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Abstract

In 1975 Philipp proved the following law of the iterated logarithm (LIL) for the
discrepancy of lacunary series: Let (nk)k≥1 be a lacunary sequence of positive inte-
gers, i.e. a sequence satisfying the Hadamard gap condition nk+1/nk > q > 1. Then
1/(4

√
2) ≤ lim supN→∞ NDN (nkx)(2N log log N)−1/2 ≤ Cq for almost all x ∈ (0, 1) in

the sense of Lebesgue measure. The same result holds, if the “extremal discrepancy” DN

is replaced by the “star discrepancy” D∗
N . It has been a long standing open problem

whether the value of the limsup in the LIL has to be a constant almost everywhere or
not. In a preceding paper we constructed a lacunary sequence of integers, for which the
value of the limsup in the LIL for the star discrepancy is not a constant a.e. Now, using a
refined version of our methods from this preceding paper, we finally construct a sequence
for which also the value of the limsup in the LIL for the extremal discrepancy is not a
constant a.e.

1 Introduction

In 1975 Philipp [7] solved the Erdős-Gál conjecture and proved a law of the iterated logarithm
for the discrepancy of (nkx)k≥1, where (nk)k≥1 is a sequence of positive integers satisfying
the Hadamard gap condition

nk+1

nk
> q > 1, k ≥ 1,

and x ∈ (0, 1). In fact, he showed that

1

4
√

2
≤ lim sup

N→∞

NDN (nkx)√
2N log log N

≤ Cq a.e., (1)

where Cq is a constant depending on q (this classical result is discussed e.g. in [4],[6]).
Exactly the same conclusion follows if the (extremal) discrepancy DN is replaced by the “star
discrepancy” D∗

N . The exact value of the lim sup in (1) is very difficult to calculate, since it
depends on number-theoretic properties of (nk)k≥1 in an extremely involved way. Fukuyama
[5] calculated the exact value of the lim sup for sequences of the type

(

θk
)

k≥1
(θ > 1, not

necessarily an integer), and in all cases the lim sup is a constant a.e. Of particular interest is
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the case θr 6∈ Q, r ≥ 1, where the lim sup equals 1/2 a.e. This is the same constant as in the
Chung-Smirnov-LIL for i.i.d. random variables (see e.g. [8], p. 504).
In [2] we showed that for a large class of lacunary sequences, characterized in terms of the
number of solutions of Diophantine equations of the type

j1nk1
± j2nk2

= ν, j1, j2, ν ∈ Z, j1, j2 ≥ 1, ν ≥ 0 (2)

the value of the lim sup in the LIL for the discrepancy also equals 1/2 a.e. The same phe-
nomenon, namely a relation between the “regularity” of the probabilistic behavior and the
number of solutions of certain Diophantine equations, appears also in the theory of the central
limit theorem for f(nkx) (see Aistleitner and Berkes [3]).
It is a long standing open problem, whether the lim sup in (1) has to be a constant a.e. or not
for lacunary (nk)k≥1. In [1] we showed that this is not the case if the extremal discrepancy
DN is replaced by the star discrepancy D∗

N : for the sequence

n2k−1 = 2k2

, n2k = 2k2+1 − 1 k ≥ 1 (3)

we have

lim sup
N→∞

ND∗
N (nkx)√

2N log log N
= Ψ∗(x) a.e.,

where

Ψ∗(x) =







































3

4
√

2
, 0 ≤ x ≤ 3/8, 5/8 ≤ x ≤ 1

√

(4x(1 − x) − x)√
2

, 3/8 ≤ x ≤ 1/2

√

(4x(1 − x) − (1 − x))√
2

, 1/2 ≤ x ≤ 5/8.

Regrettably, for this sequence

lim sup
N→∞

NDN (nkx)√
2N log log N

=
3

4
√

2
a.e.,

so the problem remained partially unsolved. It turned out, that the structure of the sequence
defined in (3) is “too simple”: the only Diophantine equations of type (2), that have “many”
solutions, are the equations

2nk1
− nk2

= 1,

4nk1
− 2nk2

= 2,

6nk1
− 3nk2

= 3,

...

In this paper we slightly modify our construction from (3), and obtain a sequence, for which
also the lim sup in the LIL for the extremal discrepancy DN is not a constant a.e.
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Theorem 1 Let (nk)k≥1 be defined by

nk =



















2k2

for k ≡ 1 mod 4

2(k−1)2+1 − 1 for k ≡ 2 mod 4

2k2+k for k ≡ 3 mod 4

2(k−1)2+(k−1)+1 − 2 for k ≡ 0 mod 4

(4)

Then

lim sup
N→∞

NDN (nkx)√
2N log log N

= Ψ(x),

where

Ψ(x) =







































3

4
√

2
for 0 ≤ x ≤ 3/8

√

2(1 − x)x − x/2 for 3/8 ≤ x ≤ 7/16
√

49

128
− x

4
for 7/16 ≤ x ≤ 1/2

Ψ(1 − x) for 1/2 < x ≤ 1.
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Figure 1: Ψ(x)

Many interesting problems remain unsolved. We mention the following:

Open problem: What are the largest numbers C̄ > 0, C̄∗ > 0, such that for any lacunary
sequence (nk)k≥1 of positive integers

lim sup
N→∞

NDN (nkx)√
2N log log N

≥ C̄ a.e.

lim sup
N→∞

ND∗
N (nkx)√

2N log log N
≥ C̄∗ a.e.

Philipp’s result gives C̄ ≥ 1/(4
√

2), and trivially C̄ ≥ C̄∗. Interestingly, there is some
reason to believe that actually the sharp inequality C̄ > C̄∗ holds. In particular, we have
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been intensely trying to find a sequence (nk)k≥1, for which the lim sup in the LIL for the
discrepancy DN is not ≥ 1/2 a.e., but have not been able to find a single sequence for which
this is the case. On the other hand, we have been able to construct some sequences for which
the value of the lim sup in the LIL for the star discrepancy D∗

N is strictly smaller than 1/2
on a set of positive measure (no proof given here).

2 Outline

The proof of Theorem 1 is structured in three lemmas, which are presented here. The proofs
of the lemmas are given in Sections 3-5.

It is easy to see that the sequence

(nk)k≥1 = (2, 3, 4096, 8190, 33554432, 67108863, . . . )

defined in (4) is a lacunary sequence. We have

nk+1

nk
→ 2 for k ≡ 1, 3 mod 4

nk+1

nk
→ ∞ for k ≡ 2, 0 mod 4,

and
nk+1

nk
≥ 3

2
, k ≥ 1.

The Diophantine structure of the sequence is described in the following lemma:

Lemma 1 For j1, j2, ν ∈ Z, j1, j2 ≥ 1, ν ≥ 0 let

L(j1, j2, ν,N) = # {(k1, k2), k1, k2 ≤ N : (j1, k1) 6= (j2, k2), j1nk1
− j2nk2

= ν} .

Then

L(j1, j2, ν,N) =























N

4
+ O(1) as N → ∞ if j1 = 2j2 and ν = j2

N

4
+ O(1) as N → ∞ if j1 = 2j2 and ν = 2j2

O(1) as N → ∞ otherwise,

where the implied constant may depend on j1 and j2, but not on ν.

As usual, for 0 ≤ a ≤ b ≤ 1 we write [a, b) for the half-open interval {x ∈ [0, 1) : a ≤ x < b}.
If 0 ≤ b ≤ a ≤ 1, then [a, b) shall denote the set {x ∈ [0, 1) : a ≤ x} ∪ {x ∈ [0, 1) : x ≤ b}. In
this case, we will still consider the set [a, b) as one interval.

For 0 ≤ a ≤ b ≤ 1 we define I[a,b)(x) as the indicator of the interval [a, b), centered at
expectation and extended with period 1, i.e.

I[a,b)(x) = 1[a,b)(〈x〉) − (b − a),
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where 1 is the ordinary indicator function, and 〈·〉 denotes the fractional part. For convenience
we will also allow 0 ≤ b ≤ a ≤ 1, and define

I[a,b)(x) = 1[a,b)(〈x〉) − (1 + b − a) = −I[b,a)(x).

Thus we can write

NDN (nkx) = sup
0≤a<b≤1

∣

∣

∣

∣

∣

N
∑

k=1

I[a,b)(nkx)

∣

∣

∣

∣

∣

.

In the same way as in [1] we can show

lim sup
N→∞

sup0≤a<b≤1

∣

∣

∣

∑N
k=1 I[a,b)(nkx)

∣

∣

∣

√
2N log log N

= sup
0≤a<b≤1

lim sup
N→∞

∣

∣

∣

∑N
k=1 I[a,b)(nkx)

∣

∣

∣

√
2N log log N

a.e.

Thus we will first calculate the value of

lim sup
N→∞

∣

∣

∣

∑N
k=1 I[a,b)(nkx)

∣

∣

∣

√
2N log log N

for fixed 0 ≤ a < b ≤ 1. In a second step we will calculate the supremum of all this lim sup’s
as a, b run over all possible values 0 ≤ a < b ≤ 1.

Lemma 2 Let a, b be given, such that 0 ≤ a < b ≤ 1. Then

lim sup
N→∞

∣

∣

∣

∑N
k=1 I[a,b)(nkx)

∣

∣

∣

√
2N log log N

=
√

σ[a,b)(x) a.e.,

where

σ[a,b)(x) = (1 − (b − a))(b − a)

+
1

4

∫ 1

0
I[1−b,1−a)(t)I[〈2a〉,〈2b〉)(x − t) dt

+
1

4

∫ 1

0
I[1−b,1−a)(t)I[〈2a〉,〈2b〉)(〈2x〉 − t) dt

Lemma 3

sup
0≤a<b≤1

σ[a,b)(x) =











































9

32
for 0 ≤ x ≤ 3/8

2(1 − x)x − x

2
for 3/8 < x ≤ 7/16

49

128
− x

4
for 7/16 < x ≤ 1/2

sup
0≤a<b≤1

σ[a,b)(1 − x) for 1/2 < x < 1.
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3 Proof of Lemma 1

This lemma is similar to [1, Lemma 2]. We subdivide the proof into three parts (Lemmas
4-6), which together yield the desired result.

Lemma 4 For j1 ≥ 1, j2 ≥ 1 and all N ≥ 1

L(j1, j2, 0, N) = O(1) as N → ∞.

Proof: W.l.o.g. j1 ≤ j2. For sufficiently large k0 = k0(j1, j2)

j1nk1
− j2nk2

= 0, k1, k2 ≥ k0

is only possible if k1, k2 are of the form k+1, k for some k which satisfies k ≡ 1 mod 2. Since

j1nk+1 − j2nk = 0 (5)

implies
j1

j2
=

nk

nk+1
,

and since nk and nk+1 are coprime (except possibly a common factor 2) there can exist only
finitely many solutions of (5). �

Lemma 5 Assume ν 6= 0, and either

j1 6= 2j2

or

ν 6∈ {j2, 2j2} .

Then

L(j1, j2, ν,N) = O(1) as N → ∞, (6)

where the implied constant may only depend on j1, j2, but not on ν.

Proof: Let us first assume that j1 6= 2j2. Then the sequence (mk)k≥1, which consists of all
numbers





⋃

k≥1

{j1nk}



 ∪





⋃

k≥1

{j2nk}



 ,

sorted in increasing order, is a lacunary sequence, which means there exists some q > 1 such
that mk+1/mk > q, k ≥ 1. By a well-known property of lacunary sequences (cf. Zygmund
[9, p. 203])

# {(k1, k2) : mk1
± mk2

= ν} = O(1) as N → ∞,

where the implied constant does not depend on ν. By the construction of the sequence
(mk)k≥1 this implies that (nk)k≥1 has property (6).

Now let us assume that j1 = 2j2, and ν 6∈ {j2, 2j2}. The sequence (mk)k≥1, which consits of
the elements





⋃

k≥1

{j1nk}



 ∪





⋃

k≥1

{j2nk}



 ,
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sorted in increasing order, is of the form

(j2n1, j2n2, j2n2 + 1, 2j2n2, j2n3, j2n4, j2n4 + 2, 2j2n4, . . . )

E.g., if j1 = 2, j2 = 1, we have (mk)k≥1 = (2, 3, 4, 6, 4096, 8190, 8192, 16380, . . . ). The number
of solutions (k1, k2) of

mk1
− mk2

= ν, where (k1, k2) 6∈ {(4k + 3, 4k + 2), k ≥ 0},

is bounded by O(1) uniformly for ν ≥ 1, since (j2nk)k≥1 is lacunary. On the other hand, for
(k1, k2) of the form (4k + 3, 4k + 2) for some k ≥ 0,

mk1
− mk2

is always either j2 or 2j2 by the construction of (mk)k≥1. Thus mk1
− mk2

= ν has only
finitely many solutions, and the same holds for j1nk1

− j2nk2
= ν. �

Lemma 6 Assume that

j1 = 2j2

and

ν ∈ {j2, 2j2}.
Then

∣

∣

∣

∣

L(j1, j2, ν,N) − N

4

∣

∣

∣

∣

= O(1).

Proof: We show only the case ν = j2. The case ν = 2j2 can be treated similarly. Obviously

2j2nk1
− j2nk2

= j2

implies
2nk1

− nk2
= 1. (7)

Since nk+2/nk → ∞ there are only finitely many solutions (k1, k2) of (7), for which k2 > k1+1.
For k2 = k1 +1, the number of solutions {(k1, k2) : k1, k2 ≤ N} of (7) is exactly ⌊(N +2)/4⌋,
as can be easily seen. �

4 Proof of Lemma 2

For fixed a, b, the indicator function I[a,b)(x) is approximated by a partial sum of its Fourier
series. This means, writing

I[a,b)(x) ∼
∞
∑

j=1

aj cos 2πjx + bj sin 2πjx,

where

aj = aj(a, b) =
sin 2πjb − sin 2πja

πj
, j ≥ 1,

bj = bj(a, b) =
− cos 2πjb + cos 2πja

πj
, j ≥ 1,

7



we choose d ≥ 1 and set

p(x) = p[a,b),d(x) =
d
∑

j=1

aj cos 2πjx + bj sin 2πjx,

r(x) = r[a,b),d(x) =

∞
∑

j=d+1

aj cos 2πjx + bj sin 2πjx.

Then by [2, Lemma 3.1]

lim sup
N→∞

∑N
k=1 r(nkx)√

2N log log N
≤ c d−1/4 a.e.

(Remark: Throughout this section c stands for appropriate positive numbers, not always the
same, which must not depend on d). Using methods from [1, Section 4] we can easily show

lim sup
N→∞

∑N
k=1 p(nkx)√

2N log log N
=
√

σ[a,b),d(x) a.e.,

where

σ[a,b),d(x) =
1

2

d
∑

j=1

(

a2
j + b2

j

)

(8)

+
1

4

⌊d/2⌋
∑

j=1

(aja2j + bjb2j) cos 2πjx + (ajb2j − a2jbj) sin 2πjx

+
1

4

⌊d/2⌋
∑

j=1

(aja2j + bjb2j) cos 4πjx + (ajb2j − a2jbj) sin 4πjx

(the proof of this result can be easily modeled after the proof of [1, Corollary 1]. The proof
remains literally the same, except that the function σ[a,b),d in [1] has to be replaced by the
function in (8)).
We observe that for j ≥ 1

aj(a, b) = −aj(1 − a, 1 − b) (9)

bj(a, b) = bj(1 − a, 1 − b) (10)

a2j(a, b) =
aj(〈2a〉, 〈2b〉)

2

b2j(a, b) =
bj(〈2a〉, 〈2b〉)

2
.
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Thus

1

4

( ⌊d/2⌋
∑

j=1

(

aj(a, b)a2j(a, b) + bj(a, b)b2j(a, b)
)

cos 2πjx

+
(

aj(a, b)b2j(a, b) − a2j(a, b)bj(a, b)
)

sin 2πjx

)

= −1

8

(

⌊d/2⌋
∑

j=1

(

aj(1 − a, 1 − b)aj(〈2a〉, 〈2b〉) − bj(1 − a, 1 − b)bj(〈2a〉, 〈2b〉)
)

cos 2πjx

+
(

aj(1 − a, 1 − b)bj(〈2a〉, 〈2b〉) + aj(〈2a〉, 〈2b〉)bj (1 − a, 1 − b)
)

sin 2πjx

)

is the ⌊d/2⌋-th partial sum of the Fourier series of

−1

4

∫ 1

0
I[1−a,1−b)(t)I[〈2a〉,〈2b〉)(x − t) dt

=
1

4

∫ 1

0
I[1−b,1−a)(t)I[〈2a〉,〈2b〉)(x − t) dt (11)

(this is a consequence of the “convolution theorem”, cf. the proof of Lemma 4 in [1]). Thus
σ[a,b),d(x) −∑d

j=1(a
2
j + b2

j) is the ⌊d/2⌋-th partial sum of the Fourier series of

1

4

∫ 1

0
I[1−b,1−a)(t)I[〈2a〉,〈2b〉)(x − t) dt +

1

4

∫ 1

0
I[1−b,1−a)(t)I[〈2a〉,〈2b〉)(〈2x〉 − t) dt.

For

σ[a,b)(x) = (1 − (b − a))(b − a)

+
1

4

∫ 1

0
I[1−b,1−a)(t)I[〈2a〉,〈2b〉)(x − t) dt

+
1

4

∫ 1

0
I[1−b,1−a)(t)I[〈2a〉,〈2b〉)(〈2x〉 − t) dt

we have

‖σ[a,b),d − σ[a,b)‖∞ ≤
(

(1 − (b − a))(b − a) − ‖p[a,b),d‖2
2

)

+ cd−1

≤ cd−1,

since the function σ[a,b) is Lipschitz-continuous and

(1 − (b − a))(b − a) − ‖p[a,b),d‖2
2 =

1

2

∞
∑

j=d+1

(

a2
j + b2

j

)

≤ 1

2

∞
∑

j=d+1

4

πj
≤ d−1.

Thus

lim sup
N→∞

∣

∣

∣

∑N
k=1 I[a,b)(nkx)

∣

∣

∣

√
2N log log N

≤ lim sup
N→∞

∣

∣

∣

∑N
k=1 p[a,b),d(nkx)

∣

∣

∣

√
2N log log N

+ lim sup
N→∞

∣

∣

∣

∑N
k=1 r[a,b),d(nkx)

∣

∣

∣

√
2N log log N

≤
√

σ[a,b),d(x) + cd−1/4 a.e.

≤
√

σ[a,b)(x) + cd−1/4 a.e.

9



and similarly

lim sup
N→∞

∣

∣

∣

∑N
k=1 I[a,b)(nkx)

∣

∣

∣

√
2N log log N

≥
√

σ[a,b)(x) − cd−1/4 a.e.

Since d can be chosen arbitrarily, this yields

lim sup
N→∞

∣

∣

∣

∑N
k=1 I[a,b)(nkx)

∣

∣

∣

√
2N log log N

=
√

σ[a,b)(x) a.e.

5 Proof of Lemma 3

In this section we want to calculate

sup
0≤a<b≤1

σ[a,b)(x), (12)

which is a very elaborate problem.

We have
I[a,b)(x) = I[1−b,1−a)(1 − x),

except for x = a, and therefore, since 〈−2b〉 = 1 − 〈2b〉,
∫ 1

0
I[1−b,1−a)(t)I[〈2a〉,〈2b〉)(x − t) dt

=

∫ 1

0
I[a,b)(1 − t)I[1−〈2b〉,1−〈2a〉)(1 − x + t) dt

=

∫ 1

0
I[a,b)(1 − t)I[〈2(1−b)〉,〈2(1−a)〉)(1 − x − (1 − t)) dt

=

∫ 1

0
I[a,b)(s)I[〈2(1−b)〉,〈2(1−a)〉)(1 − x − s) ds.

The second integral in the definition of σ[a,b)(x) can be transformed in a similar way, which
yields

σ[a,b)(x) = σ[1−b,1−a)(1 − x).

Thus it suffices to calculate (12) for x ≤ 1/2.
For 0 ≤ b < a ≤ 1 we define

σ[a,b)(x) = σ[b,a)(x).

Then

sup
0≤a<b≤1

σ[a,b)(x) = sup
0≤a,b,≤1, 〈b−a〉≤1/2

σ[a,b)(x), (13)

and we will calculate the expression on the right-hand side of (13) instead of (12), where again
we can assume w.l.o.g. x ≤ 1/2.
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We set

σ
(1)
[a,b)(x) = (1 − (〈b − a〉))(〈b − a〉)

σ
(2)
[a,b)(x) =

1

4

∫ 1

0
I[1−b,1−a)(t)I[〈2a〉,〈2b〉)(x − t) dt

σ
(3)
[a,b)(x) =

1

4

∫ 1

0
I[1−b,1−a)(t)I[〈2a〉,〈2b〉)(〈2x〉 − t) dt.

Then
σ[a,b)(x) = σ

(1)
[a,b)(x) + σ

(2)
[a,b)(x) + σ

(3)
[a,b)(x).

The function σ
(1)
[a,b)

(x) is constant for fixed a, b. For the functions σ
(2)
[a,b)

(x) and σ
(3)
[a,b)

(x) we

have (cf. [1, Lemma 4])

σ
(2)
[a,b)(x) = σ

(2)
[0,〈b−a〉)(x − a)

σ
(3)
[a,b)(x) = σ

(2)
[a,b)(〈2x〉) = σ

(2)
[0,〈b−a〉)(〈2x〉 − a),

and trivially σ
(1)
[a,b)(x) = σ

(1)
[0,b−a)(x). Writing β = 〈b − a〉 we have by assumption β ≤ 1/2,

which implies 〈2β〉 = 2β. Observing that x ≤ 1/2 implies 〈2x〉 = 2x we have

σ[a,b)(x) = σ
(1)
[0,〈b−a〉)(x) + σ

(2)
[0,〈b−a〉)(x − a) + σ

(2)
[0,〈b−a〉)(〈2x〉 − a)

= (1 − β)β

−1

4

∫ 1

0
I[0,1−β)(t) · I[0,〈2β〉)(x − a − t) dt

−1

4

∫ 1

0
I[0,1−β)(t) · I[0,〈2β〉)(〈2x〉 − a − t) dt

= (1 − β)β

−1

4

∫ 1

0

(

1[0,1−β)(t) − (1 − β)
)

·
(

1[0,2β)(〈x − a − t〉) − 2β
)

dt

−1

4

∫ 1

0

(

1[0,1−β)(t) − (1 − β)
)

·
(

1[0,2β)(〈2x − a − t〉) − 2β
)

dt

= 2(1 − β)β − β (14)

+
1

4

∫ 1

0
1[0,β)(t) · 1[0,2β)(〈x − a + t〉) dt

+
1

4

∫ 1

0
1[0,β)(t) · 1[0,2β)(〈2x − a + t〉) dt.

Since for any y ∈ [0, 1]
∫ 1

0
1[0,β)(t) · 1[0,2β)(〈y + t〉) ≤ β

we have

σ[a,b)(x) ≤ max
β∈[0,1/2]

2(1−β)β−β+
1

2
β ≤ 9

32
, 0 ≤ a, b,≤ 1, 〈b−a〉 ≤ 1/2, x ∈ [0, 1/2]. (15)
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Let x ∈ [0, 3/8). Then choosing a = x, using formula (14) we can calculate

σ[a,a+3/8)(x) =
3

32
+

3

32
+

3

32
=

9

32
.

This proves

sup
0≤a,b≤1, 〈b−a〉≤1/2

σ[a,b)(x) =
9

32
, 0 ≤ x ≤ 3/8.

It remains to calculate (12) for x ∈ [3/8, 1/2], which is particularly involved. We have to
distinguish between several cases. First we observe that, using (14), we have

σ[a,b)(x) = 2(1 − β)β − β

+
1

4

∫ 1

0
1[x−a,x−a+β)(t)1[0,2β)(t) dt

+
1

4

∫ 1

0
1[2x−a,2x−a+β)(t)1[0,2β)(t) dt

= 2(1 − β)β − β (16)

+
1

4
P {[x − a, x − a + β) ∩ [0, 2β)}

+
1

4
P {[2x − a, 2x − a + β) ∩ [0, 2β)} .

Here and in the sequel P denotes the Lebesgue measure on [0, 1).

We will assume that x ∈ [3/8, 1/2] is fixed.

Case 1: x ≤ β
Like in (15) we have

σ[a,b)(x) ≤ 2(1 − β)β − β

2
. (17)

Since the function in (17) is decreasing for β ∈ [3/8, 1/2], and since by assumption x ≤ β, we
have

σ[a,b)(x) ≤ 2(1 − x)x − x

2
. (18)

Case 2: x > β
In this case A = [x − a, x − a + β) and B = [2x − a, 2x − a + β) are two disjoint intervals.
Between these two intervals there are two gaps of lengths x− β and 1− (x + β), respectively.
Since by assumption x ≤ 1/2, we have

x − β ≤ (1 − 2x) + x − β = 1 − (x + β).

If β ≤ 1/4, then by (15)

σ[a,b)(x) ≤ 2

(

1 − 1

4

)

1

4
− 1

8
=

1

4
.

On the other hand, if β > 1/4, then x − β ≤ β, and therefore

P ([0, 2β) ∩ (A ∪ B)) ≤ 2β − (x − β) = 3β − x.

12



Therefore

σ[a,b)(x) ≤ max

{

1

4
, 2(1 − β)β − β

4
− x

4

}

.

For fixed x this function is increasing for β ∈ [3/8, 7/16], and decreasing for β ∈ [7/16, 1/2].
Since by assumption x > β, this yields

σ[a,b)(x) < 2(1 − x)x − x

2
, 3/8 ≤ x ≤ 7/16 (19)

and

σ[a,b)(x) ≤ 2

(

1 − 7

16

)

7

16
− 7

64
− x

4
=

49

128
− x

4
, 7/16 < x ≤ 1/2. (20)

Combining (18) (19) and (20) finally yields

σ[a,b)(x) ≤
{

2(1 − x)x − x
2 3/8 ≤ x ≤ 7/16

49
128 − x

4 7/16 ≤ x ≤ 1/2.
(21)

It remains to show that the upper bounds in (21) can really be attained for certain values
a, b = a(x), b(x). For given x, we choose a = x and β = min(x, 7/16), which implies b =
a + min(x, 7/16). Then by (16)

σ[a,b)(x) = 2(1 − β)β − β +
P {[0, β)}

4
+

P {[x, x + β) ∩ [0, 2β)}
4

= 2(1 − β)β − β +
β

4
+

β − (x − β)

4

=

{

2(1 − x)x − x
2 for 3/8 ≤ x ≤ 7/16

49
128 − x

4 for 7/16 ≤ x ≤ 1/2
�
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