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Abstract

Let (nk)k≥1 be a lacunary sequence, i.e. a sequence of positive integers satisfying the
Hadamard gap condition nk+1/nk ≥ q > 1, k ≥ 1. By a classical result of Philipp
(1975), the discrepancy DN of (nkx)k≥1 mod 1 satisfies the law of the iterated logarithm,
i.e. we have 1/(4

√
2) ≤ lim supN→∞ NDN(nkx)(2N log log N)−1/2 ≤ Cq for almost all

x ∈ (0, 1), where Cq is a constant depending on q. Recently, Fukuyama computed the
exact value of the lim sup for nk = θk, where θ > 1, not necessarily an integer, and the
author showed that for a large class of lacunary sequences the value of the lim sup is the
same as in the case of i.i.d. random variables. In the sublacunary case, the situation is
much more complicated. Using methods of Berkes, Philipp and Tichy, we prove an exact
law of the iterated logarithm for a large class of sub-lacunary growing sequences (nk)k≥1,
characterized in terms of the number of solutions of certain Diophantine equations, and
show that the value of the lim sup is the same as in the case of i.i.d. random variables.

1 Introduction and statement of results

Given a sequence (xk)k≥1 of real numbers, we call the value

DN = DN (x1, . . . , xN ) = sup
0≤a<b<1

∣
∣
∣
∣
∣

∑N
k=1 1[a,b)(〈xk〉)

N
− (b − a)

∣
∣
∣
∣
∣
,

where 1[a,b) is the indicator function of the interval [a, b) and 〈·〉 denotes the fractional part,
the discrepancy of the first N elements of (xk)k≥1, and we call the value

D∗
N = D∗

N (x1, . . . , xN ) = sup
0<a<1

∣
∣
∣
∣
∣

∑N
k=1 1[0,a)(〈xk〉)

N
− a

∣
∣
∣
∣
∣

the star discrepancy of the first N elements of this sequence. It is easy to see that always
D∗

N ≤ DN ≤ 2D∗
N .
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In 1975 Philipp [17] proved a law of the iterated logarithm (LIL) for the discrepancy
of lacunary sequences of integers, i.e. for sequences (nk)k≥1 satisfying the Hadamard gap
condition

nk+1/nk ≥ q > 1, k ≥ 1. (1)

He showed that for such sequences we have

1

4
√

2
≤ lim sup

N→∞

NDN (nkx)√
2N log log N

≤ Cq a.e., (2)

where Cq is a number depending on q. A comparison with the Chung-Smirnov law of the
iterated logarithm (cf. [18], p. 504) shows that under (1) (〈nkx〉)k≥1 behaves like a sequence
of independent, identically distributed (i.i.d.) random variables. However, the value L of the
limsup in (2) can be different from that for i.i.d. random variables and L remained unknown
until very recently, when Fukuyama [10] succeeded in calculating its value for nk = θk, where
θ > 1, not necessarily an integer. In particular, he showed

lim sup
N→∞

NDN (2kx)√
2N log log N

= lim sup
N→∞

ND∗
N (2kx)√

2N log log N
=

√
42

9
a.e.

and

lim sup
N→∞

NDN (θkx)√
2N log log N

= lim sup
N→∞

ND∗
N (θkx)√

2N log log N
=

1

2
a.e.,

if θ is a real number such that θr is irrational for r = 1, 2, . . .. In [2] we showed that for general
lacunary (nk)k≥1 the value of the lim sup in (2) is intimately connected with the number of
solutions of Diophantine equations of the type

j1nk1 ± j2nk2 = b, j1, j2, b ∈ Z, (3)

subject to
1 ≤ k1, k2 ≤ N.

If the number of solutions of this equation is “not too large”, we have

lim sup
N→∞

NDN (nkx)√
2N log log N

= lim sup
N→∞

ND∗
N (nkx)√

2N log log N
=

1

2
a.e., (4)

and the value 1/2 in (4) is the same as in the Chung-Smirnov LIL. In Aistleitner and Berkes
[3] a necessary and sufficient condition, also in terms of the Diophantine equation (3), was
given for the the validity of the central limit theorem for (f(nkx))k≥1, where (nk)k≥1 is lacu-
nary and f is a 1-periodic function of bounded variation. This result completes a long line of
investigations starting with the classical paper of Kac [12]. If the Diophantine equations in
(3) have “too many” solutions, the probabilistic behavior of (f(nkx))k≥1 and (nkx)k≥1 can
show considerable differences from the behavior of i.i.d. random variables. Fukuyama’s result
shows that in this case the value of the lim sup can be different from 1/2, and in [1] we showed
that the lim sup in (4) does not even have to be constant almost everywhere.

In contrast to the Hadamard lacunary case, relatively little is known in the sub-lacunary
case. Berkes and Philipp [7] showed that for any sequence εk ց 0 there exists a sequence
(nk)k≥1 of positive integers satisfying

nk+1/nk ≥ 1 + εk, k ≥ 1,
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such that

lim sup
N→∞

NDN (nkx)√
2N log log N

= +∞ a.e.

This means that the LIL is generally false for the discrepancy of (nkx)k≥1 for sub-lacunary
sequences (nk)k≥1. However, Aistleitner and Berkes [4] showed that an LIL-type result
will hold for the discrepancy of (nkx)k≥1 for sub-lacunary (nk)k≥1, if the norming function
(2N log log N)1/2 in (2) is replaced by (2BN log log BN )1/2, where (BN )N≥1 depends on the
“density” of the sequence (nk)k≥1. Higher order Diophantine conditions for the CLT and LIL
for sublacunary sequences were given in Berkes, Philipp and Tichy [8].

The purpose of the present paper is to give simple and nearly optimal sufficient conditions
for the exact LIL (4) for the discrepancy of a class of sub-lacunary growing sequences of
integers. As we will see, in addition to a bound for the number of solutions of the Diophantine
equation (3), required already in the Hadamard lacunary case, for the LIL we need a bound
for the density of (nk)k≥1 among the integers. It is easy to see that our density condition on
(nk)k≥1 corresponds to a Kolmogorov type condition for the random variables

Xk =
∑

2k≤j≤2k+1

f(njx) k = 1, 2, . . . (5)

and thus, as a comparison with the classical paper Kolmogorov [14] shows, the random vari-
ables Xk in (5) behave like independent random variables.

Let (nk)k≥1 be an increasing sequence of positive integers. Letting

Aj = #
{
k : 2j ≤ nk < 2j+1

}
, j ≥ 0,

we say that (nk)k≥1 satisfies

• the density condition (Kα), 0 ≤ α ≤ 1, if there exists a constant Cα > 0 such that

AN ≤ Cα




∑

0≤j<N

Aj





α

, N ≥ 1.

• the Diophantine condition (Dδ), 0 ≤ δ < 1, if there exists a constant Cδ such that
for every N ≥ 1 and for fixed integers ji with 0 < |ji| ≤ N2, i = 1, 2, the number of
solutions (k1, k2) of the Diophantine equation

j1nk1 − j2nk2 = b,

subject to
1 ≤ ki ≤ N, i = 1, 2,

does not exceed CδN
δ, uniformly for all b ∈ Z, b 6= 0.

• the Diophantine condition (D0

γ), 0 ≤ γ < 1, if there exists a constant Cγ such that
for every N ≥ 1 and for fixed integers ji with 0 < |ji| ≤ N2, i = 1, 2, the number of
solutions (k1, k2) of the Diophantine equation

j1nk1 − j2nk2 = 0, (j1, k1) 6= (j2, k2),
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subject to
1 ≤ ki ≤ N, i = 1, 2,

does not exceed CγNγ .

Conditions (Kα) and (Dδ) guarantee that the system (f(nkx))k≥1 has almost i.i.d. prop-
erties, while condition (D0

γ) controls the value of the integral

∫ 1

0

(
N∑

k=1

f(nkx)

)2

dx. (6)

Together they will imply (see Theorem 1) an exact LIL for the sequence (f(nkx))k≥1 for fixed
f , but they are not sufficient to obtain the LIL (4) for the discrepancy of (nkx)k≥1. Using
condition (D0

γ), we can calculate the (asymptotic) value of the integral (6), and obtain an
exact LIL for the discrepancy of (nkx)k≥1, where the value of the lim sup is exactly the same
as in the Chung-Smirnov LIL for i.i.d. random variables (Theorem 2).

We note that higher order Diophantine conditions were shown in Berkes, Philipp and
Tichy [8] to imply asymptotic results for the discrepancy of (nkx)k≥1. The substantial im-
provement of the present paper is to use the two-term Diophantine conditions (Dδ), (D0

γ)
and the density condition (Kα), which are essentially optimal for LIL type results.

We will prove the following results:

Theorem 1 Let f be a real function satisfying

f(x + 1) = f(x),

∫ 1

0
f(x) dx = 0, f ∈ BV ([0, 1]), (7)

and assume there exists a positive constant C1 such that

bN =

∫ 1

0

(
N∑

k=1

f(nkx)

)2

dx ≥ C1N, N ≥ 1.

Let (nk)k≥1 a sequence of positive integers satisfying conditions (Kα) and (Dδ), where

α + δ < 1. (8)

Let SN =
∑N

k=1 f(nkx). Then the sequence (SN )N≥1 can be redefined on a new probability
space (without changing its distribution) together with a Wiener process ξ(t) such that

SN = ξ(bN ) + o
(

N1/2−λ
)

a.s.,

where λ > 0 depends on α and δ.

Corollary 1 Let f be a real function satisfying (7) and

‖f‖2 :=

(∫ 1

0
f(x)2 dx

)1/2

> 0,
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and let (nk)k≥1 a sequence of positive integers satisfying conditions (Kα) and (Dδ), where

α + δ < 1.

Assume that (nk)k≥1 also satisfies condition (D0
γ) for some γ < 1. Then, letting SN =

∑N
k=1 f(nkx), the sequence (SN )N≥1 can be redefined on a new probability space (without

changing its distribution) together with a Wiener process ξ(t) such that

SN = ξ
(
‖f‖2

2N
)

+ o
(

N1/2−λ
)

a.s.,

where λ > 0 depends on α, δ and γ.

Corollary 2 Let f be a real function satisfying (7), and let (nk)k≥1 a sequence of positive
integers satisfying conditions (Kα) and (Dδ), where

α + δ < 1.

Then
N∑

k=1

f(nkx) = O
(

N1/2(log log N)3/2
)

a.e.

Theorem 2 Let (nk)k≥1 be an increasing sequence of positive integers satisfying conditions
(Kα) and (Dδ)for α + δ < 1, and condition (D0

γ) for γ < 1. Then

lim sup
N→∞

NDN (nkx)√
2N log log N

= lim sup
N→∞

ND∗
N (nkx)√

2N log log N
=

1

2
a.e.

A simple example for a class of sequences satisfying conditions (Kα) and (Dδ) is the class
of Hardy-Littlewood-Pólya sequences (cf. Berkes, Philipp, Tichy [8] and Philipp [16]), i.e. the
class of sequences generated by a finite number of coprime integers, sorted in increasing order.
A Hardy-Littlewood-Pólya sequence does not satisfy condition (D0

γ), since the equation

j1nk1 − j2nk2 = 0

has “too many” solutions for certain values of j1, j2, and we can not expect that a Hardy-
Littlewood-Pólya sequence will satisfy the LIL for the discrepancy (4) with the value of the
lim sup equal to 1/2. In fact, recently Fukuyama and Nakata [11] have been able to calculate
the value of the lim sup in the LIL for the discrepancy of (nkx)k≥1, where (nk)k≥1 is a Hardy-
Littlewood-Pólya sequence, and in general the value is different from 1/2. On the other
hand, using a random construction, it is easy to give examples of sequences satisfying our
conditions (Kα), (Dδ), (D0

γ). In fact one can show that “almost all” sequences (with respect
to a certain “natural” measure) satisfying condition (Kα) will also satisfy the Diophantine
conditions (Dδ), (D0

γ) (for such an argument see [8, p. 117]). It is not clear whether (8) is
really necessary, or it can be replaced by e.g.

α < 1, δ < 1. (9)

There is some reason to believe that for slowly growing sequences (nk)k≥1 the Diophantine
(or number-theoretic) structure has to be “stronger”, while for fast growing sequences the
Diophantine structure can be weaker. This is in accordance with our results for lacunary
sequences, which in some sense represent the case α = 0, δ = 1. In particular, we do not
know if (8) can be improved, and it would be interesting to see if results similar to Theorem
1, Theorem 2 can be shown if (8) is replaced by (9).
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2 Preliminaries

To prove our theorems we will need some auxiliary results. In the sequel we will always
assume that f satisfies (7), and, without loss of generality, that Var[0,1] f ≤ 2, i.e. the total
variation of f in the interval [0, 1] is at most 2. This implies that for the Fourier series of f ,
i.e.

f ∼
∞∑

j=1

aj cos 2πjx + bj sin 2πjx,

we have (see Zygmund [21, p. 48])

|aj | ≤ j−1, |bj | ≤ j−1, j ≥ 1.

Theorem 3 (Strassen [20]) Let (Yi,Fi, i ≥ 1) be a martingale difference sequence with
finite fourth moments, let VM =

∑M
i=1 E(Y 2

i |Fi−1) and suppose VM ∼ sM a.s. with some
positive sequence sM and

∞∑

M=1

EY 4
M

s2ϑ
M

< +∞ (10)

with 0 < ϑ < 1. Then Y1, Y2, . . . can be redefined on a new probability space without changing
its distribution together with a Wiener process ξ(t) such that

Y1 + · · · + YM = ξ(VM ) + o
(

V
(1+ϑ)/4
M log VM

)

a.s.

The Beppo Levi theorem and (10) imply the a.s. convergence of
∑∞

M=1 s−2ϑ
M E(Y 4

M |FM−1)

and hence by VM ∼ sM the series
∑∞

M=1 V −2ϑ
M E(Y 4

M |FM−1) is also a.s. convergent. Thus

∞∑

M=1

1

V ϑ
M

∫

x2>V ϑ
M

x2 dP (YM < x|FM−1) ≤
∞∑

M=1

1

V 2ϑ
M

∫ +∞

−∞
x4 dP (YM < x|FM−1)

≤
∞∑

M=1

1

V 2ϑ
M

E(Y 4
M |FM−1) < +∞ a.s.

Thus Theorem 3 follows from Theorem (4.4) of [20] (this argument is copied from [6, Theorem
B]).

Lemma 1 (Strassen [20]) Let ε > 0 be given. Then there exists an ϑ > 0 such that

P

{

|ξ(Vn) − ξ(sn)| = o
(

s1/2−ϑ
n

)

as n → ∞ for any sequences Vn, sn,

such that Vn → ∞, sn → ∞, |Vn − sn| = o
(
s1−ε
n

)
as n → ∞

}

= 1.

This is a special case of [20, Lemma 4.2].

Theorem 4 ([19, p. 299]) Let (Ui,Fi, i ≥ 1) be a supermartingale with EU1 = 0. Put

U0 = 0 and Yi = Ui − Ui−1, i ≥ 1.
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Suppose that
Yi ≤ c a.s.

for some constant c > 0 and for all i ≥ 1. For λ > 0 define

Tn = exp



λUn − 1

2
λ2

(

1 +
1

2
λc

)
∑

i≤n

E(Y 2
i |Fi−1)



 , n ≥ 1,

and T0 = 1 a.s. Then for each λ with λc ≤ 1 the sequence (Tn,Fn, n ≥ 0) is a non-negative
supermartingale satisfying

P

(

sup
n≥0

Tn > a

)

≤ 1/a

for each a > 0.

Lemma 2 Assume that condition (Kα) holds for the sequence (nk)k≥1 for some α < 1, and
assume without loss of generality that Cα > 1. Then

nk+3C2
αkα

nk
≥ 2, k ≥ 1.

Remark: Here and in the sequel, nk will stand for n⌈k⌉ if k is not an integer.

Proof: For given k, there exists an j such that nk ∈ [2j , 2j+1), and by condition (Kα) there
are at most (Cαkα − 1) other indices k′ for which nk′ lies in this interval. Accordingly, the
number of indices k′′ for which nk′′ ∈ [2j+1, 2j+2) is bounded by

Cα (k + Cαkα)α ≤ Cα

(

kα + Cαk(α2)
)

≤ 2C2
αkα.

This implies
nk+(Cαkα−1)+2C2

αkα+1 ∈
[
2j+2,∞

)

and nk+3C2
αkα

nk
≥

nk+(Cαkα−1)+2C2
αkα+1

nk
≥ 2. �

Lemma 3 Assume that condition (Kα) holds for the sequence (nk)k≥1 for some α < 1, and
assume without loss of generality that Cα > 1. Then for any integer m ≥ 1

nk(1+3C2
αkα−1)m

nk
≥ 2m, k ≥ 1.

Proof : We use induction on m. The case m = 1 was shown in Lemma 2. For m ≥ 1 we
have

nk(1+3C2
αkα−1)m+1

nk
≥

nk(1+3C2
αkα−1)m(1+3C2

α(k(1+3C2
αkα−1)m)α−1)

nk(1+3C2
αkα−1)m

·
nk(1+3C2

αkα−1)m

nk

≥ 2 · 2m = 2m+1. �

Lemma 4 Assume that condition (Kα) holds for the sequence (nk)k≥1 for some α < 1, and
assume without loss of generality that Cα > 1. Then there exists a number c > 0, depending
only on α and Cα, such that

nk+28C2
α(log k)kα

nk
≥ ck6, k ≥ 1. (11)

7



Proof: For sufficiently large k,

(
1 + 3C2

αkα−1
)9 log k ≤ 1 + 28C2

α(log k)kα−1.

Thus for such k

nk+28C2
α(log k)kα

nk
≥

nk(1+3C2
αkα−1)(9 log k)

nk
≥ 29 log k ≥ k9 log 2 ≥ k−6

by Lemma 3. By choosing c sufficiently small (11) holds for all k ≥ 1. �

Lemma 5 For any function f satisfying (7), we have

∣
∣
∣
∣

∫ b

a
f(λx) dx

∣
∣
∣
∣
≤ 2

λ

∫ 1

0
|f(x)| dx ≤ 2

λ
‖f‖∞

for any real numbers a < b and any λ > 0. In particular,

∣
∣
∣
∣

∫ b

a
cos(2πλx) dx

∣
∣
∣
∣
≤ 2

λ
.

Proof. The lemma follows from

∫ b

a
f(λx) dx =

1

λ

∫ λb

λa
f(x) dx. �

3 Proof of Theorem 1

Assume the conditions of Theorem 1 are satisfied. We put

η =
α

1 − α
+ ν

for a ν > 0 such that α + δ + ν(1 − α)δ < 1 (since by assumption α + δ < 1 it is possible to
choose such a ν). Then

(η + 1)δ =

(
1

1 − α
+ ν

)

δ =
δ + ν(1 − α)δ

1 − α
< 1. (12)

We choose an η′ such that

η′ < η and η′ >
α

1 − α
+ να,

and observe that

(η + 1)α =

(
1

1 − α
+ ν

)

α < η′. (13)

We have

ciη+1 ≤
i∑

l=1

⌊lη⌋ ≤ ciη+1.
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(Remark: Throughout this section c will denote appropriate positive numbers, not always the
same, that may only depend on the constants α, δ, Cα, Cδ , C1 in the statement of Theorem 1
and on η, η′, but not on f,N, k, i,M, p, ϕ or anything else. ε will denote appropriate, “small”
positive number, that may only depend on α and δ.)

We divide the set of positive integers into consecutive blocks

∆1,∆
′
1,∆2,∆

′
2, . . . ,∆i,∆

′
i, . . .

of lengths ⌊iη⌋ and ⌈iη′⌉, respectively. Let (i − 1)+ denote the largest integer in ∆i. Then

ciη+1 ≤ (i − 1)+ ≤ ciη+1, i ≥ 2. (14)

Therefore by (13) for sufficiently large i

(i − 1)+ + 28C2
α(log((i − 1)+))((i − 1)+)α ≤ (i − 1)+ + c(log i)i(η+1)α ≤ (i − 1)+ + iη

′ ≤ i−,

where i− denotes the smallest integer in the block ∆i. Thus by condition (Kα), Lemma 4
and (14) for sufficiently large i

n(i−1)+

ni−
≤ c

(
(i − 1)+

)−6 ≤ c
(
iη+1

)−6
, (15)

and by changing c this is valid for i ≥ 2.

For simplicity of writing without loss of generality we assume that f is an even function,
i.e. the Fourier series of f is of the form

f(x) ∼
∞∑

j=1

aj cos 2πjx.

The proof in the general case is exactly the same. We approximate f by trigonometric
polynomials

pk(x) =
k2
∑

j=1

aj cos 2πjx, k ≥ 1.

Then

‖f − pk‖2 ≤





∞∑

j=k2+1

a2
j





1/2

≤





∞∑

j=k2+1

j−2





1/2

≤ k−1.

For every k ∈ ⋃i≥1 ∆i, we set

m(k) = ⌈log2 nk + 4 log2 k⌉

and approximate pk(nkx) by a discrete function ϕk(x) such that the following properties are
satisfied:

(P1) ϕk(x) is constant for v
2m(k) ≤ x < v+1

2m(k) , v = 0, 1, . . . , 2m(k) − 1

(P2) |ϕk(x) − pk(nkx)| ≤ ck−2, x ∈ [0, 1)
(P3) E(ϕk(x)|Fi−1) = 0
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Here Fi denotes the σ-field generated by the intervals

[
v

2m(i+)
,

v + 1

2m(i+)

)

, 0 ≤ v < 2m(i+).

We have

|pk(nkx) − pk(nkx̄)| ≤
k2
∑

j=1

|aj |2πjnk2−m(k) ≤ ck−2

for
v

2m(k)
≤ x, x̄ ≤ v + 1

2m(k)
, 0 ≤ v < 2m(k).

Thus it is possible to approximate pk(nkx) by discrete functions ϕ̂k(x) that satisfy (P1)

and (P2) only. For k ∈ ∆i and any interval I of the form
[

v

2m((i−1)+)
, v+1

2m((i−1)+)

)

, 0 ≤ v <

2m((i−1)+), letting |I| denote the length of I,

1

|I|

∣
∣
∣
∣

∫

I
ϕ̂k(x) dx

∣
∣
∣
∣

≤ 1

|I|

∣
∣
∣
∣

∫

I
pk(nkx) dx

∣
∣
∣
∣
+

1

|I|

∫

I
ck−2 dx

≤ c2m((i−1)+)
k2
∑

j=1

|aj|
jni−

+
c

k2

≤
c
(
iη+1

)4
n(i−1)+

ni−
+

c

k2

≤ ck−2,

by (15) and Lemma 5. Every x ∈ [0, 1) is contained in one interval of the form I (for some
v), so we put ϕk(x) = ϕ̂k(x) − |I|−1

∫

I ϕ̂k(t)dt for x ∈ I and get functions that satisfy (P1),
(P2) and (P3).

We put Y0 = 0, and, for i ≥ 1,M ≥ 1, we define

Yi = Yi(x) =
∑

k∈∆i

ϕk(x),

Ti = Ti(x) =
∑

k∈∆i

pk(nkx),

T ′
i = T ′

i (x) =
∑

k∈∆′

i

pk(nkx),

VM =
M∑

i=1

E(Y 2
i |Fi−1),

and

σ2
i =

∫ 1

0




∑

k∈∆i

pk(nkx)





2

dx, sM =

M∑

i=1

σ2
i .
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We want to estimate ‖VM − sM‖2. We have

Ti(x)2 − σ2
i

=




∑

k∈∆i

p(nkx) dx





2

−
∫ 1

0




∑

k∈∆i

pk(nkx)





2

=
∑

k, k′ ∈ ∆i, 1 ≤ j ≤ k2, 1 ≤ j ≤ (k′)2

0 < |jnk − j′nk′ | ≤ n(i−1)+

1

2
ajaj′ cos 2π(jnk − j′nk′)x

+Wi(x)

= Ui(x) + Wi(x). (16)

Note that the trigonometric functions in T 2
i with frequency zero cancel out with σ2

i . Wi(x)
is a sum of trigonometric functions with frequencies at least n(i−1)+ , and the sum of the
coefficients of these trigonometric functions is at most

c




∑

k∈∆i

k2
∑

j=1

|aj |





2

≤ c(log i)2i2η

Thus we can write
Wi(x) =

∑

u≥n(i−1)+

cu cos 2πux,

where ∑

u≥n(i−1)+

|cu| ≤ c(log i)2i2η, (17)

and by condition (Dδ)

|cu| ≤ c
(
iη+1

)δ
. (18)

By (16), Minkowski’s inequality and

∥
∥Y 2

i − T 2
i

∥
∥
∞ ≤ ‖Yi − Ti‖∞ ‖Yi + Ti‖∞

≤ c|∆i| i−2(η+1)
∑

k∈∆i

‖pk‖∞

≤ c(log i)i−2 (19)

we get

‖VM − sM‖2

≤
∥
∥
∥
∥
∥

M∑

i=1

(
E(T 2

i |Fi−1) − σ2
i

)

∥
∥
∥
∥
∥

2

+

M∑

i=1

c(log i)i−2

≤
∥
∥
∥
∥
∥

M∑

i=1

E(Ui|Fi−1)

∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥

M∑

i=1

E(Wi|Fi−1)

∥
∥
∥
∥
∥

2

+ c. (20)

11



To estimate
∥
∥
∥
∑M

i=1 E(Wi|Fi−1)
∥
∥
∥

2
, we observe

(
M∑

i=1

E(Wi|Fi−1)

)2

≤ 2
∑

1≤i≤i′≤M

E(Wi|Fi−1)E(Wi′ |Fi′−1).

By (17), (18) and the Jensen inequality

E

(
M∑

i=1

(E(Wi|Fi−1))
2

)

≤
M∑

i=1

EW 2
i

≤
M∑

i=1

c(log i)2i2η
(
iη+1

)δ

≤ c(log M)2M2η+1+(η+1)δ .

For i < i′, since E(Wi|Fi−1) is Fi−1-measurable,
∣
∣
∣E

(

E(Wi|Fi−1)E(Wi′ |Fi′−1)
∣
∣
∣Fi−1

)∣
∣
∣ = |E(Wi|Fi−1)E(Wi′ |Fi−1)|

≤ ‖Wi‖∞ |E(Wi′ |Fi−1)|
≤ c(log i)2i2η |E(Wi′ |Fi−1)| .

Using (17) and Lemma 5, we get

|E(Wi′ |Fi−1)| ≤ c(log i′)2(i′)2η
i4η+4n(i−1)+

n(i′−1)+

≤ c
(log i′)2(i′)2ηi4η+4

∏i′

j=i+1 j6η+6
,

which finally yields
∥
∥
∥
∥
∥

M∑

i=1

E(Wi|Fi−1)

∥
∥
∥
∥
∥

2

≤ c



(log M)2M2η+1+(η+1)δ +
∑

1≤i<i′≤M

(log i)2i2η(log i′)2(i′)2ηi4η+4

∏i′

j=i+1 j6η+6





1/2

≤ c(log M)
√

M2η+1+(η+1)δ . (21)

Next we estimate
∥
∥
∥
∑M

i=1 E(Ui|Fi−1)
∥
∥
∥

2
. Writing

Ui =

n(i−1)+
∑

u=1

cu cos 2πux,

wee see that the fluctuation of Ui on any atom of Fi−1 is at most

n(i−1)+
∑

u=1

|cu|2πu2−m((i−1)+) ≤ cn(i−1)+2−m((i−1)+)

n(i−1)+
∑

u=1

|cu|

≤ ci−4η−4(log i)2i2η ≤ c(log i)2i−2η−4.

12



Therefore ∥
∥
∥
∥
∥

M∑

i=1

E(Ui|Fi−1)

∥
∥
∥
∥
∥

2

≤
∥
∥
∥
∥
∥

M∑

i=1

Ui

∥
∥
∥
∥
∥

2

+ c. (22)

Writing
M∑

i=1

Ui =

n(M−1)+
∑

u=1

cu cos 2πux,

we have
n(M−1)+
∑

u=1

|cu| ≤
M∑

i=1

c(log i)2i2η ≤ c(log M)2M2η+1,

and, by condition (Dδ),

|cu| ≤ c
(
Mη+1

)δ
, 1 ≤ u ≤ n(M−1)+ .

This, together with (22), yields

∥
∥
∥
∥
∥

M∑

i=1

E(Ui|Fi−1)

∥
∥
∥
∥
∥

2

≤





n(M−1)+
∑

u=1

c2
u





1/2

+ c ≤ c(log M)
√

M2η+1+(η+1)δ . (23)

Combining (20), (21) and (23), we finally arrive at

‖VM − sM‖2 ≤ c(log M)
√

M2η+1+(η+1)δ ≤ cMη+1−ε,

since by (12) we have (η + 1)δ < 1.

By assumption
∫ 1

0

(
N∑

k=1

f(nkx)

)2

dx > C1N, N ≥ 1. (24)

We observe that

∣
∣
∣
∣
∣
∣

∫ 1

0





M∑

i=1

∑

k∈∆i

pk(nkx)





2

dx −
∫ 1

0

M∑

i=1




∑

k∈∆i

pk(nkx)





2

dx

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

2

∫ 1

0

∑

1≤i<i′≤M




∑

k∈∆i

pk(nkx)








∑

k′∈∆i′

pk(nk′x)



 dx

∣
∣
∣
∣
∣
∣

≤ c
∑

1≤i<i′≤M

#
{
k ∈ ∆i, k

′ ∈ ∆i′ , 1 ≤ j ≤ k2, 1 ≤ j′ ≤ (k′)2 : jnk − j′nk′ = 0
}

(25)

≤ c,

since for k ∈ ∆i, k
′ ∈ ∆i′ , where i′ > i, we have

nk′

nk
≥

n(i′)−

ni+
≥

n(i+1)−

ni+
≥ ci6(η+1) ≥ ck6

13



and thus the equation in (25) has only finitely many solutions. Letting rk(x) = f(x) −
pk(x), k ≥ 1, Minkowski’s inequality yields

∣
∣
∣
√

sM −
√

bM+

∣
∣
∣

≤

∣
∣
∣
∣
∣
∣
∣





∫ 1

0





M∑

i=1

∑

k∈∆i

pk(nkx)





2

dx





1/2

−





∫ 1

0





M+
∑

k=1

f(nkx)





2

dx





1/2
∣
∣
∣
∣
∣
∣
∣

+ c

≤





∫ 1

0





M+
∑

k=1

rk(nkx)





2

dx





1/2

+





∫ 1

0




∑

1≤k≤M+,k 6∈
SM

i=1 ∆i

pk(nkx)





2

dx





1/2

+ c

≤





M+
∑

k=1

‖rk‖2



+

(M+)2
∑

j=1

|aj |





∫ 1

0




∑

1≤k≤M+,k 6∈
SM

i=1 ∆i,k≥
√

j

cos 2πjnkx





2

dx





1/2

+ c

≤





M+
∑

k=1

ck−1



+

(M+)2
∑

j=1

cj−1

√
√
√
√

M∑

i=1

|∆′
i| + c

≤ c
(

(log M) + (log M)
√

Mη′+1
)

≤ c(M+)1/2−ε.

It is easy to see that

sM ≤ c(log M)2M+, bM+ ≤ c(log M)2M+,

and thus
|sM − bM+ | ≤

∣
∣
∣
√

sM −
√

bM+

∣
∣
∣

(√
sM +

√

bM+

)

≤ c(M+)1−ε. (26)

Therefore by (24)
sM ≥ cMη+1

for sufficiently large M , which implies, together with (26), that

bM+

sM
→ 1 and |sM − bM+| ≤ O

(
(bM+)1−ε

)
as M → ∞. (27)

Choose ℓ “large” (the exact value will be determined later), and define

Nj = jℓ, j ≥ 1.

We have

sNj
− sNj−1 =

Nj∑

i=Nj−1

∫ 1

0




∑

k∈∆i

pk(nkx)





2

dx

≤ c(log j)2
Nj∑

i=Nj−1

iη

≤ c(log j)2
((

jℓ
)η+1

−
(

(j − 1)ℓ
)η+1

)

≤ c(log j)2jℓ(η+1)−1

≤ c1(log j)2(sNj−1)
ℓ(η+1)−1

ℓ(η+1)

14



for some positive number c1, which does not depend on j. Since sM and VM are both
increasing in M

P




⋃

Nj−1<M≤Nj

{

|VM − sM | ≥ 2c1(log j)2(sM )
ℓ(η+1)−1

ℓ(η+1)

}




≤ P

({
∣
∣VNj−1 − sNj

∣
∣ ≥ 2c1(log j)2(sNj−1)

ℓ(η+1)−1
ℓ(η+1)

})

+P

({
∣
∣VNj

− sNj−1

∣
∣ ≥ 2c1(log j)2(sNj−1)

ℓ(η+1)−1
ℓ(η+1)

})

≤ P

({

|VNj−1 − sNj−1 | ≥ c1(log j)2(sNj−1)
ℓ(η+1)−1

ℓ(η+1)

})

+P

({

|VNj
− sNj

| ≥ c1(log j)2(sNj−1)
ℓ(η+1)−1

ℓ(η+1)

})

≤ c(sNj
)
−2(ℓ(η+1)−1)

ℓ(η+1) (Nj)
2(η+1−ε)

≤ c
(
(Nj)

η+1
)−2(ℓ(η+1)−1)

ℓ(η+1) (Nj)
2(η+1−ε)

≤ c
(

jℓ(η+1)
)−2(ℓ(η+1)−1)

ℓ(η+1)
(

jℓ
)2(η+1−ε)

≤ cj−2(ℓ(η+1)−1)+2ℓ(η+1−ε)

≤ cj−2

for sufficiently large ℓ (depending only on ε). Therefore by the Borel-Cantelli lemma

P

{

x ∈ [0, 1) : x ∈
{

|VM − sM | ≥ 2c1(log M)2(sM )
ℓ(η+1)−1

ℓ(η+1)

}

for finitely many M

}

= 1,

or, in other words,
|VM − sM | = o

(
(sM )1−ε

)
a.e. (28)

Next we estimate ‖YM‖4. We have

‖YM‖4 ≤

∥
∥
∥
∥
∥
∥

∑

k∈∆M

pk(nkx)

∥
∥
∥
∥
∥
∥

4

+
∑

k∈∆M

‖pk − ϕk‖∞

≤





M+
∑

j=1

1

j

∥
∥
∥
∥
∥
∥

∑

k∈∆M ,k≥
√

j

cos 2πnkx

∥
∥
∥
∥
∥
∥

4



+ cMη(Mη+1)−2

≤ c(log M)
(

M2ηM (η+1)δ
)1/4

≤ c
(
M2η+1−ε

)1/4
, (29)
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since
∥
∥
∥
∥
∥
∥

∑

k∈∆M

cos 2πnkx

∥
∥
∥
∥
∥
∥

4

4

(30)

≤ # {(k1, k2, k3, k4), ki ∈ ∆M , i = 1, 2, 3, 4 : nk1 ± nk2 + nk3 ± nk4 = 0}
≤

∑

b∈Z

(# {(k1, k2), ki ∈ ∆M , i = 1, 2 : nk1 ± nk2 = b})2

≤ (# {(k1, k2), ki ∈ ∆M , i = 1, 2 : nk1 − nk2 = 0})2

+ |∆M |2 max
b∈Z,b6=0

# {(k1, k2), ki ∈ ∆M , i = 1, 2 : nk1 ± nk2 = b}

≤ |∆M |2 + |∆M |2Cδ(M
+)δ

≤ cM2η+(η+1)δ

(here nk1 ± nk2 = b means that either nk1 + nk2 = b or nk1 − nk2 = b). Now we can apply
Theorem 3: by (28) we have VM ∼ sM a.e., and by (29) we have

∞∑

M=1

EY 4
M

s2−ε1
M

≤ c

∞∑

M=1

M2η+1−ε

(Mη+1)2−ε1
≤ c

∞∑

M=1

M (η+1)ε1

M1+ε
< +∞

for a sufficiently small ε1 > 0 (depending on the value of ε in (29)). This implies that there
exists a Wiener process ξ such that

Y1 + · · · + YM = ξ(VM ) + o
(

V
1/2−ε
M

)

a.e.

Since by (27) and (28)
|VM − bM+ | = o

(
(bM+)1−ε

)
a.e.,

by Lemma 1 and since |Yi − Ti| ≤ c|∆i|i−2η−2 ≤ ci−2

T1 + · · · + TM = ξ(bM+) + o
(

b
1/2−ε
M+

)

a.e.

To prove Theorem 1 it remains to replace the functions pk by f , add the remaining function
values in T ′

i and break into the blocks of integers ∆i and ∆′
i. First we observe that

∥
∥
∥
∥
∥
∥

max
N≥1

∣
∣
∣
∣
∣
∣

∑

k∈(∆i∪∆′

i), k≤N

f(nkx) − pk(nkx)

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

2

≤
∑

k∈(∆i∪∆′

i)

‖rk‖2

≤ c(|∆i| + |∆′
i|)i−η−1

≤ ci−1.

On the other hand, using the Carleson-Hunt inequality (for a survey see e.g. [5] or [15])
∥
∥
∥
∥
∥
∥

max
N≥1

∣
∣
∣
∣
∣
∣

∑

k∈(∆i∪∆′

i), k≤N

pk(nkx)

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

4

≤ c

(i+)2
∑

j=1

1

j

∥
∥
∥
∥
∥
∥

max
N≥1

∣
∣
∣
∣
∣
∣

∑

k∈(∆i∪∆′

i), k≤N

cos 2πjnkx

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

4

≤ c(log i)

∥
∥
∥
∥
∥
∥

∑

k∈(∆i∪∆′

i)

cos 2πnkx

∥
∥
∥
∥
∥
∥

4

≤ c(log i)
(

i2ηi(η+1)δ
)1/4

≤ ci
2η+1−ε

4 , (31)
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where the last inequality follows from an argument similar to the one in (30). Thus for a
sufficiently small ε2 > 0 (depending on the value of ε in (31))

P






x ∈ (0, 1) : max

N≥1

∣
∣
∣
∣
∣
∣

∑

k∈(∆i∪∆′

i), k≤N

f(nkx)

∣
∣
∣
∣
∣
∣

> i(η+1)/2−ε2







≤ c
i2η+1−ε

i2η+2−4ε2

≤ ci−1−ε.

By the Borel-Cantelli lemma

N∑

k=1

f(nkx) = ξ(bM+(N)) + o
(

(bM+(N))
1/2−ε

)

a.e.,

where M+(N) denotes the value of M+, where M is defined by N ∈ ∆M ∪ ∆′
M . Since

bN ≤ cN(log N)2

and
∣
∣bM+(N) − bN

∣
∣ = o

(
(bN )1−ε

)
,

by Lemma 1 we finally arrive at

N∑

k=1

f(nkx) = ξ(bN ) + o
(

N1/2−ε
)

a.e.,

which is Theorem 1.

4 Proof of Corollary 1 and Corollary 2

Corollary 2 is a consequence of the proof of Theorem 1 and the fact that for a function
of bounded variation g(x), satisfying (7), and any increasing sequence (nk)k≥1 of positive
integers,

∫ 1

0

(
N∑

k=1

g(nkx)

)2

dx ≤ cN(log log N)2 (32)

(the proof of (32) is due to Koksma [13], who used a deep result of Gál [9]). In fact, let
a function of bounded variation f , satisfying (7), be given. Then, again without loss of
generality assuming Var[0,1] f ≤ 2 and f is even,

f(x) ∼
∞∑

j=1

aj cos 2πjnkx,

where
|aj | ≤ j−1, j ≥ 1. (33)
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We can decompose

f = f1 + f2, where f1(x) ∼
∞∑

j=1

max{0, aj} cos 2πjnkx, f2 ∼
∞∑

j=1

min{0, aj} cos 2πjnkx,

i.e. the Fourier coefficients of f1 are all greater or equal zero, those of f2 are all less or equal
zero. Thus it is clear that

∫ 1

0

(
N∑

k=1

f1(nkx)

)2

dx ≥ cN,

∫ 1

0

(
N∑

k=1

f2(nkx)

)2

dx ≥ cN,

except for the trivial case ‖f1‖2 = 0 and ‖f2‖2 = 0, respectively. In the proof of Theorem 1
we did not need the fact that f is of bounded variation, but only the estimate (33) for the
Fourier coefficients of f . Of course, (33) holds for the Fourier coefficients of f1 and f2 as well.
Thus we can apply Theorem 1 and get, using (32),

∣
∣
∣
∣
∣

N∑

k=1

f(nkx)

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

N∑

k=1

f1(nkx)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

N∑

k=1

f2(nkx)

∣
∣
∣
∣
∣
≤ O

(

N1/2(log log N)3/2
)

a.e. �

Corollary 1 is a direct consequence of Theorem 1 and the fact that under condition (D0
γ),

again writing

bN =

∫ 1

0

(
N∑

k=1

f(nkx)

)2

dx, N ≥ 1,

the value of bN is almost ‖f‖2
2N . More precisely we have to show that under condition (D0

γ)

∣
∣bN − ‖f‖2

2N
∣
∣ = o

(
N1−ε

)
as N → ∞ (34)

for a small ε > 0 (depending only on α, δ, γ). In fact, for given N ≥ 1, writing

p(x) =

N2
∑

j=1

cj cos 2πjx

for the N2-th partial sum of the Fourier series of f (again assuming without loss of generality
that f is even), we get, using Hölder’s inequality,

∣
∣
∣
∣
∣
∣

(
bN − ‖f‖2

2N
)
−





∫ 1

0

(
N∑

k=1

p(nkx)

)2

dx − ‖p‖2
2N





∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

bN −
∫ 1

0

(
N∑

k=1

p(nkx)

)2

dx

∣
∣
∣
∣
∣
∣

+ N(‖f‖2
2 − ‖p‖2

2)

≤
∥
∥
∥
∥
∥

N∑

k=1

(f(nkx) − p(nkx))

∥
∥
∥
∥
∥

2

∥
∥
∥
∥
∥

N∑

k=1

(f(nkx) + p(nkx))

∥
∥
∥
∥
∥

2

+ N
∞∑

j=N2+1

j−2

≤ cN N−1(log N)
√

N + cN N−2 ≤ c
√

N log N.
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Additionally, we have

∣
∣
∣
∣
∣
∣

∫ 1

0





N2
∑

k=1

p(nkx)





2

dx − ‖p‖2
2N

∣
∣
∣
∣
∣
∣

≤ c

N2
∑

j1,j2=1

1

j1j2
# {(k1, k2), 1 ≤ k1, k2 ≤ N, k1 6= k2 : j1nk1 − j2nk2 = 0}

≤ c(log N)2N1−γ

by condition (D0

γ), which implies (34). �

5 The LIL for the discrepancy

For r ≥ 0, N ≥ 1 and (x1, . . . , xN ) ∈ R
N we define

D
(≤2−r)
N (x1, . . . , xN ) = sup

0≤a<b<1, b−a<2−r

∣
∣
∣
∣
∣

∑N
k=1 I[a,b)(xk)

N

∣
∣
∣
∣
∣

and

D
(≥2−r)
N (x1, . . . , xN ) = max

0≤a1<a2≤2r

∣
∣
∣
∣
∣

∑N
k=1 I[a12−r ,a22−r)(xk)

N

∣
∣
∣
∣
∣
,

D∗
N

(≥2−r)(x1, . . . , xN ) = max
0<a1<2r

∣
∣
∣
∣
∣

∑N
k=1 I[0,a12−r)(xk)

N

∣
∣
∣
∣
∣

Here and in the sequel I[a,b) denotes the indicator function of the interval [a, b), extended with
period 1 and centered at expectation zero, i.e.

I[a,b)(x) = 1[a,b)(〈x〉) − (b − a), x ∈ R.

It is easy to see that always

D
(≥2−r)
N ≤ DN ≤ D

(≥2−r)
N + 2D

(≤2−r)
N (35)

and
D∗

N
(≥2−r) ≤ D∗

N ≤ D∗
N

(≥2−r) + 2D
(≤2−r)
N . (36)

The idea to split the discrepancies DN and D∗
N into a discrepancy D

(≥2−r)
N for finitely many

“large” intervals, and a discrepancy D
(≤2−r)
N for “small” intervals to obtain an exact LIL is

due to Fukuyama [10]. This method is also used in [1], [2].

Lemma 6 Let (nk)k≥1 be a sequence of positive integers satisfying conditions (Kα), (Dδ) and
(D0

γ), where γ < 1 and α + δ < 1. Then

lim sup
N→∞

ND
(≤2−r)
N (nkx)√

2N log log N
≤ K

r
a.e.,

where K is a positive number that may only depend on α, δ, γ, Cα, Cδ, Cγ .
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Lemma 7 Let (nk)k≥1 be a sequence of positive integers satisfying conditions (Kα), (Dδ) and
(D0

γ), where γ < 1 and α + δ < 1. Then

lim sup
N→∞

ND
(≥2−r)
N (nkx)√

2N log log N
= lim sup

N→∞

ND∗
N

(≥2−r)(nkx)√
2N log log N

=
1

2
a.e.

Lemma 7 is a direct consequence of Corollary 2, which implies that under the assumptions of
Lemma 7 ∑N

k=1 I[a,b)(nkx)√
2N log log N

=
∥
∥I[a,b)

∥
∥

2
a.e.,

and the fact that for r ≥ 1

max
0≤a1<a2≤2r

∥
∥I[a12−r ,a22−r)

∥
∥

2
=

1

2
, max

0<a1<2r

∥
∥I[0,a12−r)

∥
∥

2
=

1

2
.

It is easy to see that Theorem 2 follows from Lemma 6, Lemma 7, (35) and (36).

It remains to prove Lemma 6. The proof of this lemma is similar to the proof of Theo-
rem 1. The main difference is that we now have to consider a class of functions instead of one
single function. The notation in this section will be the same as in Section 3.

Throughout this section we will assume that r ≥ 1 is fixed. We define η and η′ like in
Section 3, and again we divide the set of positive integers into consecutive blocks

∆1,∆
′
1,∆2,∆

′
2, . . . ,∆i,∆

′
i, . . .

of lengths ⌊iη⌋ and ⌈iη′⌉, respectively.

Assume that M ≥ 1 is given. We put

H = ⌊((η + 1)/2) log2 M⌋ (37)

and define a class of functions

FM =
{

I[m2−h,(m+1)2−h)(x), 1 ≤ h ≤ H, 0 ≤ m < 2h
}

For all functions f ∈ FM we have

f(x + 1) = f(x),

∫ 1

0
f(x) dx = 0, Var[0,1] f ≤ 2, ‖f‖∞ ≤ 1.

For every f ∈ FM and every k, 1 ≤ k ≤ M+ we write

pk(f, x) =

k2
∑

j=1

aj(f) cos 2πjx

for the k2-th partial sum of the Fourier series of the even part

∞∑

j=1

aj(f) cos 2πjx
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of f (without loss of generality we consider only the even parts; the proof in the general
case is exactly the same), and approximate pk(f, nkx) by discrete functions ϕk(f, x) having
properties (P1)-(P3). Note, that all the functions Yi = Yi(f, x), 1 ≤ i ≤ M are Fi-measurable,
if the σ-fields (Fi)i≥0 are defined like in Section 3. Similar to (30) we get

∥
∥
∥
∥
∥
∥

max
f∈FM

∣
∣
∣
∣
∣
∣

∑

k∈∆i

k2
∑

j=1

aj(f) cos 2πjnkx

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

4

≤
(i+)2
∑

j=1

1

j

∥
∥
∥
∥
∥
∥

∑

k∈∆i

cos 2πjnkx

∥
∥
∥
∥
∥
∥

4

≤ c(log i)
(

i2η+(η+1)δ
)1/4

.

(Remark: In this section, the numbers c and ε may depend on Cα, α,Cδ , δ, η, η′, and addi-
tionally on Cγ and γ). We put

Ai =

{

max
f∈FM

|Yi(f)| >

√
Mη+1

(log2 M)4

}

, 1 ≤ i ≤ M

(log2 i is meant as the maximum of log2 i and 1) and get

P(Ai) ≤ ci2η+(η+1)δ(log2 i)20M−2η−2 ≤ cM−1−ε, 1 ≤ i ≤ M,

and
M∑

i=1

P(Ai) ≤ cM−ε.

We define Z0 = 0 and Z1 = Y1, which yields EZ1 = 0. Each set Ai, i ≥ 1 can be written
as a union of intervals of the form

[

v2−m(i+), (v + 1)2−m(i+)
)

, 0 ≤ v < 2m(i+). (38)

For 1 ≤ i ≤ M we define
Zi = Yi · 1

Yi≤
√

Mη+1

(log2 M)4

.

Then the Zi’s are also Fi-measurable, 1 ≤ i ≤ M . We put

Xn(f) =







0 if n=0
∑n

i=1 Zi(f), if 1 ≤ n ≤ M
∑M

i=1 Zi(f), if n > M

Then (Xn,Fn, n ≥ 1) is a supermartingale such that

Xn − Xn−1 = Zn ≤
√

Mη+1

(log2 M)4
, 1 ≤ n ≤ M,

and trivially Xn −Xn−1 = 0 for n > M . That means the system (Xn,Fn, n ≥ 1) satisfies the
conditions of Theorem 4.
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All functions f ∈ FM are indicator functions of certain intervals, centered at expectation.
Let |I(f)| denote the length of the interval f corresponds to. For all f ∈ FM we put L(f) =
− log2 |I(f)|. Note that L(f) always is a positive integer, and by (37) L(f) ≤ H ≤ (η +
1)/2 (log2 M). Now we want to calculate

P




⋃

f∈FM

{
M∑

i=1

E(Zi(f)2|Fi−1) > L(f)−5Mη+1

}

 .

We define Ti = Ti(f, x), VM (f, x) and sM (f) like in Section 3, and, using the abbreviations

cos+(x) = cos 2π (j1nk1 + j2nk2)x, cos−(x) = cos 2π (j1nk1 − j2nk2) x,

we get
∥
∥
∥
∥
∥

max
f∈FM

∣
∣
∣
∣
∣

(
M∑

i=1

E
(
T 2

i |Fi−1

)

)

− sM

∣
∣
∣
∣
∣

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥

max
f∈FM

∣
∣
∣
∣
∣
∣





M∑

i=1

E








∑

k∈∆i

k2
∑

j=1

aj(f) cos 2πjnkx





2 ∣
∣
∣
∣
∣
Fi−1







− sM

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

2

≤ 2

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

max
f∈FM

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

M∑

i=1

E



















∑

k1,k2∈∆i

k2
1∑

j1=1

k2
2∑

j2=1
︸ ︷︷ ︸

j1nk1
6=j2nk2

aj1(f)aj2(f)

2
cos−(x)










2

∣
∣
∣
∣
∣
Fi−1










∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

+2

∥
∥
∥
∥
∥
∥
∥

max
f∈FM

∣
∣
∣
∣
∣
∣
∣

M∑

i=1

E









∑

k1,k2∈∆i

k2
1∑

j1=1

k2
2∑

j2=1

aj1(f)aj2(f)

2
cos+(x)





2 ∣
∣
∣
∣
∣
Fi−1






∣
∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥
∥

2

≤
(M+)2
∑

j1,j2=1

1

j1j2

∥
∥
∥
∥
∥
∥
∥
∥
∥

M∑

i=1

E















∑

k1, k2 ∈ ∆i, j1k1 6= j2k2

k1 ≥ √
j1, k2 ≥ √

j2

cos−(x)








2
∣
∣
∣
∣
∣
Fi−1








∥
∥
∥
∥
∥
∥
∥
∥
∥

2

+

(M+)2
∑

j1,j2=1

1

j1j2

∥
∥
∥
∥
∥
∥
∥
∥
∥

M∑

i=1

E















∑

k1, k2 ∈ ∆i

k1 ≥ √
j1, k2 ≥ √

j2

cos+(x)








2
∣
∣
∣
∣
∣
Fi−1








∥
∥
∥
∥
∥
∥
∥
∥
∥

2

.

Splitting into sums of trigonometric functions with “small” and “large” frequencies, respec-
tively, and using the same methods as in Section 3 it is no problem to show

∥
∥
∥
∥
∥

max
f∈FM

∣
∣
∣
∣
∣

(
M∑

i=1

E
(
T 2

i |Fi−1

)

)

− sM

∣
∣
∣
∣
∣

∥
∥
∥
∥
∥

2

≤ cMη+1−ε,

which in view of (19), (26) and (34) yields
∥
∥
∥
∥

max
f∈FM

∣
∣VM − ‖f‖2

2M
+
∣
∣

∥
∥
∥
∥

2

≤ cMη+1−ε.
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This implies

P

{

max
f∈FM

∣
∣
∣
∣
∣

M∑

i=1

E(Yi(f)2|Fi−1) − ‖f‖2
2M

+

∣
∣
∣
∣
∣
> L(f)−5Mη+1

}

≤ cM−ε,

and, since Z2
i ≤ Y 2

i and ‖f‖2
2 ≤ cL(f)−5,

P




⋃

f∈FM

{∣
∣
∣
∣
∣

M∑

i=1

E
(
Zi(f)2|Fi−1

)

∣
∣
∣
∣
∣
> cL(f)−5Mη+1

}

 ≤ cM−ε. (39)

Now we use Theorem 4. The supermartingale (Xn(f),Fn, n ≥ 1) satisfies all conditions
of the theorem. We know that

Xn − Xn−1 ≤
√

Mη+1

(log2 M)4
, n ≥ 1,

so we put

λ =
L(f)3

√
log log M√

Mη+1
,

and get λ
√

Mη+1

(log2 M)4
< 1 (without loss of generality we assume that M is large enough). Thus

λ2 ≥ 1

2
λ2

(

1 +
1

2

)

≥ 1

2
λ2

(

1 +
1

2
λ

√
Mη+1

(log2 M)4

)

,

and

P

{

max
1≤n≤M

Xn(f) > 2L(f)−2
√

Mη+1 log log M + λ

M∑

i=1

E
(
Z2

i |Fi−1

)

}

≤ P

{

max
1≤n≤M

(

λXn(f) − λ2
n∑

i=1

E
(
Z2

i |Fi−1

)

)

> 2L(f) log log M

}

≤ P

{

sup
n≥0

exp

(

λXn(f) − 1

2
λ2

(

1 +
1

2
λ

√
Mη+1

(log2 M)4

)
n∑

i=1

E
(
Z2

i |Fi−1

)

)

> (log M)2L(f)

}

≤ 1

(log M)2L(f)
,

where the last inequality follows from Theorem 4.

In FM there are two functions that correspond to intervals of length 1/2; for these functions
L(f) = 1. There are four functions that correspond to intervals of length 1/4; for these
functions L(f) = 2. There are 8 functions with L(f) = 3, etc., and 2H functions with
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L(f) = H. Thus by (39)

P




⋃

f∈FM

{

max
1≤n≤M

Xn(f) > cL(f)−2
√

Mη+1 log log M

}




≤
∑

f∈FM

P

{

max
1≤n≤M

Xn(f) > 2L(f)−2
√

Mη+1 log log M + λ
M∑

i=1

E
(
Zi(f)2|Fi−1

)

}

+P




⋃

f∈FM

{
M∑

i=1

E
(
Zi(f)2|Fi−1

)
> cL(f)−5Mη+1

}



≤
(

H∑

h=1

2h

(log M)2h

)

+ cM−ε ≤ c
1

(log M)2
.

We know that Xn(f, x) =
∑n

i=1 Zi(f, x) =
∑n

i=1 Yi(f, x) for all x and all functions f ∈ FM ,

except for those x in
⋃M

i=1 Ai. Now

‖ϕk − pk‖∞ ≤ ck−2

implies

P




⋃

f∈FM






max

1≤n≤M

∑

k∈∆n

pk(f, nkx) > cL(f)−2
√

Mη+1 log log M











≤ P




⋃

f∈FM

{

max
1≤n≤M

Xn(f) > cL(f)−2
√

Mη+1 log log M

}


+

M∑

i=1

P(Ai)

≤ c
1

(log M)2

In a similar way we get a corresponding result for
∑−pk(f, nkx), so overall we have a

result for |∑ pk(f, nkx)|:

P




⋃

f∈FM






max

1≤n≤M

∣
∣
∣
∣
∣
∣

∑

k∈∆i

pk(f, nkx)

∣
∣
∣
∣
∣
∣

> cL(f)−2
√

Mη+1 log log M









 ≤ c
1

(log M)2

Now, like in Section 3, we break into the blocks ∆i, add the remainder terms rk = f − pk,
and add the remaining values nk, k ∈ ∆′

i, 1 ≤ i ≤ M . Similar to (31), the Carleson-Hunt
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theorem yields
∥
∥
∥
∥
∥
∥

max
f∈FM

max
N≥1

∣
∣
∣
∣
∣
∣

∑

k∈∆i∪∆′

i
,k≤N

k2
∑

j=1

aj(f) cos 2πjnkx

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

4

≤
(i+)2
∑

j=1

1

j

∥
∥
∥
∥
∥
∥

max
N≥1

∣
∣
∣
∣
∣
∣

∑

k∈∆i∪∆′

i
,k≤N

cos 2πjnkx

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

4

≤ c(log i)

∥
∥
∥
∥
∥
∥

∑

k∈∆i

cos 2πnkx

∥
∥
∥
∥
∥
∥

4

≤ c(log i)
(

i2η+(η+1)δ
)1/4

,

and so

P




⋃

f∈FM






max
N≥1

∣
∣
∣
∣
∣
∣

∑

k∈∆i∪∆′

i,k≤N

pk(f, nkx)

∣
∣
∣
∣
∣
∣

> L(f)−2
√

Mη+1 log log M











≤ c
(log M)8i2η+1−ε

M2η+2
.

Thus

P




⋃

f∈FM

{

max
1≤N≤M+

∣
∣
∣
∣
∣

N∑

k=1

pk(f, nkx)

∣
∣
∣
∣
∣
> cL(f)−2

√

Mη+1 log log M

}

 (40)

≤ P




⋃

f∈FM






max

1≤n≤M

∣
∣
∣
∣
∣
∣

n∑

i=1

∑

k∈∆i

pk(f, nkx)

∣
∣
∣
∣
∣
∣

> cL(f)−2
√

Mη+1 log log M











+
M∑

i=1

P




⋃

f∈FM






max
N≥1

∣
∣
∣
∣
∣
∣

∑

k∈∆i∪∆′

i,k≤N

pk(f, nkx)

∣
∣
∣
∣
∣
∣

> L(f)−2
√

Mη+1 log log M











≤ c
1

(log M)2
+

M∑

i=1

c
(log M)8i2η+1−ε

M2η+2
≤ c

1

(log M)2
.

Now we need an estimate for the remainder terms rk(f, nkx) = f(nkx)− pk(f, nkx). We have
∥
∥
∥
∥
∥
∥

max
N≥1

∣
∣
∣
∣
∣
∣

∑

k∈∆i∪∆′

i,k≤N

rk(f, nkx)

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

2

≤ c
∑

k∈∆i∪∆′

i

‖rk‖2 ≤ ci−1,

and so ∥
∥
∥
∥
∥

max
1≤N≤M+

∣
∣
∣
∣
∣

N∑

k=1

rk(f, nkx)

∣
∣
∣
∣
∣

∥
∥
∥
∥
∥

2

≤
M+
∑

i=1

ci−1 ≤ c log M

and

P




⋃

f∈FM

{

max
1≤N≤M+

∣
∣
∣
∣
∣

N∑

k=1

rk(f, nkx)

∣
∣
∣
∣
∣
> L(f)−2

√
Mη+1

}

 ≤
∑

f∈FM

c(log M)6

Mη+1
≤ c

(log M)6√
Mη+1

.
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Combining this with (40) we get

P




⋃

f∈FM

{

max
1≤N≤M+

∣
∣
∣
∣
∣

N∑

k=1

f(nkx)

∣
∣
∣
∣
∣
> cL(f)−2

√

Mη+1 log log M

}

 ≤ c
1

(log M)2
. (41)

Now we apply an argument similar to the one in [17, Section 3]. First we observe, that for
any sequence (xk)k≥1 of reals

D
(≤2−r)
N (xk) ≤ 2 max

0≤m<2r
sup

a<2−r

∣
∣
∣
∣
∣

N∑

k=1

I[m2−r,m2−r+a)(xk)

∣
∣
∣
∣
∣

Since there are only finitely many possible values of m, it suffices to prove

lim sup
N→∞

sup
a<2−r

∣
∣
∣
∣
∣

∑N
k=1 I[m2−r ,m2−r+a)(nkx)√

2N log log N

∣
∣
∣
∣
∣
≤ K

r
a.e.

for all possible values of m. We give a detailed proof for m = 0, all other cases can be treated
similarly. Let a > 0 be given, and write (.a1a2a3 . . . )2 for the dyadic expansion of a. We put
a(0) = 0 and, for n ≥ 1, a(n) = (.a1a2 . . . an000 . . . )2, i.e. we cut off the dyadic expansion of a
after the first n digits. Since a < 2−r, the first r digits of the binary representation of a are
zero (We assume without loss of generality that M is large enough such that H > r). Thus

I[0,a)(x) =

∞∑

h=r

I[a(r),a(r+1))(x), x ∈ (0, 1),

and
(

H−1∑

h=r

I[a(h),a(h+1))(x)

)

−
(

a − a(H)
)

≤ I[0,a)(x)

≤
(

H−1∑

h=r

I[a(h),a(h+1))(x)

)

+ I[a(H),a(H)+2−H)(x) +
(

a(H) + 2(−H) − a
)

.

We note that by (37)

a − a(H) ≤ 2−H ≤ c
1√
M+

,
(

a(H) + 2(−H) − a
)

≤ c
1√
M+

.

All the indicators

I[a(h),a(h+1)), r ≤ h ≤ H − 1, and I[a(H−1),a(H−1)+2−H)

are contained in FM . Thus, for those x ∈ (0, 1), which are not contained in the set

⋃

f∈FM

{

max
1≤N≤M+

∣
∣
∣
∣
∣

N∑

k=1

f(nkx)

∣
∣
∣
∣
∣
> cL(f)−2

√

Mη+1 log log M

}

, (42)
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we have

max
1≤N≤M+

∣
∣
∣
∣
∣

N∑

k=1

I[0,a)(nkx)

∣
∣
∣
∣
∣

≤ max
1≤N≤M+

H−1∑

r=0

∣
∣
∣
∣
∣

N∑

k=1

I[a(h),a(h+1))(nkx)

∣
∣
∣
∣
∣

+ max
1≤N≤M+

∣
∣
∣
∣
∣

N∑

k=1

I[a(H),a(H)+2−H)(nkx)

∣
∣
∣
∣
∣

+

M+
∑

k=1

c
1√
M+

≤ c
√

Mη+1 log log M

(
H−1∑

h=r

L
(

I[a(h),a(h+1))

)−2
)

+c
√

Mη+1 log log M L
(

I[a(H),a(H)+2−H)

)−2

+c
√

M+

≤ c
√

Mη+1 log log M

(( ∞∑

h=r

h−2

)

+ cH−2 + c
(
log log M+

)−1/2

)

≤ cr−1
√

Mη+1 log log M.

Note that this holds for any a ∈ (0, 2−r), and all x ∈ (0, 1) which are not contained in the
sets in (42).

We write M (1),M (2), . . . for the values of M+ for M = 21, 22, . . . . Since M (i+1)/M (i) ≤ c,
for all N between M (i) and M (i+1)

sup
a<2−r

∣
∣
∣
∣
∣

N∑

k=1

I[0,a)(nkx)

∣
∣
∣
∣
∣

≤ c

r

√

M (i+1) log log M (i+1)

≤ c

r

√

M (i) log log M (i)

≤ c

r

√

N log log N

for all x ∈ (0, 1), except for those x which are contained in the set in (42). By (41) the sum
of the measures of the exceptional sets converges, since

∞∑

i=1

c
1

(log 2i)2
≤ c

∞∑

i=1

1

i2
< ∞.

Therefore the Borel-Cantelli lemma implies

lim sup
N→∞

sup
a<2−r

∣
∣
∣
∣
∣

∑N
k=1 I[0,a)(nkx)√
2N log log N

∣
∣
∣
∣
∣
≤ c

r
a.e.

Repeating the same argument for the other possible values of m proves Lemma 6.
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