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Abstract

Let (nk)k≥1 be a lacunary sequence of positive integers, i.e. a sequence satisfying

nk+1/nk > q > 1, k ≥ 1, and let f be a “nice” 1-periodic function with
∫ 1

0
f(x) dx = 0.

Then the probabilistic behavior of the system (f(nkx))k≥1 is very similar to the behavior
of sequences of i.i.d. random variables. For example, Erdős and Gál proved in 1955 the
following law of the iterated logarithm (LIL) for f(x) = cos 2πx and lacunary (nk)k≥1:

lim sup
N→∞

(2N log log N)−1/2

N∑

k=1

f(nkx) = ‖f‖2 (1)

for almost all x ∈ (0, 1), where ‖f‖2 =
(∫ 1

0
f(x)2 dx

)1/2

is the standard deviation of

the random variables f(nkx). If (nk)k≥1 has certain number-theoretic properties (e.g.
nk+1/nk → ∞), a similar LIL holds for a large class of functions f , and the constant on
the right-hand side is always ‖f‖2. For general lacunary (nk)k≥1 this is not necessarily
true: Erdős and Fortet constructed an example of a trigonometric polynomial f and a
lacunary sequence (nk)k≥1, such that the lim sup in the LIL (1) is not equal to ‖f‖2 and
not even a constant a.e. In this paper show that the class of possible functions on the
right-hand side of (1) can be very large: we give an example of a trigonometric polynomial
f , such that for any function g(x) with sufficiently small Fourier coefficients there exists
a lacunary sequence (nk)k≥1 such that (1) holds with

√
‖f‖2

2 + g(x) instead of ‖f‖2 on
the right-hand side.

1 Introduction

An increasing sequence of positive integers is called a lacunary sequence if it satisfies the
Hadamard gap condition

nk+1

nk
> q > 1, k ≥ 1.

By a classical heuristics, systems of the form (cos 2πnkx)k≥1 or (f(nkx))k≥1, where (nk)k≥1

is a lacunary sequence and f is a “nice” 1-periodic function, replicate many properties of
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systems of i.i.d. random variables. For example,

lim
N→∞

λ

{
x ∈ (0, 1) :

N∑

k=1

cos 2πnkx ≤ t
√

N/2

}
= (2π)−1/2

∫ t

−∞
e−u2/2 du

(Salem and Zygmund [20]) and

lim sup
N→∞

∣∣∣
∑N

k=1 cos 2πnkx
∣∣∣

√
2N log log N

=
1√
2

a.e. (2)

(Erdős and Gál [11]), which is in perfect accordance with the central limit theorem (CLT)
and the law of the iterated logarithm (LIL) for systems of i.i.d. random variables (here, and
in the sequel, λ will stand for the Lebesgue measure on (0, 1), and “a.e.” will always refer to
this measure). However, the analogy is not perfect. If f is a more general function satisfying

∫ 1

0
f(x) dx = 0, f(x + 1) = f(x), Var[0,1] f < ∞, (3)

e.g. f is a trigonometric polynomial, the limiting distribution of

∑N
k=1 f(nkx)√

N

may be non-Gaussian and the value of

lim sup
N→∞

∣∣∣
∑N

k=1 f(nkx)
∣∣∣

√
2N log log N

(4)

does not always have to be ‖f‖2 =
(∫ 1

0 f(x)2 dx
)1/2

a.e. and not even have to be a constant

a.e. Erdős and Fortet (cf. [17, p. 646]) showed that for

f(x) = cos 2πx + cos 4πx and nk = 2k − 1, k ≥ 1

we have

lim
N→∞

λ

{
x ∈ (0, 1) :

N∑

k=1

f(nkx) ≤ t
√

N

}
= π−1/2

∫ 1

0

∫ t/2| cos πs|

−∞
e−u2

du ds

and

lim sup
N→∞

∣∣∣
∑N

k=1 f(nkx)
∣∣∣

√
2N log log N

=
√

2| cos πx| a.e. (5)

Gaposhkin [16] observed that there is an intimate connection between the validity of the CLT
for (f(nkx))k≥1 and the number of solutions (k1, k2) of Diophantine equations of the type

unk1 ± vnk2 = w, u, v, w ∈ Z, (6)

and in terms of the number of solutions of such equations Aistleitner and Berkes [5] gave a
full characterization of those lacunary sequences (nk)k≥1 for which (f(nkx))k≥1 satisfies the

2



CLT.
The situation is somehow similar in the case of the LIL, since here it is also possible to find
sufficient conditions on the number of solutions of the Diophantine equations in (6) that
guarantee the validity of the exact LIL

lim sup
N→∞

∣∣∣
∑N

k=1 f(nkx)
∣∣∣

√
2N log log N

= ‖f‖2 a.e. (7)

for (f(nkx))k≥1 for f satisfying (3) (cf. Aistleitner [4]; the problem to find a sufficient and
necessary condition, like in the case of the CLT, is still open). If the number of the solutions
of some Diophantine equations of type (6) is “too large”, the value of the lim sup in (4) does
not have to be equal to ‖f‖2 a.e. - this is what we can observe in the example (5) of Erdős
and Fortet, where e.g. the Diophantine equation nk1 − 2nk2 = 1 has “many” solutions (cf.
also Fukuyama [13] and Aistleitner [2],[3]; a similar phenomenon can also be observed in the
case of sub-lacunary growing (nk)k≥1, see e.g. Aistleitner [1], Berkes [7], Berkes, Philipp and
Tichy [9], [10], Fukuyama [12] and Fukuyama and Nakata [14]). A special case of sequences
with “few” solutions of Diophantine equations of the form (6) are sequences satisfying the
large gap condition

nk+1

nk
→ ∞, k → ∞,

for which Takahashi [23] proved already in 1963

lim sup
N→∞

∣∣∣
∑N

k=1 f(nkx)
∣∣∣

√
2N log log N

= ‖f‖2 a.e. (8)

For general (nk)k≥1 and f satisfying (3) the best possible result is

lim sup
N→∞

∣∣∣
∑N

k=1 f(nkx)
∣∣∣

√
2N log log N

≤ Cf,q a.e.,

where Cf,q is some number depending on f and q (Takahashi [22], Philipp [19]).

2 Statement of results and open problems

The example of Erdős and Fortet shows that functions different from the constant function
‖f‖2 (a.e.) are possible values of the lim sup in (4). Naturally the question arises which
functions are possible values of this lim sup for appropriate f and (nk)k≥1. We show, that
even if f is a trigonometric polynomial the class of possible values of the lim sup in (4) for
different sequences (nk)k≥1 can be very large. More precisely, we will prove the following
theorem:

Theorem 1 Let
f(x) = cos 2πx + cos 4πx − cos 6πx + sin 10πx. (9)

Then for any function g(x) satisfying

‖g‖A ≤ 1

2
(10)
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there exists a lacunary sequence (nk)k≥1 of positive integers such that

lim sup
N→∞

∣∣∣
∑N

k=1 f(nkx)
∣∣∣

√
2N log log N

=
√
‖f‖2

2 + g(x) a.e. (11)

In the statement of this theorem, ‖g‖A is defined as

‖g‖A = |a0| +
∞∑

j=1

(
|aj | + |bj|

)
,

where aj and bj are the coefficients from the Fourier series expansion of g in the form

g(x) ∼ a0 +

∞∑

j=1

aj cos 2πjx + bj sin 2πjx.

Informally speaking, Theorem 1 says that for the function f in (9) and general lacunary
(nk)k≥1 the value of the lim sup in (4) can be the square root of any function that has a Fourier
series expansion which is “not too different” from the Fourier series expansion of the constant
function ‖f‖2

2. It is not surprising that there has to be a connection between the (Fourier
coefficients of the) function f and the possible lim sup’s: if f =

∑d
j=1 aj cos 2πjx+ bj sin 2πjx

denotes some trigonometric polynomial, then necessarily for any lacunary (nk)k≥1

lim sup
N→∞

∣∣∣
∑N

k=1 f(nkx)
∣∣∣

√
2N log log N

(12)

≤
d∑

j=1

|aj | lim sup
N→∞

∣∣∣
∑N

k=1 cos 2πnkx
∣∣∣

√
2N log log N

+
d∑

j=1

|bj | lim sup
N→∞

∣∣∣
∑N

k=1 sin 2πnkx
∣∣∣

√
2N log log N

≤
∑d

j=1 |aj | + |bj|√
2

=
‖f‖A√

2
a.e.,

where the last inequality follows from (2) (and the corresponding result for sin instead of cos).

Several interesting questions remain unsolved. We mention three open problems:

Open problem 1 : The function f in Theorem 1 is a trigonometric polynomial which consists
of 4 terms. In view of (2) it is clear that for a simple trigonometric function (cos 2πx or
sin 2πx) a result like Theorem 1 is not possible, since the value of the lim sup equals 1/

√
2

a.e. for any lacunary (nk)k≥1. Find a trigonometric polynomial which consists of only 3 (or
even only 2) terms, such that a result like Theorem 1 holds, i.e. find a three-term (or even
two-term) trigonometric polynomial f such that there exists a positive ε such that for any g
with ‖g‖A ≤ ε there is a lacunary sequence (nk)k≥1 such that (11) holds (or prove that such
a trigonometric polynomial does not exist).
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Open problem 2 : In our example, we require that ‖g‖A ≤ 1/2, and since the function f in our
example has ‖f‖2 =

√
2 and ‖f‖A = 4, this means that ‖g‖A ≤ ‖f‖2

A/2−‖f‖2
2−11/2. On the

other hand, the considerations in (12) show that necessarily for any trigonometric polynomial
f always g ≤ ‖f‖2

A/2 − ‖f‖2
2 a.e., or, in other words, that there does not exist any trigono-

metric polynomial f and lacunary (nk)k≥1 such that (11) holds with a function g which is
larger than ‖f‖2

A/2−‖f‖2
2 on a set of positive measure. In fact, there is reason to believe that

even ‖g‖A > ‖f‖2
A/2−‖f‖2

2 is impossible (which is a stronger assertion, since trivially always
g ≤ ‖g‖A). The bound ‖g‖A = ‖f‖2

A/2 − ‖f‖2
2 is reached for some functions f and certain

sequences (nk)k≥1, e.g. in the example of Erdős and Fortet, but we have not been able to
find a function f such that a general result like Theorem 1 holds with ‖g‖A ≤ ‖f‖2

A/2−‖f‖2
2

instead of (10). Find an example of such a function f or prove that it does not exist, or, more
generally, find the best possible upper bound for ‖g‖A in a result like Theorem 1 (in terms of
‖f‖2

2 and ‖f‖2
A).

Open problem 3 : We have mentioned above that if the number of solutions of Diophantine
equations of the form (6) is “small” then (f(nkx))k≥1 satisfies the LIL with the same constant
as in the case of i.i.d. random variables and (7) holds. On the other hand, Theorem 1 shows
that without any Diophantine conditions the class of possible values of the lim sup in (4) is
“large”. Find a similar result for the central limit theorem, i.e. describe functions f such that
the class of possible limiting distributions (possibly along subsequences) of

∑N
k=1 f(nkx)/

√
N

(for lacunary sequences (nk)k≥1) is “large”.
In this context we mention a recent result of Fukuyama and Takahashi [15] on sums of the
form

∑N
k=1 ak cos 2πk(x + αk). They showed that for any variance mixture Q of Gaussian

distributions there exist sequences (ak)k≥1 and (αk)k≥1 such that the aforementioned sum,
multiplied with an appropriate norming factor, converges to Q.

3 Idea of the proof

In this section we present the main ideas of the proof of Theorem 1, in order to enhance the
comprehensibility of our presentation.

Let a function g(x) be given, and assume the Fourier coefficients of g are sufficiently small.
We construct a lacunary sequence (nk)k≥1 for which the numbers

SN,j1,j2,c = # {1 ≤ k1, k2 ≤ N : j1nk1 − j2nk2 = c} , j1, j2 ∈ {1, 2, 3, 5}, (13)

counting the solutions of certain Diophantine equations (for indices k1, k2 up to N), are of
appropriate size. Then we show that there exist a Wiener process ξ and a sequence (TN )N≥1

of random variables such that the sums
∑N

k=1 f(nkx) can be approximated by ξ(TN ). To
estimate TN we calculate

(
N∑

k=1

f(nkx)

)2

=

(
N∑

k=1

(cos 2πnkx + cos 4πnkx − cos 6πnkx + sin 10πnkx)

)2

. (14)

Since f is a trigonometric polynomial (with frequencies 1, 2, 3, 5) the function in (14) is also
a trigonometric polynomial, and we show that TN is essentially of the same size as the sum of
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those trigonometric functions in (14) that have “small” frequencies. The well-known formulas

cos x cos y =
1

2
(cos(x + y) + cos(x − y)) ,

sin x sin y =
1

2
(− cos(x + y) + cos(x − y)) ,

sinx cos y =
1

2
(sin(x + y) + sin(x − y))

show that there is a direct connection between the number of summands in (14) that have
the same “small” frequency c and the numbers Sj1,j2,c in (13). Note that in particular (14)
contains the constant function ‖f‖2

2N . This means we have

TN ≈ ‖f‖2
2N +

∑

j

(cj cos 2πjx + dj sin 2πjx) , (15)

where the coefficients cj , dj are in direct connection with the numbers SN,j1,j2,c in (13), and
if these numbers we appropriately chosen, then the function of the right-hand side of (15) is
close to N

(
‖f‖2

2 + g(x)
)
. Using the law of the iterated logarithm for ξ(TN ) and

lim sup
N→∞

∑N
k=1 f(nkx)√

2TN log log TN
≈ lim sup

N→∞

ξ(TN )√
2TN log log TN

= 1 a.e.

we get the desired result.

4 Preliminaries

Assume that g is fixed, and that ‖g‖A ≤ 1/2. If ‖g‖A = 0, i.e. g ≡ 0, we can choose a se-
quence (nk)k≥1 satisfying the “large gap condition” nk+1/nk → ∞ and get (11) as mentioned
in (8). Thus in the sequel we will restrict ourselves to the case ‖g‖A 6= 0.

Write

g(x) = a0 +

∞∑

j=1

(aj cos 2πjx + bj sin 2πjx)

for the Fourier series of g.

We divide the set of positive integers into blocks ∆1,∆2,∆3, . . . ,∆i, . . . of lengths 2, 8, 18, . . . , 2i2, . . . ,
i.e.

∆i =

{
k ∈ Z

+ :
2(i − 1)i(2i − 1)

6
< k ≤ 2i(i + 1)(2i + 1)

6

}
, i ≥ 1.

We construct a sequence (nk)k≥1 that has the following properties (throughout the rest of
this paper, log y should be read as max{1, log y}):

• (P1)
nk+1

nk
> max{7, k3}, k ≥ 1, if k is even

nk+1

nk
∈
{[

19
10 , 21

10

]
,
[

29
10 , 31

10

]
,
[

49
10 , 51

10

]
,
[

69
10 , 71

10

]}
, k ≥ 1, if k is odd
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• (P2) for any i ≥ 1 and any j satisfying 0 ≤ j ≤ ⌈log log i⌉ the number of solutions
(k1, k2), k1, k2 ∈ ∆i of the Diophantine equation

nk1 − 2nk2 = j

is
⌊
max{2aj , 0}i2

⌋
.

• (P3) for any i ≥ 1 and any j satisfying 0 ≤ j ≤ ⌈log log i⌉ the number of solutions
(k1, k2), k1, k2 ∈ ∆i of the Diophantine equation

nk1 − 3nk2 = j

is
⌊
max{−2aj , 0}i2

⌋
.

• (P4) for any i ≥ 1 and any j satisfying 1 ≤ j ≤ ⌈log log i⌉ the number of solutions
(k1, k2), k1, k2 ∈ ∆i of the Diophantine equation

nk1 − 5nk2 = − sgn(bj)j

is
⌊
2|bj |i2

⌋
and the number of solutions of nk1 − 5nk2 = sgn(bj)j is 0.

• (P5) for any i ≥ 1, any k1, k2 ∈ ∆i and any u, v ∈ {1, 2, 3, 5}, u ≤ v, (u, v) 6∈
{(1, 1), (1, 2), (1, 3), (1, 5), (2, 2), (3, 3), (5, 5)} we have

|unk1 − vnk2 | ≥
min{nk1, nk2}

10
. (16)

If (u, v) ∈ {(1, 1), (2, 2), (3, 3), (5, 5)} we have

|unk1 − vnk2 | ≥
min{nk1, nk2}

10
,

except in the trivial case k1 = k2, when unk1 − vnk2 = 0.
If (u, v) ∈ {(1, 2), (1, 3)}, we have either (16)

unk1 − vnk2 = j for some 0 ≤ j ≤ ⌈log log i⌉.

If (u, v) = (1, 5) we have either (16) or

unk1 − vnk2 = − sgn(bj)j for some 1 ≤ j ≤ ⌈log log i⌉.

A sequence having properties (P1)-(P5) can be constructed recursively in the following way:
assume that the values of nk for k ∈ ∆1 ∪ . . . . . . ∆i−1 are fixed. For the smallest integer k
in ∆i, choose an arbitrary, but sufficiently large value for nk such that (P1) is satisfied. In
case i = 1 we choose n1 = 10 (⌈log log 1⌉). Similarly, we choose all the values for nk, where
k ∈ ∆i and k is odd, arbitrarily, but sufficiently large, such that (P1) holds. It remains to fix
the values of nk for k ∈ ∆, where k is even. For the first

⌊
max{2a0, 0}i2

⌋
(17)

even integers k in ∆i, we set
nk = 2nk−1

7



(the expression in (17) may also be zero, which is no problem - in this case we do not fix any
values nk). For the following ⌊

max{2a1, 0}i2
⌋

even integers we set
nk = 2nk−1 + 1.

Repeating this scheme, we onwardly fix always the following

⌊
max{2aj , 0}i2

⌋

values of nk for the even integers in ∆i by setting them

nk = 2nk−1 + j,

until we reach j = ⌈log log i⌉. In total, we have now fixed all values of nk, k ∈ ∆i for odd k,
and in total

⌈log log i⌉∑

j=0

⌊
max{2aj , 0}i2

⌋

values for even k.
Now we fix the first ⌊

max{−2a0, 0}i2
⌋

values of nk for the remaining even values k ∈ ∆i by setting them

nk = 3nk−1,

then the next ⌊
max{−2a1, 0}i2

⌋

values of nk for the remaining even values k ∈ ∆i by setting them

nk = 3nk−1 + 1,

and again, onwardly, we always fix the next

⌊
max{−2aj , 0}i2

⌋

values of nk by setting them
nk = 3nk−1 + j,

where again j runs up to ⌈log log i⌉. This means, in total we have fixed all the values of
nk, k ∈ ∆i for odd k and the first

⌈log log i⌉∑

j=0

⌊
max{2aj , 0}i2

⌋
+

⌈log log i⌉∑

j=0

⌊
max{−2aj , 0}i2

⌋
=

⌈log log i⌉∑

j=0

⌊
2|aj |i2

⌋

values for even k. Now we fix the values of nk for the next

⌊
2|b1|i2

⌋

8



even integers in ∆i but setting them

nk = 5nk−1 − sgn(b1)1,

then the values of nk for the next ⌊
2|b2|i2

⌋

even integers by setting them
nk = 5nk−1 − sgn(b2)2,

and so on, always fixing the values of nk for the following

⌊
2|bj |i2

⌋

even integers by setting
nk = 5nk−1 − sgn(bj)j,

where we let j run up to ⌈log log i⌉. Now we have fixed the values of nk for all odd k ∈ ∆i

(which are exactly i2 indices), and for the first

⌈log log i⌉∑

j=0

⌊
2|aj |i2

⌋
+

⌈log log i⌉∑

j=1

⌊
2|bj |i2

⌋

even indices k ∈ ∆i. Observe that by (10)

i2 +

⌈log log i⌉∑

j=0

⌊
2|aj |i2

⌋
+

⌈log log i⌉∑

j=1

⌊
2|bj |i2

⌋

≤ i2 + 2i2




⌈log log i⌉∑

j=1

|aj | + |bj |




≤ 2i2 = |∆i|

(here and in the sequel, we write |∆i| for the number of elements of ∆i). Thus we are still
within ∆i. It is possible (or even likely) that for some even indices k in ∆i no value has been
assigned to nk so far. For these remaining indices k we set

nk = 7nk−1.

Thus all values of nk, where k ∈ ∆i, are fixed, and we can continue and fix the values of nk

for k ∈ ∆i+1, etc.

Now we want to show that the sequence (nk)k≥1 constructed in this way really satisfies (P1)-
(P5). The first part of (P1), concerning even k is trivial by construction. The second part of
(P1) is also an easy consequence of our construction. We have

n2 = un1 + j

for some u ∈ {2, 3, 5, 7} and j ∈ [−⌈log log 1⌉, ⌈log log 1⌉]. Thus, since we set n1 = 10(⌈log log 1⌉)
we have

n2

n1
= u +

j

nk
∈
[
u − 1

10
, u +

1

10

]

9



Similarly, for i ≥ 2 and odd k ∈ ∆i we have

nk+1 = unk + j

for some u ∈ {2, 3, 5, 7} and |j| ≤ ⌈log log i⌉, and again this implies

nk+1

nk
= u +

j

nk
∈
[
u − 1

10
, u +

1

10

]
.

Here j/nk ∈ [−1/10, 1/10] is clear since nk grows much faster than the range [−⌈log log 1⌉, ⌈log log i⌉]
of possible values of j. Thus (nk)k≥1 has property (P1), and in particular (nk)k≥1 is a lacunary
sequence, since

nk+1

nk
≥ 19

10
, k ≥ 1.

Next we show (P5). Let k1, k2 ∈ ∆i, and let u, v ∈ {1, 2, 3, 5}, u ≤ v. If u = v, then we either
have the trivial case k1 = k2, or k1 6= k2 and

|unk1 − vnk2| ≥ |nk1 − nk2| ≥
(

19

10
− 1

)
min{nk1 , nk2}

and (16) holds. It remains to consider the case u < v. First assume that k2 > k1. Then

unk1 − vnk2 ≤ nk1 − nk2 ≤
(

1 − 19

10

)
nk1 ≤ − 9

10
nk1,

and (16) holds. Now assume that k1 ≥ k2. If k1 ≥ k2 − 2, then

k2

k1
≥ 7 · 19

10

and

|unk1 − vnk2| ≥
(

7 · 19
10

− 5

)
nk2 ≥ 83

10
nk2

and (16) holds. Thus the only remaining case is when k2 ≤ k1 ≤ k2 + 1. Then by (P1)

nk1

nk2

∈
{
{1},

[
19

10
,
21

10

]
,

[
29

10
,
31

10

]
,

[
49

10
,
51

10

]}
or

nk1

nk2

≥ 69

10
. (18)

Assume that u ≥ 2. If e.g. (u, v) = (2, 3), then

unk1

vnk2

=
2

3
or

nk1

nk2

≥ 38

30
,

and

|unk1 − vnk2 | ≥
8

30
nk2

and (16) holds. Similar arguments show that (16) holds for (u, v) = (2, 5) and (u, v) = (3, 5).
It remains to consider the case u = 1, u < v. Let e.g. u = 1, v = 2. By (18)

nk1

nk2

∈
{{

1

2

}
,

[
19

20
,
21

20

]}
or

nk1

nk2

≥ 29

20
,

10



and
nk1

nk2

∈
[
19

20
,
21

20

]

if and only if k2 = k1 + 1 for a pair (k1, k2) for which

nk1 = 2nk2 + j

for some j ∈ {0, . . . , ⌈log log i⌉}. In all other cases (16) holds. This also shows, that the only
solutions (k1, k2) of the Diophantine equation

nk1 − 2nk2 = j

are the ⌊max{2aj , 0}⌋ or ⌊max{−2aj , 0}⌋ pairs which are explicitely mentioned in the con-
struction of (nk)k≥1, and therefore (nk)k≥1 really has property (P2). Similar arguments solve
the remaining cases (u, v) = (1, 3) and (u, v) = (1, 5), which proves (P5), and as side results
we get that (nk)k≥1 also satisfies (P3) and (P4).

5 Proof of Theorem 1

The proof of Theorem 1 uses standard tools from the theory of lacunary series, that have
been developed by Philipp [19], Berkes and Philipp [8], Fukuyama [13], Aistleitner [4] and
others. The main ingredient is an a.s. invariance principle of Strassen [21], that contains the
following result:

Lemma 1 ([21], Corollary 4.5) Let (Yi,Fi, i ≥ 1) be a martingale difference sequence with
finite fourth moments, let VM =

∑M
i=1 E(Y 2

i |Fi−1) and assume V1 = EY 2
1 > 0 and VM → ∞.

Assume additionally

lim inf
M→∞

VM

rM
≥ 1 a.s.

with some sequence of positive real numbers rM → ∞ such that

∞∑

M=1

(log rM )10

r2
M

EY 4
M < +∞.

Then

lim sup
M→∞

|Y1 + · · · + YM |√
2VM log log VM

= 1 a.s.

(to see how this lemma follows from Strassens Corollary 4.5 see [2], Lemma 11 and Corollary
3).

We will also use the following 2 lemmas:

Lemma 2 ([2], Lemma 1) For any real numbers s < t and λ > 0,

∣∣∣∣
∫ t

s
cos(2πλx) dx

∣∣∣∣ ≤
2

λ
,

∣∣∣∣
∫ t

s
sin(2πλx) dx

∣∣∣∣ ≤
2

λ
.

11



Lemma 3 ([8], Lemma 2.2) For any N2 > N1 and the function f and the sequence (nk)k≥1

from Theorem 1
∫ 1

0




N2∑

k=N1

f(nkx)




4

dx ≤ c(N2 − N1)
2

for some constant c.

Proof of Theorem 1: For any i ≥ 1, write m(i) for the largest integer in ∆i, and Fi for the
σ-field generated by the intervals

[
r2−⌈log2 nm(i)⌉−⌈log2 m(i)⌉, (r + 1)2−⌈log2 nm(i)⌉−⌈log2 m(i)⌉

)
,

where r runs from 0 to ⌈log2 nm(i)⌉ + ⌈log2 m(i)⌉ − 1 (and, for notational convenience, we
write F0 for the trivial σ-field that contains only the empty set and the unit interval). For
any i ≥ 1 and k ∈ ∆i set

ϕk(x) = E (f(nkx)|Fi) − E (f(nkx)|Fi−1) .

Then trivially ϕk is Fi-measurable and E(ϕk|Fi−1) = 0. Since the fluctuation of f(nkx), k ∈
∆i on any atom of Fi is at most

∣∣∣∣ max
x∈[0,1]

f ′(nkx)

∣∣∣∣ 2
−⌈log2 nm(i)⌉−⌈log2 m(i)⌉ ≤ (1 + 2 + 3 + 5) 2πnk2

−⌈log2 nk⌉−⌈log2 k⌉

≤ 70 · 2nk

nk
· 2

k

≤ 280k−1 (19)

and (since f is continuous) we have

|E (f(nkx)|Fi) − f(nkx)| ≪ k−1.

(here and in the sequel, the implied constant in expressions ≪ must not depend on k, i,N
etc.) On the other hand, for k ∈ ∆i, by (P1) and Lemma 2 (and since every block ∆i starts
with an odd integer)

|E (f(nkx)|Fi−1)| ≤ 2

(
1 +

1

2
+

1

3
+

1

5

)
1

nk
2−⌈log2 nm(i−1)⌉−⌈log2 m(i−1)⌉

≪
nm(i−1)

nk
· m(i − 1)

≪ (m(i − 1))−2

≪ k−2 (20)

Combining (19) and (20) gives

|ϕk(x) − f(nkx)| ≪ k−1,

and hence, since ∣∣∣∣∣

N∑

k=1

ϕk(x) −
N∑

k=1

f(nkx)

∣∣∣∣∣≪
N∑

k=1

k−1 ≪ log N

12



it is sufficient to prove

lim sup
N→∞

∣∣∣
∑N

k=1 ϕk(x)
∣∣∣

√
2N log log N

=
√

‖f‖2
2 + g(x) a.e. (21)

instead of (11).

Set
Yi =

∑

k∈∆i

ϕk(x), i ≥ 1.

Then (Yi, Fi, i ≥ 1) is a martingale difference sequence, since Yi is Fi-measurable (it is a sum
of Fi-measurable functions)

E(Yi|Fi−1) = E



∑

k∈∆i

ϕk|Fi−1


 =

∑

k∈∆i

E (ϕk|Fi−1) = 0,

and clearly the fourth moments of Yi are bounded (since Yi is a finite sum of bounded func-
tions). Define, like in Lemma 1,

VM =
M∑

i=1

E(Y 2
i |Fi−1), M ≥ 1.

To calculate the value of VM we consider E(Y 2
i |Fi−1) for some fixed i ≥ 1. By Minkowski’s

inequality

∣∣∣∣∣∣∣

(
E(Y 2

i |Fi−1)
)1/2 −


E





∑

k∈∆i

f(nkx)




2 ∣∣∣Fi−1






1/2
∣∣∣∣∣∣∣

≤


E





∑

k∈∆i

ϕk(x) − f(nkx)




2 ∣∣∣Fi−1






1/2

≪
∑

k∈∆i

k−1

≪ |∆i|i−3

≪ i−2,

and therefore

∣∣∣∣∣∣
VM −

M∑

i=1

E





∑

k∈∆i

f(nkx)




2 ∣∣∣Fi−1




∣∣∣∣∣∣

≤
M∑

i=1

∣∣∣∣∣∣∣

(
E(Y 2

i |Fi−1)
)1/2 −


E





∑

k∈∆i

f(nkx)




2 ∣∣∣Fi−1






1/2
∣∣∣∣∣∣∣
·

13



·

∣∣∣∣∣∣∣

(
E(Y 2

i |Fi−1)
)1/2

+


E





∑

k∈∆i

f(nkx)




2 ∣∣∣Fi−1






1/2
∣∣∣∣∣∣∣

≪
M∑

i=1

i−2 · i2 ≪ M. (22)

We have


∑

k∈∆i

f(nkx)




2

=



∑

k∈∆i

(cos 2πnkx + cos 4πnkx − cos 6πnkx + sin 10πnkx)




2

=
∑

k1,k2∈∆i

(
cos 2πnk1x · cos 2πnk2x + 2cos 2πnk1x · cos 4πnk2x

−2 cos 2πnk1x · cos 6πnk2 + 2cos 2πnk1x · sin 10πnk2x

+ cos 4πnk1x · cos 4πnk2x − 2 cos 4πnk1x · cos 6πnk2x

+2cos 4πnk1x · sin 10πnk2x + cos 6πnk1x · cos 6πnk2x

−2 cos 6πnk1x · sin 10πnk2x + sin 10πnk1x · sin 10πnk2x
)

=
∑

k1,k2∈∆i

∑

(u,v)∈{(1,1),(2,2),(3,3)}

1

2

(
cos 2π(unk1 + vnk2)x

+ cos 2π(unk1 − vnk2)x

)

+
∑

k1,k2∈∆i

∑

(u,v)∈{(1,2),(1,3),(2,3)}

(−1)(1(v=3))

(
cos 2π(unk1 + vnk2)x

+ cos 2π(unk1 − vnk2)x

)

+
∑

k1,k2∈∆i

∑

(u,v)∈{(1,5),(2,5),(3,5)}

(−1)(1(u=3))

(
sin 2π(unk1 + vnk2)x

− sin 2π(unk1 − vnk2)x

)

+
∑

k1,k2∈∆i

∑

(u,v)∈{(5,5)}

1

2

(
− cos 2π(unk1 + vnk2)x

+ cos 2π(unk1 − vnk2)x

)

=
∑

k1,k2∈∆i

∑

(u,v)∈{(1,1),(2,2),(3,3)}

1

2
(cos 2π(unk1 + vnk2)x) (23)

14



+
∑

k1,k2∈∆i

∑

(u,v)∈{(1,2),(1,3),(2,3)}

(−1)(1(v=3)) (cos 2π(unk1 + vnk2)x) (24)

+
∑

k1,k2∈∆i

∑

(u,v)∈{(1,5),(2,5),(3,5)}

(−1)(1(u=3)) (sin 2π(unk1 + vnk2)x) (25)

+
∑

k1,k2∈∆i

∑

(u,v)∈{(5,5)}

1

2
(− cos 2π(unk1 + vnk2)x) (26)

+
∑

k1,k2∈∆i

∑

(u,v)∈{(1,1),(2,2),(3,3)}

1

2
(cos 2π(unk1 − vnk2)x) (27)

+
∑

k1,k2∈∆i

∑

(u,v)∈{(1,2),(1,3),(2,3))}

(−1)(1(v=3)) (cos 2π(unk1 − vnk2)x) (28)

+
∑

k1,k2∈∆i

∑

(u,v)∈{(1,5),(2,5),(3,5)}

(−1)(1(u=3)) (− sin 2π(unk1 − vnk2)x) (29)

+
∑

k1,k2∈∆i

∑

(u,v)∈{(5,5)}

1

2
(cos 2π(unk1 − vnk2)x) (30)

= Ui(x) + Wi(x),

where Ui is the sum of all the trigonometric functions with frequencies at least mink∈∆i
nk/10,

and Wi is the sum of all trigonometric functions with frequencies smaller than mink∈∆i
/10

(in the above forumlas, 1(·) stands for the indicator function, i.e. (−1)1(u=3) gives -1 if u = 3
and 1 if u 6= 3). In particular, Ui contains all the trigonometric functions in (23), (24), (25)
and (26). A trigonometric function from (27), (28), (29) or (30) is contained in Wi (i.e. it
has a frequency less than mink∈∆i

nk/10) if and only if the corresponding values of (k1, k2)
and (u, v) satisfy

|unk1 − vnk2| <
mink∈∆i

nk

10
. (31)

The solutions of (31) for different values of (u, v) values is described in (P5), and the only
solutions are those, which are also mentioned in (P2), (P3) and (P4), resp. Thus, writing Wi

in the form

Wi = c0 +

∞∑

j=1

(cj cos 2πjx + dj sin 2πjx) ,

we have

cj =
1

2
# {(k1, k2) ∈ ∆i × ∆i, (u, v) ∈ {(1, 1), (2, 2), (3, 3), (5, 5)} : |unk1 − vnk2 | = j}

# {(k1, k2) ∈ ∆i × ∆i, (u, v) ∈ {(1, 2)} : |unk1 − vnk2 | = j}
−# {(k1, k2) ∈ ∆i × ∆i, (u, v) ∈ {(1, 3), (2, 3)} : |unk1 − vnk2 | = j} , j ≥ 0,

and

dj = # {(k1, k2) ∈ ∆i × ∆i, (u, v) ∈ {(1, 5), (2, 5)} : unk1 − vnk2 = −j}
+# {(k1, k2) ∈ ∆i × ∆i, (u, v) ∈ {(3, 5)} : unk1 − vnk2 = j}
−# {(k1, k2) ∈ ∆i × ∆i, (u, v) ∈ {(1, 5), (2, 5)} : unk1 − vnk2 = j}
−# {(k1, k2) ∈ ∆i × ∆i, (u, v) ∈ {(3, 5)} : unk1 − vnk2 = j} , j ≥ 1,

15



and, more precisely, in view of (P2), (P3), (P4) and (P5),

cj = # {(k1, k2) ∈ ∆i × ∆i : nk1 − 2nk2 = j}
−# {(k1, k2) ∈ ∆i × ∆i : nk1 − 3nk2 = j}

=
⌊
max{2aj , 0}i2

⌋
−
⌊
max{−2aj , 0}i2

⌋

= sgn(aj)
⌊
|2aj |i2

⌋
, 1 ≤ j ≤ ⌈log log i⌉,

c0 =
4|∆i|

2
+ sgn(a0)

⌊
2|a0|i2

⌋

= 2i2 + sgn(a0)
⌊
2|a0|i2

⌋
,

dj = # {(k1, k2) ∈ ∆i × ∆i : nk1 − 5nk2 = −j}
−# {(k1, k2) ∈ ∆i × ∆i : nk1 − 5nk2 = j}

= sgn(bj)
⌊
|2bj |i2

⌋
, 1 ≤ j ≤ ⌈log log i⌉,

cj = 0, j > ⌈log log i⌉,
dj = 0, j > ⌈log log i⌉.

Thus

Wi = 2i2 + sgn(a0)
⌊
2|a0|i2

⌋

+

⌈log log i⌉∑

j=1

sgn(aj)
⌊
|2aj |i2

⌋
cos 2πjx

+

⌈log log i⌉∑

j=1

sgn(bj)
⌊
|2bj |i2

⌋
sin 2πjx

= 2i2 + 2a0 i2

+

⌈log log i⌉∑

j=1

2aj i2 cos 2πjx

+

⌈log log i⌉∑

j=1

2bj i2 sin 2πjx

+Si,

where

|Si| ≤ |a0| +
⌈log log i⌉∑

j=1

2 ≪ log log i.

Ui is a sum of at most ≪ |∆i|2 trigonometric functions with frequencies at least mink∈∆i
nk/10,

and thus by Lemma 2 and property (P1)

E(Ui|Fi−1) ≪ |∆i|2
2

nk
2−⌈log2 nm(i−1)⌉−⌈log2 m(i−1)⌉

≪ i4 · i−9 · i ≪ i−4. (32)
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On the other hand,
E(Wi|Fi−1) = Wi + Ri,

where by Lemma 2

|Ri| = |E(Wi|Fi−1) − Wi| ≪ |∆i|(log log i)2−⌈log2 nm(i)⌉−⌈log2 m(i)⌉ ≪ i−4. (33)

Thus for M ≥ 1 by (22)

VM =
M∑

i=1

E





∑

k∈∆i

f(nkx)




2 ∣∣∣Fi−1




+


VM −

M∑

i=1

E





∑

k∈∆i

f(nkx)




2 ∣∣∣Fi−1






=
M∑

i=1

E(Ui + Wi|Fi−1) +


VM −

M∑

i=1

E





∑

k∈∆i

f(nkx)




2 ∣∣∣Fi−1






=
M∑

i=1

Wi + R̃i,

where

R̃i = E(Ui|Fi−1) + Ri +


VM −

M∑

i=1

E





∑

k∈∆i

f(nkx)




2 ∣∣∣Fi−1






and by (22), (32), (33) ∣∣∣R̃i

∣∣∣≪ M.

For arbitrary M ≥ 1,

M∑

i=1

(Wi − Si)

=
M∑

i=1


2i2 + 2a0 i2 +

⌈log log i⌉∑

j=1

(
2aj i2 cos 2πjx + 2bj i2 sin 2πjx

)



=

M∑

i=1

(
2i2 + 2a0 i2

)

+
∑

i≥1: ⌈log log i⌉≥⌈log log M⌉−1

⌈log log M⌉−1∑

j=1

(
2aj i2 cos 2πjx + 2bj i2 sin 2πjx

)

+
∑

i≥1: ⌈log log i⌉<⌈log log M⌉−1

⌈log log i⌉∑

j=1

(
2aj i2 cos 2πjx + 2bj i2 sin 2πjx

)
(34)

+
∑

i≥1: ⌈log log i⌉=⌈log log M⌉−1

(
2a(⌈log log M⌉) i2 cos 2πjx (35)
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+2b(⌈log log M⌉) i2 sin 2πjx
)
, (36)

(here a(⌈log log M⌉) is the coefficient aj for index j = ⌈log log M⌉) where (34) is at most

∑

i≤M1/e

⌈log log i⌉∑

j=1

(
2aj i2 + 2bj i2

)
= o(M3)

and the sum in (35), (36) is o(M3) since aj → 0, bj → 0 as j → ∞. Define

p(⌈log log M⌉−1)(x)

= a0 +
∑

i≥1: ⌈log log i⌉≥⌈log log M⌉−1

⌈log log M⌉−1∑

j=1

(aj cos 2πjx + bj sin 2πjx) .

Then

VM =

M∑

i=1

(
Wi + R̃i

)

=
M∑

i=1

(
(Wi − Si) + Si + R̃i

)

=

(
M∑

i=1

(Wi − Si)

)
+ o

(
M3
)

=
M∑

i=1

(
2i2 + 2i2p(⌈log log M⌉−1)(x)

)
+ o

(
M3
)
,

and
VM∑M
i=1 2i2

= 2 + p(⌈log log M⌉−1)(x).

By Carleson’s theorem (cf. e.g. Arias de Reyna [6] or Mozzochi [18])

p(⌈log log M⌉−1) → g a.e. as M → ∞,

and therefore
VM∑M
i=1 2i2

→ 2 + g(x) a.e. (37)

By Minkowski’s inequality, Hölder’s inequality and Lemma 3

(
EY 4

i

)1/4
=


E



∑

k∈∆i

ϕk(x)




4


1/4

≤ 2


E



∑

k∈∆i

f(nkx)




4


1/4

≪ |∆i|1/2 ≪ i.
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We apply Strassen’s Lemma 1 with rM = εM3 for some sufficiently small ε > 0, such that

lim inf
M→∞

VM

εM3
≥ 1 a.e.

(such an ε > 0 exists because of (37)), and since

∞∑

M=1

(log rM )10

r2
M

EY 4
M ≪

∞∑

M=1

(log M)10M−6M4 < ∞

we get

lim sup
M→∞

∣∣∣
∑M

i=1 Yi

∣∣∣
√

2VM log log VM
= 1 a.e. (38)

Since by the Carleson-Hunt inequality (cf. again [6],[18]) and Lemma 3
∥∥∥∥∥∥
max
N≥1

∣∣∣∣∣∣

∑

k∈∆M , k≤N

ϕk(x)

∣∣∣∣∣∣

∥∥∥∥∥∥
4

≪

∥∥∥∥∥∥
max
N≥1

∣∣∣∣∣∣

∑

k∈∆M , k≤N

f(nkx)

∣∣∣∣∣∣

∥∥∥∥∥∥
4

+ |∆M |M−3

≪

∥∥∥∥∥∥

∑

k∈∆M

f(nkx)

∥∥∥∥∥∥
4

+ M−1

≪ M,

the Borel-Cantelli lemma and the Markov inequality imply

lim sup
M→∞

maxN≥1

∣∣∣
∑

k∈∆M ,k≤N ϕk(x)
∣∣∣

√
2N log log N

= 0 a.e.,

which together with (37) and (38) implies

lim sup
N→∞

∣∣∣
∑N

k=1 ϕk(x)
∣∣∣

√
2N log log N

=
√

2 + g(x) a.e.

Thus we have shown (21), which is sufficient to prove Theorem 1.
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