Irregular discrepancy behavior of lacunary series

Christoph Aistleitner *

Abstract

In 1975 Philipp showed that for any increasing sequence (nj) of positive integers
satisfying the Hadamard gap condition ngy1/ni > ¢ > 1,k > 1, the discrepancy Dy of
(nkx) mod 1 satisfies the law of the iterated logarithm

1/4 <limsup NDy(npz)(Nloglog N)™/2 < C, a.e.

N—o0

Recently, Fukuyama computed the value of the lim sup for sequences of the form n; = 6%,
6 > 1, and in a preceding paper the author gave a Diophantine condition on (ny) for the
value of the limsup to be equal to 1/2, the value obtained in the case of i.i.d. sequences. In
this paper we utilize this number-theoretic connection to construct a lacunary sequence
(ng) for which the limsup in the LIL for the star-discrepancy D3 is not a constant a.e.
and is not equal to the limsup in the LIL for the discrepancy Dy .

1 Introduction and statement of result

Given a sequence (z)r>1 of real numbers, the values

ey Lo ()
DN:DN($1,...,$N): sup k=1 EV’) _(b—a),
0<a<b<l
N
Lo ((z
Dy = Dy(x1,...,xN) = sup 2=t %)“ k) —a‘
0<a<1

are called the “discrepancy”, resp. “star discrepancy” of the first NV elements of (xj)x>1. Here
1j, ) denotes the indicator function of the interval [a,b), and (-) denotes fractional part. A
sequence (z)r>1 is called uniformly distributed mod 1 if Dy(z1,...,25) — 0 as N — oc.
By a classical result of H. Weyl [14], for any increasing sequence (ny)g>1 of positive integers,
(ngx)k>1 is uniformly distributed mod 1 for almost all real z in the sense of the Lebesgue
measure. The precise order of magnitude of the discrepancy of (ngz) is known only for a
few sequences (ng), for example for n; = k (Khinchin [9], Kesten [8]), and for lacunary
sequences (ny) (Philipp [10]). Specifically, Philipp proved that if (ny) satisfies the Hadamard
gap condition
Ng+1/nk > q > 1, k=1,2...
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then ) ND
< limsupM <C,
42 Nooo V2N loglog N
where Cy is a positive number depending on ¢. (For simplicity, we use the notation Dy (n;z)
instead of Dy (niz,...,nyz).) Comparing with the Chung-Smirnov law of the iterated loga-

rithm ND

lim sup _ NDw(&) =1/2 a.e. (2)

Nooo V2N loglog N

(see e.g. [11], p. 504) for the discrepancy of i.i.d. sequences ({)k>1, Philipp’s result shows that
the sequence ((nix))r>1 behaves like a sequence of i.i.d. uniform random variables in [0, 1).
The analogy between ((nxx))r>1 and independent r.v.’s is, however, not complete. Erdés and
Fortet (see [7], p. 646) showed that for nj = 28 — 1 and f(z) = cos 2wz + cos 47 the normed
sum N~1/2 Zivzl f(ngz) has a nongaussian limit distribution and it is easy to see that the
sequence f(ngx) also fails the LIL, namely

N
lim sup Zk:l 1 ()

Nooo V2N loglog N

As the theory shows, the asymptotic behavior of the sequence (f(nxx))g>1 is determined by
an interplay between the probabilistic properties of ({ngx)), the analytic properties of f and
the number-theoretic properties of the sequence (ny). This makes the study of Zé\le f(ngz)
a very difficult problem; in particular, the value of the limsup in (1) has been found only for
a few sequences (ny) and it is an open question if the limsup is always a constant a.e.

Very recently, Fukuyama [6] computed the value of the limsup for the sequences ny, = 6%,
where 6 > 1, not necessarily integer. Put

a.e., (1)

= /2| cos iz a.e.

NDy(0* ND3 (6%
Y9 = lim sup ﬂ and Xj = limsup M
Nooo V2N loglog N Nooo V2N loglog N

Among others, Fukuyama proved that

Yo = EEZ% ae. if0" gQforallreN,

Yo = X5= @ a.e.,

Yo = Xp= (29 +(;)f(f)g 2) a.e. if 6 > 4 is an even integer,
Yo = X Vo1 a.e. if 8 > 3 is an odd integer.

N

In our recent paper [1] we proved that if (ny),>1 satisfies a number theoretic condition slightly
stronger than what is required for the validity of the central limit theorem for Zi\;l f(ngx),
see [2], the limsup in (1) is equal to 1/2. This covers, for example, the case when ny1/ng — 6,
where 6" is irrational for r = 1,2,.... Note that in all cases, where the exact value of the
lim sup has been explicitly calculated, it is a constant a.e. and it is the same for the discrep-
ancy and the star discrepancy.



We want to mention that the best possible lower bound in (1) is still unknown. In all
examples where the exact value of the limsup is known, it is > 1/2 a.e. for both the dis-
crepancy and the star discrepancy, and it is unclear if this always has to be the case for
lacunary (ny). It is also worth mentioning that recently Fukuyama [5] constructed a se-
quence of positive integers (ny) satisfying the linear growth condition 1 < ngy; — ng < 5,
for which the value of the lim sup in the LIL for the discrepancy of (ngz) is not a constant a.e.

The purpose of this paper is to construct a Hadamard lacunary sequence (n)g>1 such
that ND
NEx
lim sup N (2)

N—ooo V2N loglog N

is not a constant a.e. Specifically, let

nop1 =28, ngp=2"T1-1 (k=1,2..) (3)

Then (ng) = (2,3,16,31,512,1023,...). It is easy to see that ngiq1/ng > 3/2, k =1,2,....
We prove

Theorem 1 For the sequence (ny),>1 defined by (3) we have

. NDN(nka:) 3
limsup————— = —— a.e.
Nooo V2N loglog N 42
and
ND?
limsup—N(nkx) U*(z) a.e.,
Nooo V2N loglog N
where

—_ 0<z<3/8 5/8<z<1

*(z) = : 3/8<x<1/2

1/2 <z <5/8.
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Figure 1: ¥*(x)

Interestingly, the limsup in the LIL for the discrepancy Dy (ngz) is a constant, leaving the
possibility open that this happens for all Hadamard lacunary sequences (ny). On the other
hand, Theorem 1 disproves a conjecture of Philipp [10, p. 242]. Philipp conjectured that for

any lacunary sequence (ng)

. NDN(nkx)
limsup ———=— < a.e.,
N—ooo V2N loglog N
where )
1
) Ih (Z]kvzl (L1g ) (ng) — (b — a))) dz
C*= sup limsup .
0<a<b<l N—oo N

However, for the sequence (ny) defined in (3) forany 0 <a <b<1

fol (Zsz1 (Liap) (niz) — (b — a)))2 dx

. 2
Jim. = oy~ - )2 = (b— )((1 — (b~ @),
and therefore 1
C?’= sup (b—a)(1—-(b—a))=-.
0<a<b<1 4
This would imply
. NDp(ngz) 1
limsup ————= < = a.e.,
Nooo V2N loglog N = 2

contrary to the result of Theorem 1.

To prove our result we use a “discrepancy splitting” technique due to Fukuyama [6],
together with methods developed in one of our earlier papers [1], which utilize the connec-
tion between the number of solutions of certain Diophantine equations and the probabilistic

behavior of Dy (ngx).



2 Main section

Lemma 1 For any function f satisfying

1
flx+1)= f(z) and /Of(:n)d:nzo

we have , 5 1 0
[ 10w do| < 5 [ 1f@) do < S0

for any real numbers a < b and any A > 0. In particular

> o

2 b
< X and / sin(2rA\z) dx| <

b
/ cos(2m\x) dx

Proof. The lemma follows from

b

b
1
/ f(Az) de = — flx) de. O
a A Aa
For N > 1,5 > 1,5 > 1,v € Z we define
A(N,j,j,,l/) = #{1 S k7k, S N7 (]7k) 7é (j,7k/) jnk _j/nk’ - V}'
Lemma 2 For1<j <j<d

N p . ./ -/

- Nyo@) ifj=2j and j =v
’ _ 2

A(N,j, 5" v) { O(1) otherwise

where the tmplicit constant may only depend on d.

The proof of this lemma will be given in Section 3.

We write I, ;) for the indicator function of the interval [a,b), extended with period 1 and
centered at expectation, i.e.

I[a,b)(:E) = ]l[a,b)(<x>) - (b - CL), z eR.

For nonnegative r € Z, N > 1 and a sequence (xj)r>1 of reals we define

N
(<27) _ > k=1 Lo ) (k)
Dy (1,...,zN) = sup =
0<a<b<l, b—a<2—T N
N
pE ry) = e > k=1 Lay2-7 az2-7) (k)
N Lyeeen N a1,a2€7,0<a; <az <2 N
and N
- > k=1 Ljo,ar2-7) (@k)
D52 ) (g, - =1 Do .
N (xl’ ’ :L‘N) a 62%12%(1 <2r N




It is easy to see that always

D¢* " <Dy <D +2D (4)
and B - .
D}k\/(22 ) <D}y < D?V(ZQ )+D(<2 ). (5)

The idea to split the discrepancy Dy into two parts D](V— ") and D](VZTT) to prove an exact
LIL for the discrepancy of (nxx) is due to Fukuyama [6].

We write

o) (@ Za] (a,b)cos 2mjx + bj(a,b) sin 2mjz
7j=1

for the Fourier series of Ij, ), and

(a,b) cos 2mjx + bj(a,b) sin 2mjx

”M:“

for the d-th partial sum of this Fourier series. Then

1 . . . .
2w 5b — 2
aj = aj(a,b) =2 / Tjo. (%) cos 2mjar do = 207 _SRTIG sy
0 ™7
and .
— 2mw7b 219
bj =bj(a,b) = 2/ I ) () sin 27jz dx = cosenj —!_COS Ma, j>1.
0 ™
In particular
1 1
|aj| ; LA ; (6)
For0<a<b<1, z€Randd>1 we define functions
1 (& ld/2]
Olap),d(T) = 3 Z a + b2 Z (ajagj + bjbaj) cos 2mjx + (ajbo; — ag;b;) sin2mjx | |
7=1 7j=1

1 1
o0,a)(z) = a(l —a)— 5/0 Tjo1-a)(t) - Tjo,(2a)) (x — 1) dt,
Tlap)(T) = Ojp—a)(z —a).

We assert some properties of these functions:



Lemma 3 Forz,y €[0,1] and0<a<b<1

* 0)0,0)(T) =0p1-a)(l —2), (7)
1 1

* 0, () =2a(1 —a)— 5 /0 Lio,1-a)(t) - Ljg 20y ((x — 1))dt, a <1/2 (8)
® Ola,b) (‘T) >0, (9)
o |0l () — oyl <lz—yl, (10)
* [000,a+5)(T) — 0)0,0)(2)] < 20]6], 0<a+0<1, (11)
® 0lats p100) () — O py(@)] < 21(]01] + [d2]), 0<a+d <b+d <1 (12)

== l iY—1r 49—T1 13
* ocacher VIl (@) = 1 ea B o VOl 20 (); (13)
¢ S \Oa(@) = lm o mwax /o) (@), (14)

3
° SUp 4/ Ojep (@) = ——=, 15
0§a<lg<1 ) (@) 44/2 (15)
e su o0.0) () = ¥ (z 16
s \fop0(o) = (@) (10

Proof of (7): Using the identity Ijg .y (z) = —Tjg1_q)(1 — x) we get

1 1
op1-ay(1—2)=(1-a)(l-(1-a))— 5/0 Tio1—(1-a)) () - Ljo,20—ay) (1 — ) — 1) dt

1 1
=a(l-a) -5 /0 To1—a)(1 = 1) - Xjg 2ay) (z + 1) dt

1 1
=a(l—a)— 3 /0 To,1-0)(8) - Tjo,2a)) (x — 5) ds = 07y q)(7).

Proof of (8): Since by assumption a < 1/2,

1 1
o)) = a(l—a)— 5/0 T01-a)(t) - Tjo,(20)) (x — t) dt

1
= a(l—a)- %/0 (Ljo,1-0)(®) = (1 = a)) - (Ljo,20)((x — ) — 2a) dt

1 1 [t
= all=a)+ 5023 [ 10100 Lpa(@ 1) d.
Proof of (9): In view of (7) it suffices to prove (9) for oy 4),0 < a < 1/2. Using (8) we have

1 1
o) = 2001 =) = 5 [ L1 Boa (o 1) i

>2a(l —a) — %min{(l —a),2a} > 0.

Proof of (10): By the definition of o, ) and (7) it suffices to consider oy ),a < 1/2.
1 /1
|070,0) (%) = 010,0)(W)] < 5/0 [T0.20) ({& — 1)) = Lo 20)({y — 1)) | dt < |2z — .

7



Proof of (11): Assuming 0 <a <1/2 and 0 <a+ ¢ < 1/2 we have

010,046 (T) — 00,a)(7)]

< 2la+0)(1—a—9)—a(l—a)
4 / 0.1ams) (1) - L0209 (& — 1) — To1—a () - Loy (& — 1))] dt
< 216]-12a+6— 1]+ 28] < 10/6].

Ifo<a<1l/2and 1/2<a+ ¢ <1, then

|o0,a+6) (@) — 0j0.0)(@)| < oj0,1/2)(@) = T0.0) ()| + |070,1/2) (@) — T(0,a16) ()]
< 10[8] + |op,1/2) (1 — ) — 09 1-a—s) (1 — )]
< 20/4).

Together with property (7) this yields (11).
Proof of (12): Using (10) and (11) we get

’U[a+51,b+52)(x) — Ola,b) (‘T)’
= 000,b46,—a—s1) (T — @ — 61) — 0)gp_a)(x — a)]|

< 00 p+60—a—or) (T — a = 01) — O p—a) (x — @ — 01)|
+ |010,p—a) (T — @ — 81) — 079 p—q)(z — a)|
< 20(|61 ]+ |02]) + |61] < 21(|61] + [d2])-

Proof of (18) and (14): These equations are consequences of (12).
Proof of (15): Again we assume a < 1/2. For 2 < 2a we have

1
o0,a)(z) = 2a(l—a)— 5/0 To1-a)(t) - L2y ((x — 1)) dt

1
= 2a(1 —a)— / 0,1=a) () - L{[0,0)U[a+1—24,1)} (1) dt
= 2a(1—a)-1/2P{[0,1 —a)N([0,2)U[z+1—2a,1))}
= 2a(l —a)—1/2 (min(1 — a,z) + max(0,a — x)) (17)
< 2a(l—a)—a/2<

=32
(here and in the sequel P denotes the Lebesgue measure on (0,1)), and for z > 2a we get

o0,0)(r) = 2a(l —a)—1/2 (min(l —a,r) — (v — 2a)) (18)

9
< 2a(l —a)—a/2 < —
al—a)—a/2 <

in a similar way. In view of (7) and the definition of oy, this yields

J[a,b)($)§3%a 0<a<b<l1, ze€]0,1],
which implies
3
sup Oapy(z) < ——=. 19
0<a<b<1 0)(®) 42 (19)



On the other hand, for 0 < < 3/8, using (17) we find
9

o10,3/8)(®) = 32 (20)
Therefore, since by definition o743 () = 019 y—q) (T — a),
su Oap () > max (o x),0 x),o x
0§a<12<1 [,b)( ) \/ ( [0,3/8)( ) [3/8,6/8)( ) [5/8,1)( ))
= \/maX (0[0,3/8) (@), 070,3/8) (€ = 3/8), 070,3/8) ( — 5/8))
3

= —, € [0,1]. 21
e “elol (21)

Combining (19) and (21) proves (15).
Proof of (16): By (17), (18) and (20)
3

su ()= ——=U%2z
0<aI<)1 70, )( ) 44/2 (@)

for 0 <z < 3/8 and 5/8 < = < 1. For the other values of z, let us, for example, assume
x <2aand z € [3/8,1/2], a € [0,1/2]. Then we have
o0,a)(x) = 2a(1—a)—-1/2 (min(l - a,r) + max(0,a — z))
= 2a(l —a)—z/2 —max(0,a —x)/2
< 22(l—2z)—x/2,

with “=" instead of “<” in the last line if @ = z. Considering all possible cases for a and x
finally yields

9/32 if0<z<3/8or5/8<zr<1
sup oq)(7) = § 2z(l —x) —x/2 if3/8 <x<1/2
O<a<l 20(1 —2) — (1—2)/2 if1/2<z<5/8
which implies (16). O
Lemma 4

-1
lotaty.a = otan o, < 3d
Proof: After some calculations, using some standard trigonometric identities, we find
(ajag; + bjbaj) cos 2mjx + (ajbaj — ag;b;) sin 2mjx

= % (cos 2mj(a — ) + cos 2mj(b — x)) (sin(a — b)jm)?.

This shows
Tla),d(T) = O0p—a),d(T — a).

Also, by definition we have o[, (*) = 09 p—q) (¥ — a). Thus for the proof of the lemma it
suffices to consider intervals of the form [0,a). We observe that
sin272ja  a;(0, (2a))

) — = ) > 1
a2;(0,a) w2 5 v 121




and similarly b2;(0,a) = b;(0, (2a))/2. By a classical result in Fourier analysis (“convolution

theorem”), for
[o¢]
flx) ~ Z a;j cos 2mjx + b; sin 2mjx
j=1
and
o0
g(x) ~ Z ¢j cos 2mjx + d; sin 2wy,
j=1
the function
o
Z(ajcj — b;d;) cos 2mjx + (ajd; + bjc;) sin 2mx
j=1

DO | =

is the Fourier series of .
/0 F(gle — 1) dt.

Thus, observing that

a;j(0,1 —a) = —a;(0,a) and b;(0,1—a)=">;(0,a), ac(0,1),j>1,

we see that

ld/2]

1

3 Z (a;(0,a)az;(0,a) + b;(0,a)bs; (0,a)) cos 2mjx
j=1

—I-(aj(O, a)ba;(0,a) — a;(0,a)b;(0, a)) sin2mjx
1 ld/2]

= —= > (a;(0,1 = a)a;(0,(2a)) — b;(0,1 — a)b;(0, (2a))) cos 2mjx
4

J=1

+(a;(0,1 — a)b;(0, (2a)) + a;(0, (2a))b; (0,1 — a)) sin 27 ja

is the |d/2]-th partial sum of the Fourier series of

1 /1
—3 /0 Ljo,1-0) ()Xo, (2a)) (x — 1) dt = 00,0 (x) — a(1 — a).
Thus, writing a; and b; for a;(0,a) and b;(0, a), respectively, and using (6) we have
1 o0 o
HU[O,a),d — 0’[07a)Hoo < 5 Z (CL? + bg) + Z \ajagj\ + ‘bjbgj‘ + ‘ajbgj’ + ’agjbj‘

Jj=d+1 j=ld/2]+1

sl Xt X%
j=d+1 j=ld/2]+1

< 3. O

Lemma 5 Let r(x) be a function of the form

o0
r(z) = Z a; cos 2mjx + b; sin 2mjx,
j=d+1

10



where
la;| <571 and by <57, j>d+1.

Then

Z]kvzl r(ngz)
lim sup < C|rlls < Cd™* a.e.,

Nooo V2N loglog N —

where C' is a positive constant.
This is Lemma 3.1 of [1].

Lemma 6 For any fixed r > 0

(<277)
ND
lim sup N ()

N—oco V 2N log log N

where C' is a positive constant.

< COrt a.e.,

This is Lemma 3.3 of [1].

Lemma 7 For 0 <a <b<1 and sufficiently large d

' ‘Zszl P[a,bxd(nkw)‘
lim sup =1/ 0lap),a(®) a.e.
N—oo V2N loglog N e

The proof of this lemma will be given in Section 4.

Corollary 1

. ‘Z]kvzl o) (nkﬂf)‘
lim sup = 1/ 0ap)(T) a.e.

Nooo V2N loglog N

Corollary 2 For any fized v > 0

ND(Z27T)
lim sup N () 5

Nowo V2NloglogN 4,2

<Cc27"/? a.e.

and
D* (=277

lim sup N (n2) — U*(x)

N—ooo V2Nloglog N

where C' is a positive constant.

<C27/? a.ce.,

Any function I, (z) can be written as a sum of a trigonometric polynomial py, ) 4(7)
and a remainder function r(z), both of which satisfy the conditions in Lemma 7 and Lemma
5, respectively. Lemma 4, Lemma 5 and Lemma 7 imply

_ vt Lo (nkx)( _ ‘fozl P[a,b),d(nkw)‘ _ (fozl r(nge)
lim sup < limsup 4+ limsup ——

Nooo V2N loglog N N—so0 V2N loglog N Nooo V2N loglog N
U[a,b),d(x) + Cld_1/4 a.e.

IN

< Ola,b) (x) + ng_1/4 a.e.

11



and

S T (nkﬂf)‘ ‘E;ngzl p[a,b),d(nk$)‘ ‘Z]kvzl r(ngx)
lim sup lim sup —limsup ———
Nooo V2N loglog N N—oo V2N loglog N Nooo V2N loglog N
O'[a7b)7d($) — ng_1/4 a.e.

Y

> OJa,b) (J}) - C4d_1/4 a.e.
for constants C1, Cy, C3,Cy. This yields Corollary 1, since d can be chosen arbitrarily.

Corollary 2 follows from Corollary 1, Lemma 3 and the definitions of D](VZTT) and D?V(ZTT').

In fact, by Corollary 1

D(Zzir)
lim sup N (k) max Olio—r jo-ry(T)  a.e.,

Nooo V2N loglog N - 4, €Z,0<i<j<2"
and by (12) and (15)

3
'4\/5 T ger o V 2z (@)

su g xr) — max O90—r ;90—\ T
0§a<12<1\/ (a,b) () e A o\ Ttz g2 y(2)

< Va4 27,

which proves the first part of Corollary 2. The second part, concerning D}"V(ZTT), is deduced
in the same way.

Corollary 2 and Lemma 6, together with (4) and (5), prove Theorem 1, since

lim sup N Dy ()

3
N—ooo V2N loglog N a 4\/5‘

ND(227T') D
lim sup N (i) — 5 + 2lim sup N (ng2)
Neoo V2NloglogN 42 Nooo V2Nloglog N

< 027241200 50 ae. as r — 00,

(277)

and similarly

N D3
lim sup _NDy(mer) U*(z)
N—oco V 2N log IOgN
ND* (=277 D(Szir)
< |limsup N (i) U*(z)| + limsup N ()
Nooo V2N loglog N Nooo V2N loglog N
< C27"?4C0r 50 ae. as 1 — 00.

Therefore it remains only to proof Lemma 2 and Lemma 7. The proof of Lemma 7 (given in
Section 4) is crucial. Lemma 2 will be shown in the following Section 3.

12



3 Proof of Lemma 2

The proof of Lemma 2 is simple number theory. We subdivide it into three parts (Lemmas
8-10), which together yield the desired result.

Lemma 8 For1<j7 <j<dandal N>1
A(N7j7j,70) SC'

(Remark: Here and in the sequel, C denotes appropriate positive numbers, not always the
same, that may only depend on d).
Proof: We call two indices a “pair” if they can be written in the form

20-1, 21 for some [>1. (23)

Then for k, k" > ko(d) we have

"k S d or b o 1
N N d
if k # k' are not a pair. Thus for k, k' > ko(d)
gng = j'ng, where 1<j <j<d, k#F, (24)

is impossible, if k£ and k' are not a pair. If they are a pair, (24) implies ¥’ > k, i.e. k =
21 —1,k' = 2. Then

0= jing — j'np = j2° — § (212“ - 1)

implies

j/ B 2l2

G olP+l 7’
which is possible only finitely many times for bounded j,j’, since the denominator of the
(irreducible) fraction on the right hand side increases as | — co. [

Lemma 9 Forv#0and1<j <j<d
A(N7j7j/71/) < C7

provided
g # 24 or j # . (25)
Proof: For fixed 7' < j and assume .
J
52 (26)
We define
(mi)kz1 = (Mr(4, 5 )k=1 = (i1 U (F'ne)k>1,

i.e. (myg) is the sequence that contains all the numbers

U Gt ol U L'} ]

k>1 k>1

13



sorted in increasing order. Then there exists an kg = ko (7, ') such that the sequence

(M) k> ko

is lacunary. In fact, assume (my) is not lacunary, i.e. there exist increasing sequences (k;);>1
and (l;);>1 with l; > k;,4 > 1 such that

my, .
—1 as 11— co.

my.

(3

This implies there exist increasing sequences (r;);>; and (s;);>1 such that

Ng; J )
— = as i — 0o,
’n/T’L' j
which is impossible by (26) since
Us N2k+1 Nk42
— = 2, 2l — 0, 52,0 as k— oo.
Nn2k—1 Nnaj Nk

Thus (M (4, 5'))k>ko(a), Where ko(d) = max; j ko(j,5'), is lacunary for all (j,5), i.e. there
exists an ¢ = ¢(d) > 1 such that

mi+1(7,7")
— >, k > ko(d),
mg(4, 5') o(d)

for all j, j" satisfying (26) and 1 < j' < j < d. By a well-known number-theoretic property of
lacunary sequences (see Zygmund [15, p. 203]) this implies

#{(kak/)vk#k/: mk(]aj/)imk’(jaj/) :V} <, (27)

uniformly in v € Z for all j, j" satisfying (26). Now assume (26) does not hold, i.e.
=2, (28)

and that we have
i #v (29)
instead. Then

. . . ]
Jng — ' = jng — ST =V

implies
2v
2ng — (ngr +1) = 7 —1. (30)

By (28) and (29) the right-hand side of (30) is not equal zero. It is easy to see that

(2nk)g>1 U (g + 1) 5

is lacunary, which proves the lemma. O
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Lemma 10 For 1 < j' < j < d assume

Then N
A(N7j7j,77/) - ? é C,
Proof: We have to estimate the number of solutions (k, k"), 1 < k, k" < N of the equation
2ny — (nkl + 1) =0. (31)

Since 2ny, and ng + 1 are of the form 211 or 2°+2 —2 and 2™ +1 or 2™°*! for some positive
I and m, respectively, it is easy to see that (31) is only valid if k = 2 — 1 and k' = 2I for some
[>1,ie. if ¥ and k are a pair and k' > k. The number of pairs with indices bounded by N
is | N/2], which proves the lemma. O

4 Proof of Lemma 7

The following lemma is a slight modification of Corollary 4.5 of Strassen [12]:

Lemma 11 Let (Y;, F;,i > 1) be a martingale difference sequence with finite fourth moments,
let Vi = Zf\il E(Y?|Fi—1) and assume Vi = EY? > 0 and Vi — oo. Assume additionally

v
liminf 2 >1  as. (32)
M—oo Tpr

with some sequence of positive real numbers ry; — oo such that

[e.e]

1 10

3 MEYJ@ < +oo. (33)
M=1 "M

Let ¢(t) be a positive real function such that t='/2¢(t) is non-decreasing. Then

P(Y1 4+ Yy < o(Vir) eventually as M — c0) =1 or 0,

according to

/ t_3/2¢(t)€_¢(t)2/2t dt <oco or =o0. (34)
1

The Beppo Levi theorem and (33) imply the a.s. convergence of >-%7_, (log 7a)''r P E(Y | Far—1),

and by (32) the series "57_, (log Vas) 'V, *E(Y}|Fas—1) is also a.s. convergent. Hence

[e.e]

(log Vas)® /
VM z2>Vr (log V]\/[)75

log V; 10 +o0o
(gTM)/ 't dP(YM < 33|~7'—M—1)
M —00

x? dP(Yy < x| Far—1)

(]

g
)

(log Vas)*0

2 E(Yy|Fu-1) < oo as.,
M

M 500

g
)

15



Thus Lemma 11 follows from Corollary 4.5 of [12]. Choosing the function ¢(¢) in Lemma 11

as
o(t) =/ Ktloglogt

for a constant K, it is easy to see that

/OO t—3/2¢(t)e—¢(t)2/2t dt = /OO t_3/2(Ktloglogt)l/2€_(K“OglOgt)/2t dt
1 1

= \/E/ t~ (loglog t)'/?(log t)~%/2 at
1
< oo or = o0, according to K > 2 or K <2.

As a consequence we get

Corollary 3 Under the same assumptions as in Lemma 11, plus the additional assumption

. Vu
Iim — =1 a.s.
M—oo Spf

for some sequence of functions (syr)m>1 we have
M
_ pERE
lim sup
M—oco V25p loglog sy

Lemma 12 (BERKES, PHILIPP [4]) For any interval [a,b) C [0,1)

=1 a.s.

4
N1+N2

1
/ > papalnez) | de < CON3
0 \k=nN1+1

for all integers N1, N > 0.

This is [4, Lemma 2.2].

In this section we assume that a nonempty interval [a,b) and a positive integer d are fixed,
and we write p for p(,p).4-

We divide the set of positive integers into consecutive blocks Af, A1, AL Ag, ... ALA;, ...

of lengths 2[21logs /2 i] and 2i, respectively. Then n("*—iﬁ, where i~ denotes the smallest and
it denotes the largest integer in A;, is at most i, since
ne_ .
(Z 1)+ é (3/2)—410g3/2l — 7:_4, Z 2 2 (35)
n;—

For k € |J;2, A; define i = i(k) by k € A;, put m(k) = [logy ny + 2log, ], and approximate
the functions p(ngx) by discrete function ¢k (x) such that the following properties are satis-
fied:

(P1)  ¢x(®) is constant for 7y <z < ;’m—t%), v=0,1,...,2mk 1

(P2) |pr(x) — p(ngx)| < Ci72, z€[0,1)

(P3) E(pw(x)|Fi1) =0

16



Here Y; = > e, pk(2) and F; denotes the o-field generated by the intervals

v v+41
om(it)? om(it)

>, 0§v<2m(i+).

We have

d

p(ngz) — p(nga’)| < 2 Zj_l2ﬂjnk’33 — |
j=1

C’I’LkZ_m(k)

v v+1
< i 2 — _<ga <
< (1 for (R = T,z < ()

IN

0<uv<2mk)

Thus it is possible to approximate p(ngx) by discrete functions ¢ (z) that satisfy (P1) and
(P2) only. Then for k € A; and any interval I of the form

v v+41 1
[2m<<i—1>+>’2m<<i—1>+>>’ 0 <v <2, (36)

letting || denote the length of I,

- /I¢k($) dx

o (|t ]+ [ G )

< gmi-®) APlles | 5o

n;

-2
7 'I’L(Z'_l)+

< C +Ci? < Ci?,

n;

by (35) and since ||p|lc < C. For every z € [0,1) we can find an interval of type I for some
v such that € I, and we put ¢y (z) = @(x) — |I|™" [; ¢ (t) dt. Then these functions ¢y (z)
satisfy (P1), (P2) and (P3), since F;_; is generated by the intervals of type (36).

We set

M
Ti= plnx)  To=Y plmz),  Vi=) EV7|Fi)
1=1

keA, keA!
Letting |A;| denote the number of integers in A;, we set

M

sy () = J[a,b),d($) Z |A].

i=1

17



In the following equation, to shorten formulas, we write c(v) and s(v) for cos2mvx and
sin 2mvx, respectively. We have

Ti(x)? — ofap),a(2) | Al

— Z Z ajc(jnk) + bjs(jng)

keA; j=1

2

24 b2 A 92

—lAiZ S}

(ajazj + bjbas) c(j) + (ajbz; — az;bj)s(f)

a;a;r — bbby ) bia:r +a;by )
= > > %C(mk +]'nk')+%s(]nk + j'ng) (37)
k' €A; 1<5,5'<d
d 2 2
#3030 g el — gma) + = s(imi — ) (38)
keA; j=1
d_ 2 | 12
aj +b;
—|AZ-|_Z1 5 (39)
j:

a2-+b2-

d
+ ) Z I eim — jnw) (40)

kK €A kA j

Il
—

ajoy tbby L bag by
w2 Y W g — ) + 2 (g — ) (41)
kk'eN; 1<j'<j<d

—((j=24")A(B:k=20—1,k'=2¢£))
a.a.,+b.b., ) ) b:a:r — a:b.i ) )
w2 Y S B oy — ) + 2 (g — ) (42)
kK €A; 1<j'<j<d
N—— ———
(j=2")A(3:k=20—1,k'=20)

N A | ld/2]
> (ajag; + bjba;) c(j) + (ajba; — az;b;) s()- (43)
j=1
Now (38) and (39) cancel out, and (42) and (43) cancel out as well. Thus T;(x)2 — 074 4 ()| A
is the sum of the functions in (37), (40) and (41). If we collect all trigonometric functlons in

Ti(2)? — 07q,),a(x)| A¢] with frequency less than n;_1)+ in a function Uj, and all trigonometric
functions Wlth frequency at least n;;_y+ in a function W;, we can write

Ti(x)? = 0(q,p),a(@)|Ad] = Ui(z) + Wi(z),
where
U, = Z Cy €08 2TTux + dy, sin 2ux, W, = Z Cy, €OS 2mux + dy Sin 2mux.
0§u<n(i71)+ uzn(i71)+
It is easy to see that
d_, 2
> leul + ldu| < Z Z— < Ci%. (44)
u>n,_ eA; j=1

18



For fixed j, k the number of solutions (j', k), k' > k of [jng — j'nwp| < ng_1y+ is at most C.

In fact, k' > k + loggo(d + 1) implies

3) logs /5 (d+1)

3k — jng > ng — dny, > <—

B nge — dnk > ng > n(i_1)+.

Thus

d
S e+l < > Y C <

OSU<ni7 kEAl j:1

Additionally, Lemma 2 implies

max |¢,| < C, max |dy,| < C.
0<u<n,— 0<u<n,

i—

In particular
[Uilloo <Ci and  [Wiflos < Ci%.

By Minkowski’s inequality,
IY? = TPl < Y= Tilloo IYi + Tilloe < CIA| 72 ]A)] < ©

and

—m((i—1)t C —i
|E (0a,p).al Fi-1) — U[a,b),dHoo < o201 < m <C(3/2)
we get
1Var = smlly
M M
< D0 (B(TPFi) = |Ailoup.a)|| +D.C
i=1 9 =1
M M '
< IDCETE - Aoy | Fir) || +C (Z |Ai|(3/2)—l) +CM
i=1 9 i=1
M
< D EWi|F-)
1=1 2
M
+ 1D E(WilFir)
i=1 2
+ CM.

First we estimate the term (48). We observe

M 2
(ZE(Wim_l)) <2 > EWilFi)E(Wy|Fiy).
i=1

1<i<i/ <M
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By Lemma 1, Minkowski’s inequality and the Jensen inequality

IEWi|Fic)ll, < ||E Zcucos2ﬂux+dusin2ﬂux]—}_1

u>n,

o
+ Z Cy €08 2Tux + dy sin 2wux
N1y + Su<n— 9
1/2
- d
< om((i=1)*) Z 9 |cul ‘Z |du| I Z Ci 4 di
uzn,; Ni—1)+ <u<n,;—
#ng-1)+ 1/2
< C . Z ‘Cu’"i_‘du’ + Ci
= u>n;
and therefore
M M
E (Z (E(Wi\}}_l)f) <> ci<CoM
i=1 i=1

For fixed i < ¢, since E(W;|F;_1) is F;—1 measurable,

E(EWF EWa Foo)|Ficr )| = [EWiIF)EW|Fima)]
[Willoo |E(Wy | Fic1)| < C& [E(Wir|Fi1)] -

IN

Writing W in the form
Z Cy €08 2Tux + dy, sin 2wux,

UM _qy+
where > |cu| + |dy| < C(i')?, and using Lemma 1 we get
EWylFi)l < 27D ST 2(je] + fdulu?
UZN 1yt

2
VG-t o,

< C i')?

< oS

S C 'i2 (’i,)2 (3/2)(’i—1)+—(i/—1)+
< C ()% (3/2)"0 Y,

Combining the estimates (49) and (50) we see that the term (48) is at most
1/2

cM?P+ D Cdt (@) (3/2)70 Y < CM.
1<i<i' <M

Next we estimate the term (47). Writing

U; = Z Cy €OS 2Tmux + dy sin 2,

u<n(i71)+

20
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the fluctuation of U; on any atom of F;_1 is at most

S (leal + dul)2mu 27D <0 ST (e + ldulngoys (Pgoys)

u<n(%.71)4r u<n(l H+

< COi!

and consequently
[E(U|Fi1) = Ui < Ci™H,

which gives

M M
ZE(Ui|~7:i—1) < ZE(Ui) + C'log M. (52)
=1 2 =1 2
Writing
M
Z Ui(x) = Z €y, €08 2Tux + dy sin 2mux,
i=1 u<n(M71)+

where by Lemma 2
leul C, du| <C

and ), (|cu] + |du]) < Zf‘il Ci < CM?, the right-hand side of (52) is at most
1/2
Z 2 +d2 +Clog M < CM.
u<n (gt
Assembling the estimates (51) and (53) for (47) and (48) we obtain
Ve — smlly < CM.

If d is large enough, o4 ) 4(7) > 0, and thus sy, > CM?. Defining sets

AM:{:EE(O,l) |VM—8M| >S7/8},

this implies
P(An) < CM2S]T414/8 < CM?M—28/8 < CM_12/87

and by the Borel-Cantelli-Lemma
Vu

— — 1 a.e.
SM
We define a numerical sequence (rpr)ar>1 by

ry = min sp(x).
x€(0,1)

Then Vas v
hmmf—> lim - =1 ae.
M—oo T'pf M—oo Spr

By Lemma 12 and property (P2)

EYy; < ClAy[* < CM?,

21
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and thus rp; > CM?, M > 1 yields

. (logra)© 4 . (log M)'ON?
Z 7quEEYM < Z CT < +o0.
M=1 M M=1

Now by (55), Lemma 11 and Corollary 3

DIEIRE
lim sup
M—oo V25prloglog sy

We add the sums of “short blocks” T, change from Y; to Tj, where |Y;—T;| < C|A;li72 < Ci™1,
and get

=1 a.e.

M =M@+
lim sup Lk=1 P(7T) = lim sup ' ‘11 ae

M—oo V28u loglog sys M—oo V28p loglog syy

Now we break into the blocks of sums. Since

max S plua)| < ClA| < Ci
NeA;UA] y
kEAUAL KN

and s); > CM?,
. ‘maX(M—l)+<N§M+ 2k P(nyz)
lim sup

M—oo v/2syr loglog sy

For N > 1 we define M (N) as the index m, for which N is contained in A, UA! . Then (56)
can be rewritten in the form

=1 ae. (56)

=1 a.e.

i ‘Zszlp(nk:E)‘
im sup
N—oo +/25n(n) loglog spr(w)

Observing
SM(N)

— Oap),d(T) as N — oo,

and finally arrive at
N
) > k=1 P(Nk) ‘
lim sup

N—oo m: Tlap),d(T) a.e.,

which is Lemma 7.
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