 for all λ > 0.

Definition 2 We say that {Xk} belongs to D′
G if there is an α > 0 and a slowly varying

function q(x), such that P (X1 > x) = exp(−xαq(x)) for x > 0. We say that {Xk} belongs to
D′

F if there is an α > 0 and a slowly varying function q(x) such that

P (X1 > x) = x−αq(x)

and
lim

x→∞
sup

t∈[1,(log x)2/α]

q(tx)/q(x) = 1. (9)

Remark 1 It is obvious that D′
F ⊂ DF and it is not hard to prove that D′

G ⊂ DG. We would
also like to stress that D′

G and D′
F are not very restrictive and contain all practically relevant

examples of sequences {Xk} belonging to DG or DF (see for example Corollaries 1-3).

To simplify the presentation we assume throughout this paper that W (t) = 0 for t < 0.
Anyway, only minor changes are required to obtain exactly the same results for W (t) =
1(−∞,0)(t)W

−(−t)+1[0,∞)(t)W
+(t), where W− and W+ are independent Brownian motions.

For the sake of simplicity we call the resulting W , defined now on the whole real line, again
a Brownian motion. Furthermore, throughout this paper log x is meant as max(1, log x).

We are now ready to formulate our first result.

Theorem 1 Let X = X1,X2, . . . be a system of i.i.d. random variables, and let W be a
Brownian motion independent of X. Assume that the Xk’s have a continuous distribution
function and that {Xk} ∈ D′

G. Then

lim sup
k→∞

W (Xk)√
2mk log log log k

= 1 a.s., (10)

where

mk = min

{

x ∈ R : F (x) = 1 − 1

k

}

. (11)

It is not difficult to show (see Section 3.2) that under the assumptions of Theorem 1

lim sup
k→∞

Xk

mk
= 1 a.s.,

and thus (s0
k) given by s0

k = mk is a UL-separating sequence for {Xk}. It is also quite easy
to show that under the assumptions of Theorem 1 we always have

lim
k→∞

log log mk

log log log k
= 1,
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and (10) can be replaced by

lim sup
k→∞

W (Xk)
√

2s0
k log log s0

k

= 1 a.s.,

showing that t0k =
√

2s0
k log log s0

k is a UL-separating sequence for {W (Xk)}.

Here are two special cases of Theorem 1.

Corollary 1 (Normal distribution) Let X = X1,X2, . . . be a system of i.i.d. random
variables having normal distribution with mean µ and variance σ. Let W be a Brownian
motion independent of X. Then

lim sup
k→∞

W (Xk)
√

2 (log k)1/2 log log log k

=
(
2σ2
)1/4

a.s.

Corollary 2 (Exponential distribution) Let X = X1,X2, . . . be a system of i.i.d. random
variables having exponential distribution with parameter λ. Let W be a Brownian motion
independent of X. Then

lim sup
k→∞

W (Xk)√
2 log k log log log k

=
1√
λ

a.s.

Theorem 2 describes the behavior of W (Xk) in the case of the Xk’s having polynomial
tails, which corresponds to type II behavior of max1≤k≤N Xk in the sense of extreme value
theory:

Theorem 2 Let X = X1,X2, . . . be a system of i.i.d. random variables, and let W be a
Brownian motion independent of X. Assume that the Xk’s have a continuous distribution
function and that {Xk} ∈ D′

F , and let α be defined like in (9). Then

(√

mk(log k)1/α(log log k)1/α+ε

)

k≥1

∈
{

U({W (Xk)}) if ε > 0,

L({W (Xk)}) if ε ≤ 0,
(12)

where mk (k ≥ 1) is defined as in (11).

Theorem 2 shows that the sequence (t0k) defined by

t0k =

√

mk(log k)1/α(log log k)1/α,

is UL-separating for {W (Xk)} with respect to (ak), when ak = (log log k)ε, with arbitrary
ε > 0. Furthermore under the assumptions of Theorem 2 we can show

k1/α−ε ≤ mk ≤ k1/α+ε

(for arbitrary ε > 0 and sufficiently large k). Thus we may also choose

t0k =
√

mk(log mk)1/α(log log mk)1/α,
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and similarly the left-hand side in (12) can be replaced accordingly. A routine application
of the Borel-Cantelli lemma together with our assumptions on the tails of the distribution of
the Xk’s shows that

s0
k = mk(log mk)

1/α(log log mk)
1/α

is UL-separating for {Xk} with respect to (ak), when ak = (log log k)ε, with arbitrary ε > 0.
This shows the relationship

t0k =
√

s0
k,

which is radically different from the one obtained in Theorem 1.

Here is a simple example for Theorem 2.

Corollary 3 (Pareto distribution) Let X = X1,X2, . . . be a system of i.i.d. random vari-
ables, and let W be a Brownian motion independent of X. Assume that the distribution
function F (x) of the Xk’s is

F (x) =

{
1 −

(
x0
x

)α
for x ≥ x0

0 for x < x0

for some x0 > 0 and α > 0. Then

(√

k1/α(log k)1/α(log log k)1/α+ε

)

k≥1

∈
{

U({W (Xk)}) if ε > 0,

L({W (Xk)}) if ε ≤ 0,

The following table summarizes possible relationships between the UL-separating se-
quences (s0

k) for the different sequence {Xk} we have seen in this paper and a UL-separating
sequences (t0k) for {W (Xk)}:

Xk = W2(k) t0k = 2
33/4

√

s0
k log log s0

k;

{Xk} ∈ D′
G t0k =

√

2s0
k log log s0

k;

{Xk} ∈ D′
F t0k =

√

s0
k.

Table 1: Relationship between (s0
k) and (t0k).

Remark 2 It is important to note that we are talking here about a possible relationship
between (s0

k) and (t0k) in Table 1. As we have seen UL-separating sequences are not unique,
and hence the transformation s0

k to t0k is also not unique.

3 Proofs

For the proofs we will use the following standard notation: [x] is the integer-part of some real
x. We write an ≪ bn if lim supn→∞ |an/bn| < ∞.
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3.1 Proof of the upper bound in Theorem 1

We have for k ≥ 1 and for ε > 0

P
(
Xk ≥ m[k1+ε]

)
=

1

[k1+ε]
.

Therefore by the Borel-Cantelli lemma

lim sup
k→∞

Xk

m[k1+ε]
≤ 1 a.s.

Our assumptions imply that mα
k q(mk) = log k, with slowly varying q. One easily obtains

m[k1+ε]

mk
→ (1 + ε)1/α, k → ∞.

As ε can be chosen arbitrarily small we conclude that

lim sup
k→∞

Xk

mk
≤ 1 a.s.,

and consequently by the law of the iterated logarithm for W we have

lim sup
k→∞

W (Xk)√
2mk log log mk

≤ 1 a.s.

3.2 Proof of the lower bound in Theorem 1

Let ε > 0 be arbitrary, but fixed. We choose θ > 1 so large that

2ε−α ≤ θ (13)

(and, to shorten notations, we will assume throughout this section that θ is an integer).
Set

in = e(θn) and In = {k : in−1 < k ≤ in} ,

and

Mn = min

{

x ∈ R : F (x) = 1 − 1

in

}

.

Then for sufficiently large n,

(log in)
1
α
−ε ≤ Mn ≤ (log in)

1
α

+ε.

Since for sufficiently large x

−(ε−1x)αq
(
ε−1x

)
≥ −2ε−αxαq(x),

by (13) for sufficiently large n

1 − F (ε−1Mn) ≥ e−(ε−1Mn)αq(ε−1Mn)

≥ e−2ε−αMα
n q(Mn)

≥ (1 − F (Mn))−2ε−α

=

(
1

in

)2ε−α

≫ 1

in+1
,
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and
Mn+1 ≥ ε−1Mn. (14)

Set further
ϕ(n) =

√

(1 − 4ε)2Mn log log log in

and

tn = (1 + ε)Mn−1,

B(n) = [(1 − ε)Mn, (1 + ε)Mn].

Informally speaking, we will show that with large probability maxk∈In Xk ∈ B(n), and prove

a lower bound for lim supn→∞
W ((1−ε)Mn)−W (tn)

ϕ(n) . To obtain this lower bound we will use the

fact that the random variables W ((1 − ε)Mn) − W (tn), n ≥ 1, are independent. Finally,
we will show that W (maxk∈In Xk) is almost of the same size as W ((1 − ε)Mn), provided
maxk∈In Xk ∈ B(n). Combining these results will prove Theorem 1.

There exists an n0 ≥ 1, such that all intervals B(n), n ≥ n0 are disjoint. We define events

An =

{

max
k∈In

Xk ∈ B(n)

}

∩ {W ((1 − ε)Mn) − W (tn) ≥ ϕ(n)}, n ≥ n0.

Then these events are independent, since the sets In are disjoint and since tn+1 > (1− ε)Mn.

The events (maxk∈In Xk ∈ B(n)) and (W ((1 − ε)Mn) − W (tn ≥ ϕ(n)) are also indepen-
dent for n ≥ n0, which implies

P (An) = P

(

max
k∈In

Xk ∈ B(n)

)

× P (W (1 − ε)Mn) − W (tn) ≥ ϕ(n)) . (15)

We have

P

(

max
k∈In

Xk ∈ B(n)

)

= P

(

max
k∈In

Xk ≤ (1 + ε)Mn

)

− P

(

max
k∈In

Xk < (1 − ε)Mn

)

.

Since q is slowly varying, for sufficiently large x,

q ((1 + ε)x) ≥ 1

(1 + ε)α/2
q(x).

Therefore, for sufficiently large n,

1 − F ((1 + ε)Mn) ≤ e−(1+ε)α/2(Mα
n q(Mn))

≤ (1 − F (Mn))(1+ε)α/2

=

(
1

in

)((1+ε)α/2)
,

and, since
in − in−1

i
((1+ε)α/2)
n

→ 0 as n → ∞,
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we obtain

P

(

max
k∈In

Xk ≤ (1 + ε)Mn

)

≥
(

1 −
(

1

in

)((1+ε)α/2)
)in−in−1

≥







(

1 −
(

1

in

)((1+ε)α/2)
)i

((1+ε)α/2)
n







in−in−1

i
((1+ε)α/2)
n

≥ 3

4
(16)

for sufficiently large n.

Similarly, since q is slowly varying, for sufficiently large x,

q ((1 − ε)x) ≤ 1

(1 − ε)α/2
q(x).

Thus

1 − F ((1 − ε)Mn) ≥
(

e−(Mα
n )q(Mn)

)((1−ε)α/2)

=

(
1

in

)((1−ε)α/2)
,

and, since
in − in−1

i
((1−ε)α/2)
n

→ ∞ as n → ∞,

we obtain

P

(

max
k∈In

Xk ≤ (1 − ε)Mn

)

≤







(

1 −
(

1

in

)((1−ε)α/2)
)i

((1−ε)α/2)
n







in

i
((1−ε)α/2)
n

≤ 1

4
(17)

for sufficiently large n.

Combining (16) and (17) we have shown

P

(

max
k∈In

Xk ∈ B(n)

)

≥ 1

2
(18)

for sufficiently large n.
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For sufficiently large n we have by (14)

P (W (1 − ε)Mn) − W (tn) ≥ ϕ(n)) = P (W (1 − ε)Mn − (1 + ε)Mn−1) ≥ ϕ(n))

≥ P (W ((1 − 3ε)Mn) ≥ ϕ(n))

= P
(

W (1) ≥
√

2(1 − 4ε)(1 − 3ε)−1 log log log in

)

≫ e−(1−4ε)(1−3ε)−1 log log log in
√

log log log in

≫ 1

n
1−4ε
1−3ε

√
log n

.

Combined with (15) and (18) this yields

P (An) ≫ 1

n
1−4ε
1−3ε

√
log n

, (19)

and hence
∞∑

n=n0

P (An) = ∞.

Thus we have shown that, by the second Borel-Cantelli lemma, with probability 1 infinitely
many events An occur.

Next we want to replace W (1 − ε)Mn) by W (maxk∈In Xk). We have

P

(∣
∣
∣
∣

min
t∈B(n)

W (t) − W ((1 − ε)Mn)

∣
∣
∣
∣
≥ 2

√
εϕ(n)

)

= P

(

max
t∈[0,2εMn]

W (t) ≥ 2
√

εϕ(n)

)

= 2P (W (2εMn) ≥ 2
√

εϕ(n))

= 2P (W (1) ≥
√

2(1 − 4ε) log log log in)

≪ n−2(1−4ε).

We can assume w.l.o.g. that 1 − 4ε > 1/2, and have, by the first Borel-Cantelli lemma, that
with probability 1 only finitely many events

(∣
∣
∣
∣

min
t∈B(n)

W (t) − W ((1 − ε)Mn)

∣
∣
∣
∣
≥ 2

√
εϕ(n)

)

occur.

To replace W ((1 − ε)Mn) − W (tn) by W ((1 − ε)Mn) we consider the following: since by
(14) for sufficiently large n

tn ≤ εMn

we have

P (W (tn) ≥
√

2εϕ(n)) ≤ P (W (Mn) ≥
√

2ϕ(n))

= P (W (1) ≥
√

2(1 − 4ε) log log log in)

≪ n−2(1−4ε).

11



Thus, assuming again w.l.o.g. that 1 − 4ε > 1/2, by the first Borel-Cantelli lemma with
probability 1 only finitely many events

(

W (tn) ≥
√

2εϕ(n)
)

occur.

This means, that with probability 1 infinitely many events
{

max
k∈In

Xk ∈ B(n)

}

∩ {W ((1 − ε)Mn)) − W (tn) ≥ ϕ(n)}

∩
{∣
∣
∣
∣

min
t∈B(n)

W (t) − W ((1 − ε)Mn))

∣
∣
∣
∣
≤ 2

√
εϕ(n)

}

∩
{

W (tn) ≤
√

2εϕ(n)
}

occur. Therefore, with probability one, also infinitely many events
{

W

(

max
k∈In

Xk

)

≥ (1 − 4
√

ε)ϕ(n)

}

occur. Thus we have

lim sup
n→∞

W (maxk∈In Xk)

(1 − 4
√

ε)ϕ(n)
≥ 1 a.s.,

which implies

lim sup
k→∞

W (Xk)√
2mn log log log in

≥ (1 − 4
√

ε)
√

1 − 4ε a.s.

Since ε can be chosen arbitrarily small, this proves Theorem 1.

3.3 Proof of the upper bound in Theorem 2

Let θ > 1 be arbitrary, but fixed, and set

in = [θn] and In = {k : 1 ≤ k ≤ in},
and

Mn = min

{

x ∈ R : F (x) = 1 − 1

in

}

.

Let ε > 0 be fixed and set

ϕ(n) =
√

Mn(log in)1/α(log log in)1/α+ε.

Then for any n ≥ 1 and

Sn = 2Mn(log in)1/α(log log in)1/α−1+ε,

Tn = (1 + α)Mn(log in)1/α(log log in)1/α+ε(log log log in)−1.

we have

P

(

max
k∈In

W (Xk) ≥ ϕ(n)

)

≤ P

(

max
t∈[0,Sn]

W (t) ≥ ϕ(n)

)

(20)

+P

({

max
k∈In

Xk ≥ Sn

}

∩
{

max
t∈[0,Tn]

W (t) ≥ ϕ(n)

})

(21)

+P

(

max
k∈In

Xk ≥ Tn

)

. (22)

12



The term (20) is bounded by

2P (W (Sn) ≥ ϕ(n)) = 2P (W (1) ≥
√

2 log log in) ≪ 1

(log in)2
(23)

For sufficiently large x and y ∈ [1, (log x)2/α], by (9),

q(yx) ≤ (1 + ε)q(x).

Thus for sufficiently large n for all y ∈ [1, (log Mn)2/α],

1 − F (yMn) ≤ 1

yαMα
n

q(yMn)

≤ (1 + ε)

(
1

yα

1

Mα
n

q(Mn)

)

≤ (1 + ε)
1

yα
(1 − F (Mn))

= (1 + ε)
1

yα

1

in
,

and

P

(

max
k∈In

Xk ≥ yMn

)

≤ 1 −
(

1 − (1 + ε)
1

yα

1

in

)in

≤ 1 −
(

1

e

) (1+ε)2

yα

≤ (1 + ε)2

yα
(24)

Since Sn ≤ Tn and Tn ≤ Mn(log Mn)2/α for sufficiently large n, the term (21) is bounded by

2P

(

max
k∈In

Xk ≥ Sn

)

P (W (Tn) ≥ ϕ(n))

≪ 1

log in(log log in)α(1/α−1+ε)

1

(log log in)1+α
. (25)

The term (22) is bounded by

≪ (log log log in)α

log in(log log in)1+αε
. (26)

Combining the estimates (23), (25) and (26) for (20), (21) and (25), we obtain

P

(

max
k∈In

W (Xk) ≥ ϕ(n)

)

≪ 1

log in(log log in)1+ε1

for some appropriate (small) ε1 > 0. In particular

∑

n≥n0

P

(

max
k∈In

W (Xk) ≥ ϕ(n)

)

< ∞,

13



and by the first Borel-Cantelli lemma with probability 1 only finitely many events
{

max
k∈In

W (Xk) ≥ ϕ(n)

}

occur. Since

lim sup
n→∞

ϕ(n + 1)

ϕ(n)
< ∞,

this implies

lim sup
k→∞

W (Xk)
√

mk(log k)1/α(log log k)1/α+ε
< ∞ a.s.

3.4 Proof of the lower bound in Theorem 2

We will use the following version of the second Borel-Cantelli lemma (which is due to Kochen
and Stone [8] and Spitzer [11]; cf. also [10]):

Lemma 1 Let A1, A2, . . . be events such that

∞∑

n=1

P (An) = ∞.

If additionally

lim inf
n→∞

∑n
k,l=1 P (AkAl)

(
∑n

k=1 P (Ak))
2 = L,

then

P (lim sup
n→∞

An) ≥ 1

L
.

Let ε > 0 be given. Choose θ > 1 such that

θ >
8

εmin(α, 1)
(27)

and set
in = [θn] and In = {k : in−1 < k ≤ in} .

Set further

Mn = min

{

x ∈ R : F (x) = 1 − 1

in

}

and

ϕ(n) =
√

Mn(log in)1/α(log log in)1/α(log log log in)1/α.

and

Tn = Mn(log in)1/α(log log in)1/α(log log log in)1/α,

B(n) = [Tn, (1 + ε)7/αTn].

Then for some appropriate n0 ≥ 1 the intervals B(n), n ≥ n0 are disjoint, and by (9) and
(27) we have

Mn

Mn+1
≤ ε,

Tn

Tn+1
≤ ε and

ϕ(n)

ϕ(n + 1)
≤

√
ε (28)

14



for sufficiently large n.

Define events

An =

{

max
k∈In

Xk ∈ B(n)

}

∩ {W (t) ∈ [ϕ(n), 2ϕ(n)] for all t ∈ B(n)} , n > n0.

Then the events An, n > n0 are not independent, but the events

{

max
k∈In

Xk ∈ B(n)

}

, n ≥ n0

are independent since the sets In, n ≥ n0 are disjoint.
For sufficiently large x and y ∈ [1, (log x)2/α] by (9)

q(yx) ≥ (1 − ε)q(x).

Thus for sufficiently large n for all y ∈ [1, (log Mn)2/α],

1 − F (yMn) ≥ 1

yαMα
n

q(yMn)

≥ (1 − ε)

(
1

yα

1

Mα
n

q(Mn) +
1

yα

)

≥ (1 − ε)

yα
(1 − F (yMn))

= (1 − ε)
1

yα

1

in
,

and, since by (27) for sufficiently large n

in − in−1

in
≥ (1 − ε),

we obtain (if w.l.o.g. ε is sufficiently small)

P

(

max
k∈In

Xk ≥ yMn

)

≥ 1 −
(

1 − (1 − ε)
1

yα

1

in

)in−in−1

≥ 1 −
(

1

e

) (1−ε)3

yα

≥ (1 − ε)6

yα

≥ 1

(1 + ε)4yα
.

Similar to (24) we can get

P

(

max
k∈In

Xk ≥ yMn

)

≤ (1 + ε)2

yα
,
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and therefore we get (since Tn ≤ Mn(log Mn)2/α for sufficiently large n)

P

(

max
k∈In

Xk ∈ B(n)

)

≥ 1

(1 + ε)4 log in log log in
− (1 + ε)2

(1 + ε)7 log in log log in log log log in

≥
(

1

(1 + ε)4
− 1

(1 + ε)5

)

︸ ︷︷ ︸

>0

1

log in log log in log log log in
.

for sufficiently large n. On the other hand, it is easy to see that

P (W (t) ∈ [ϕ(n), 2ϕ(n)] for all t ∈ B(n))

≥ P (W (Tn) ∈ [5/4ϕ(n), 7/4ϕ(n)]) − P

(

max
t∈B(n)

W (t) − W (Tn) ≥ 1

4
ϕ(n)

)

= P (W (1) ∈ [5/4, 7/4]) − 2P

(

W ((1 + ε)7/α) ≥ 1

4

)

≥ 1

20
, (29)

if we assume (w.l.o.g.) that ε is sufficiently small.

Thus

P (An) ≫ 1

log in log log in log log log in

and ∑

n>n0

P (An) = ∞. (30)

Let n1 < n2 be two positive integers. Then

P (An1An2)

= P

({

max
k∈In1

Xk ∈ B(n1)

}

∩ {W (t) ∈ [ϕ(n1), 2ϕ(n1)] for all t ∈ B(n1)}∩

∩
{

max
k∈In2

Xk ∈ B(n2)

}

∩ {W (t) ∈ [ϕ(n2), 2ϕ(n2)] for all t ∈ B(n2)}
)

= P

(

max
k∈In1

Xk ∈ B(n1)

)

× P

(

max
k∈In2

Xk ∈ B(n2)

)

×

×P ({W (t) ∈ [ϕ(n1), 2ϕ(n1)] for all t ∈ B(n1)}∩
∩ {W (t) ∈ [ϕ(n2), 2ϕ(n2)] for all t ∈ B(n2)}) , (31)
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and

P ({W (t) ∈ [ϕ(n1), 2ϕ(n1)] for all t ∈ B(n1)}∩
∩ {W (t) ∈ [ϕ(n2), 2ϕ(n2)] for all t ∈ B(n2)})

≤ P ({W (t) ∈ [ϕ(n1), 2ϕ(n1)] for all t ∈ B(n1)}∩
∩
{

W (t) − W ((1 + ε)7/αTn1) ∈ [ϕ(n2) − 2ϕ(n1), 2ϕ(n2)] for all t ∈ B(n2)
})

= P (W (t) ∈ [ϕ(n1), 2ϕ(n1)] for all t ∈ B(n1)) ×
×P

(

W (t) − W ((1 + ε)7/αTn1) ∈ [ϕ(n2) − 2ϕ(n1), 2ϕ(n2)] for all t ∈ B(n2)
)

.(32)

By (28) for sufficiently large n1, n2

Tn1

Tn2

≤ ε and
ϕ(n1)

ϕ(n2)
≤

√
ε,

and if (w.l.o.g.) ε is sufficiently small

(1 + ε)7/α ≤ 8

α
ε,

which implies by (27)
(1 + ε)7/αTn1 ≤ εTn2 .

Therefore, if we assume w.l.o.g. that ε is so small that

2P (|W (1)| ≥ α1/28−1/2ε−1/4) ≤ ε1/4 and P
(

W (1) ≥ ε−1/4
)

≤ ε1/4,

we get, using (29),

P
(

W (t) − W ((1 + ε)7/αTn1) ∈ [ϕ(n2) − 2ϕ(n1), 2ϕ(n2)] for all t ∈ B(n2)
)

≤ P
(

W (t) ∈ [(1 − 3ε1/4)ϕ(n2), 2ϕ(n2)] for all t ∈ B(n2)
)

+P
(

W ((1 + ε)7/αTn1) ≥ ε1/4ϕ(n2)
)

≤ P (W (t) ∈ [ϕ(n2), 2ϕ(n2)] for all t ∈ B(n2))

+P
(

W (Tn2) ∈ [(1 − 4ε1/4)ϕ(n2), (1 + ε1/4)ϕ(n2)]
)

+P

(

max
t∈B(n2)

|W (t) − W (Tn2)| ≥ ε1/4ϕ(n2)

)

+P
(

W (εT (n2)) ≥ ε1/4ϕ(n2)
)

≤ P (W (t) ∈ [ϕ(n2), 2ϕ(n2)] for all t ∈ B(n2))

+P
(

W (1) ∈ [(1 − 4ε1/4), (1 + ε1/4)]
)

+P

(

max
t∈[0,8ε/α]

|W (t)| ≥ ε1/4

)

+P
(

W (1) ≥ ε−1/4
)

≤ P (W (t) ∈ [ϕ(n2), 2ϕ(n2)] for all t ∈ B(n2)) + 7ε1/4

≤
(

1 + 140ε1/4
)

P (W (t) ∈ [ϕ(n2), 2ϕ(n2)] for all t ∈ B(n2)) . (33)
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Thus, combining (31), (32) and (33), we have

P (An1An2) ≤
(

1 + 140ε1/4
)

P (An1)P (An2).

By Lemma 1 and (30), with probability ≥
(
1 + 140ε1/4

)−1
infinitely many events An occur.

Therefore with probability ≥
(
1 + 140ε1/4

)−1

lim sup
k→∞

W (Xk)
√

mn(log k)1/α(log log k)1/α(log log log k)1/α
≥ 1.

Since ε > 0 was arbitrary, we obtain

lim sup
k→∞

W (Xk)
√

mn(log k)1/α(log log k)1/α(log log log k)1/α
≥ 1 a.s.,

and

lim sup
k→∞

W (Xk)
√

mn(log k)1/α(log log k)1/α
= ∞ a.s.,

which proves Theorem 2.

References

[1] K. Burdzy. Some path properties of iterated Brownian motion. In Seminar on Stochas-
tic Processes, 1992 (Seattle, WA, 1992), volume 33 of Progr. Probab., pages 67–87.
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