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Abstract

By Carleson’s theorem a trigonometric series
∑

∞

k=1
ck cos 2πkx or

∑

∞

k=1
ck sin 2πkx is

a.e. convergent if
∞
∑

k=1

c2

k < ∞. (1)

Gaposhkin generalized this result to series of the form

∞
∑

k=1

ckf(kx) (2)

for functions f satisfying f(x + 1) = f(x),
∫

1

0
f(x) = 0 and belonging to the Lip α class

for some α > 1/2. In the case α ≤ 1/2 condition (1) is in general no longer sufficient to
guarantee the a.e. convergence of (2).
For 0 < α < 1/2 Gaposhkin showed that (2) is a.e. convergent if

∞
∑

k=1

c2

kk1−2α(log k)β < ∞ for some β > 1 + 2α. (3)

In this paper we show that condition (3) can be significantly weakened for α ∈ [1/4, 1/2).
In fact, we show that in this case the factor k1−2α(log k)β can be replaced by a factor
which is asymptotically smaller than any positive power of k.

1 Introduction and statement of results

In 1966 Carleson showed that trigonometric series of the form

∞
∑

k=1

ck cos 2πkx or
∞

∑

k=1

ck sin 2πkx

are a.e. convergent if
∞

∑

k=1

c2
k < ∞ (4)
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(see [7] for Carleson’s paper; cf. also the monographs of Mozzochi [15] and Arias de Reyna
[4]). Gaposhkin [11] showed that (4) also implies the a.e. convergence of series of the form

∞
∑

k=1

ckf(kx), (5)

where, here and throughout the paper, f is a measurable function satisfying

f(x + 1) = f(x),

∫ 1

0
f(x) dx = 0,

and belonging to the Lip α class for some α > 1/2. If the condition that f ∈ Lipα for some
α > 1/2 is dropped the convergence of the sum (4) will in general no longer be sufficient to
guarantee the a.e. convergence of (5). One possibility to meet this fact is to consider series
of the form

∞
∑

k=1

ckf(nkx) (6)

instead of (5), where (nk)k≥1 is a fast growing sequence of positive integers. A typical growth
condition in this case is Hadamard’s condition, requesting that

nk+1

nk
> q, k ≥ 1, for some q > 1.

Under this condition (4) is still sufficient to have a.e. convergence of (6) for f belonging to
the Lipα class for any α > 0 (Kac [13]; for recent results in the field cf. e.g. Fukuyama [9],
Aistleitner and Berkes [2], Aistleitner [1]).

An other possibility to get a.e. convergence results for series of the form (5) is to impose a
stronger condition than (4) on the sequence (ck)k≥1, typically depending on the modulus of
continuity of f . For example, for f ∈ Lip1/2 Gaposhkin [10] proved the a.e. convergence of
(5) under the condition

∞
∑

k=1

c2
k(log k)β < ∞, β > 3

(later, Berkes and Weber [6] showed that it is sufficient to assume β > 2).
On the other hand, Berkes [5] showed that there exist a function f ∈ Lip1/2 and a sequence
(ck)k≥1 satisfying

∑∞
k=1 c2

k < ∞ such that (5) is a.e. divergent.
In the case 0 < α < 1/2, Gaposhkin [10] showed that (5) is a.e. convergent, provided

∞
∑

k=1

c2
kk

1−2α(log k)β < ∞ for some β > 1 + 2α,

and Berkes proved that there exists a function f ∈ Lipα and a sequence (ck)k≥1 such that (5)
is a.e. divergent, although

∞
∑

k=1

c2
k(log k)γ < ∞ for all γ < 1 − 2α.
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Recapitulating these results, we see that there is a large gap between the necessary and
sufficient conditions on (ck)k≥1 to guarantee the a.e. convergence of (5), where f ∈ Lipα, 0 <
α ≤ 1/2. In the case α = 1/2 the necessary and sufficient condition has to be somewhere
between

∞
∑

k=1

c2
k < ∞ and

∞
∑

k=1

c2
k(log k)β < ∞, β > 2,

and in the case 0 < α < 1/2 between

∞
∑

k=1

c2
k(log k)γ < ∞, γ ∈ [0, 1 − 2α)

and
∞
∑

k=1

c2
kk

1−2α(log k)β < ∞, β > 1 + 2α.

Concerning this problem Berkes and Weber [6] wrote:

It is possible that in the case 0 < α < 1/2 the condition
∑∞

k=1 c2
k(log k)γ < ∞

for a suitable γ > 0 suffices for the a.e. convergence of
∑∞

k=1 ckf(nkx), but this
remains open.

The purpose of this paper is to give a strong improvement of Gaposhkin’s result for the case
α ∈ [1/4, 1/2). We show that in this case for convergence in (2) the factor k1−2α in (3) can
be replaced by kε for any ε > 0, or even by

exp

(

2 log k

log log k

)

(7)

(Remark: here, and in the sequel, we write exp(x) for ex. Also, to simplify notation, we
understand log x as max(1, log x)). Observe that the function in (7) is asymptotically smaller
than any positive power of k.

More precisely, we will prove the following theorem:

Theorem 1 Let f ∈ Lipα for some α ∈ [1/4, 1/2). Then

∞
∑

k=1

ckf(kx)

converges a.e. provided
∞

∑

k=1

c2
k exp

(

2 log k

log log k

)

< ∞.

We note that, despite our improvement, the exact best possible condition for (ck)k≥1 to imply
a.e. convergence of (2) remains unknown. In particular, the function

exp

(

2 log k

log log k

)
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in our theorem grows faster than (log n)β for any β ∈ R. Therefore, the question whether

∞
∑

k=1

c2
k(log k)β < ∞

is sufficient to have the a.e. convergence of (2) remains open (cf. the aforementioned remark
of Berkes and Weber).

2 Auxiliary results

Lemma 1 Let f ∈ Lipα for some α ∈ [1/4, 1/2), and write

f ∼ a0

2
+

∞
∑

j=1

aj cos 2πjx + bj sin 2πjx.

Then for any m ≥ 1
2m+1
∑

j=2m+1

(

a2
j + b2

j

)

≤ c 2−2mα

for some constant c.

This is formula (3.3) in Zygmund [16, p. 241]

Lemma 2 Let J and N be positive integers and let (nk)1≤k≤N be a sequences of distinct
non-zero integers. Then the number of solutions to

j1nk1 = j2nk2

with
1 ≤ j1, j2 ≤ J, 1 ≤ k1, k2 ≤ N

is bounded by

cJN exp

(

5 log N

2 log log N

)

,

where c is a constant.

This is a special case of Harman and Dyer [8, Theorem 2] (also contained in Harmans mono-
graph [12] as Theorem 3.9). We have already used this result in an earlier paper in a related
context (cf. Aistleitner, Mayer and Ziegler [3]).

3 Preparations

Throughout the rest of the paper we will assume that f and (ck)k≥1 are fixed, and that
f ∈ Lipα for some α ∈ [1/4, 1/2). W.l.o.g. we will assume that f is an even function, i.e.
that the Fourier series of f is a pure cosine-series (the proof in the general case is exactly the
same), and that |f | ≤ 1 and |ck| ≤ 1, k ≥ 1.
We write

f(x) ∼
∞

∑

j=1

aj cos 2πjx (8)
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for the Fourier series of f and define

‖f(x)‖ =

(∫ 1

0
f(x)2dx

)1/2

.

Furthermore, we define

f̃(x) =

∞
∑

j=1

|aj | cos 2πjx.

Let K be a set of positive integers. Then by the orthogonality of the trigonometric system
∥

∥

∥

∥

∥

∑

k∈K

ckf(kx)

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

∑

k∈K

|ck|f̃(kx)

∥

∥

∥

∥

∥

. (9)

We will write c for appropriate positive constants, not always the same.

First we will prove the following

Lemma 3 Let (nk)k≥1 be a strictly increasing sequence of positive integers, and let M < Nbe
positive integers. Let

K = {k : nk ∈ [M + 1, N ]} and K = #K.

Then
∥

∥

∥

∥

∥

∑

k∈K

f̃(nkx)

∥

∥

∥

∥

∥

≤ c
√

K exp

(

5 log K

4 log log K

)

.

Using this we can show

Lemma 4 Let M < N be positive integers. Let L > 1. Then
∥

∥

∥

∥

∥

∥

∥

∥

∑

M<k≤N
|ck|≥L−1

ckf(kx)

∥

∥

∥

∥

∥

∥

∥

∥

≤ c
√

log L exp

(

5 log N

4 log log N

)





∑

M<k≤N

c2
k





1/2

.

This yields

Lemma 5 Let N2 > N1 be positive integers. Then
∥

∥

∥

∥

∥

∥

max
N1<M≤N2

∣

∣

∣

∣

∣

∣

∑

N1<k≤M

ckf(kx)

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

≤ N−2
2 + c exp

(

3 log N2

2 log log N2

)





∑

N1<k≤N2

c2
k





1/2

.

To deduce Theorem 1 from Lemma 5 we will finally need the following

Lemma 6 Assume that for every given ε > 0 there exists an M0 such that
∥

∥

∥

∥

∥

∥

max
M>M0

∣

∣

∣

∣

∣

∣

M
∑

k=M0+1

ckf(kx)

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

≤ ε.

Then
∞
∑

k=1

ckf(kx)

is a.e. convergent.
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Proof of Lemma 3: For s = 0, 1, 2, . . . we define

rs(x) =

2s+1
∑

j=2s+1

|aj | cos 2πjx

(the aj’s are defined in (8)). Then by Minkowski’s inequality

∥

∥

∥

∥

∥

∑

k∈K

f̃(nkx)

∥

∥

∥

∥

∥

≤
∑

s≥0

∥

∥

∥

∥

∥

∑

k∈K

rs(nkx)

∥

∥

∥

∥

∥

(10)

By Lemma 1 we have
2s+1
∑

j=2s+1

a2
j ≤ c2−2sα, (11)

where c is a constant. Let η ∈ [0, 1] (we will choose the exact value of η later). By Minkowski’s
inequality and the orthogonality of the trigonometric system

∥

∥

∥

∥

∥

∑

k∈K

rs(nkx)

∥

∥

∥

∥

∥

(12)

≤

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∑

k∈K

∑

2−2sα−2sα(1−η)<a2
j ,

2s<j≤2s+1

|aj | cos 2πjnkx

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∑

k∈K

∑

2−2sα−2sα(1−η)≥a2
j ,

2s<j≤2s+1

|aj | cos 2πjnkx

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∑

2−2sα−2sα(1−η)<a2
j ,

2s<j≤2s+1

|aj |
∑

k∈K

cos 2πjnkx

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

∑

k∈K

2s+1
∑

j=2s+1

2−sα−sα(1−η) cos 2πjnkx

∥

∥

∥

∥

∥

∥

≤
∑

j: 2−2sα−2sα(1−η)<a2
j

|aj |
∥

∥

∥

∥

∥

∑

k∈K

cos 2πjnkx

∥

∥

∥

∥

∥

(13)

+2−2sα+sαη

∥

∥

∥

∥

∥

∥

∑

k∈K

2s+1
∑

j=2s+1

cos 2πjnkx

∥

∥

∥

∥

∥

∥

. (14)

By the orthogonality of the trigonometric system and (11) the term (13) is bounded by

√
K

∑

2−2sα−2sα(1−η)<a2
j ,

2s<j≤2s+1

|aj | ≤
√

K2sα+sα(1−η)
2s+1
∑

j=2s+1

a2
j

≤ c
√

K2−sαη.
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By Lemma 2 the term (14) is bounded by

2−2sα+sαη





∑

k1,k2∈K

2s+1
∑

j1,j2=2s+1

1(j1nk1 = j2nk2)





1/2

≤ 2−2sα+sαηc2s/2
√

K exp

(

5 log K

4 log log K

)

≤ c
√

K2−s(2α−1/2)+sαη exp

(

5 log K

4 log log K

)

Therefore (12) is bounded by

c
√

K2−sαη + c
√

K2−s(2α−1/2)+sαη exp

(

5 log K

4 log log K

)

.

We choose

η = 1 − 1

4α
,

and see that (12) is bounded by

c
√

K2−sα+s/4 exp

(

5 log K

4 log log K

)

.

By (10) this implies

∥

∥

∥

∥

∥

∑

k∈K

f̃(nkx)

∥

∥

∥

∥

∥

≤
∑

s≥0

c
√

K2−s(α−1/4) exp

(

5 log K

4 log log K

)

≤ c
√

K exp

(

5 log K

4 log log K

)

,

which proves Lemma 3. �

Proof of Lemma 4 :
Let M < N and L be given. By (9) we have

∥

∥

∥

∥

∥

∥

∥

∥

∑

M<k≤N
|ck|≥L−1

ckf(kx)

∥

∥

∥

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

∥

∥

∑

M<k≤N
|ck|≥L−1

|ck|f̃(kx)

∥

∥

∥

∥

∥

∥

∥

∥

≤
∑

s: 1≤2s≤L

∥

∥

∥

∥

∥

∥

∥

∥

∑

M<k≤N
2−s−1≤|ck|<2−s

|ck|f(kx)

∥

∥

∥

∥

∥

∥

∥

∥

≤
∑

s: 1≤2s≤L

2−s

∥

∥

∥

∥

∥

∥

∥

∥

∑

M<k≤N
2−s−1≤|ck|<2−s

f(kx)

∥

∥

∥

∥

∥

∥

∥

∥

.
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Using Lemma 3 we get

∥

∥

∥

∥

∥

∥

∥

∥

∑

M<k≤N
2−s−1≤|ck|<2−s

f̃(kx)

∥

∥

∥

∥

∥

∥

∥

∥

≤ c
√

K(s) exp

(

5 log K(s)

4 log log K(s)

)

,

where
K(s) = #

{

M < k ≤ N : 2−s−1 ≤ ck < 2−s
}

.

Trivially K(s) ≤ N − M .

Using the Cauchy-Schwarz inequality we finally get,

∥

∥

∥

∥

∥

∥

∥

∥

∑

M<k≤N
|ck|≥L−1

ckf(kx)

∥

∥

∥

∥

∥

∥

∥

∥

≤ c
∑

s: 1≤2s≤L

2−s
√

K(s) exp

(

5 log K(s)

4 log log K(s)

)

≤ c
√

log L exp

(

5 log N

4 log log N

)





∑

s: 1≤2s≤L

2−2sK(s)





1/2

≤ c
√

log L exp

(

5 log N

4 log log N

)





∑

M<k≤N

c2
k





1/2

.

This proves Lemma 4. �

Proof of Lemma 5: Let N2 > N1 be given. We have

∥

∥

∥

∥

∥

∥

max
N1≤M≤N2

∣

∣

∣

∣

∣

∣

∑

N1<k≤M

ckf(kx)

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

∥

∥

∥

max
N1≤M≤N2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

N1<k≤M
|ck|≤N−3

2

ckf(kx)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

∥

∥

∥

max
N1≤M≤N2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

N1<k≤M
|ck|≥N−3

2

ckf(kx)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (15)

The first term in (15) is bounded by

∥

∥

∥

∥

∥

∥

∥

∥

∥

max
N1≤M≤N2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

N1<k≤M
|ck|≤N−3

2

ckf(kx)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

∥

∥

∥

≤
∑

N1<k≤N2

|ck|≤N−3
2

|ck|

≤ N−2
2 . (16)

To estimate the value of the second term in (15) we use Lemma 4, where we chose L = N3
2 .

8



Then we have
∥

∥

∥

∥

∥

∥

∥

∥

∥

∑

N1<k≤N2

|ck|≥N−3
2

ckf(kx)

∥

∥

∥

∥

∥

∥

∥

∥

∥

≤ c(log N2)
1/2 exp

(

5 log N2

4 log log N2

)





∑

N1<k≤N2

c2
k





1/2

. (17)

Imitating the proof of the Rademacher-Menshov inequality (see [14, p. 123]), we can easily
show that

∥

∥

∥

∥

∥

∥

∥

∥

∥

max
N1≤M≤N2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

N1<k≤M
|ck|≥N−3

2

ckf(kx)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

∥

∥

∥

≤ c(log N2)
3/2 exp

(

5 log N2

4 log log N2

)





∑

N1<k≤N2

c2
k





1/2

≤ c exp

(

3 log N2

2 log log N2

)





∑

N1<k≤N2

c2
k





1/2

.

Combining this with (16) we have

∥

∥

∥

∥

∥

∥

max
N1≤M≤N2

∣

∣

∣

∣

∣

∣

∑

N1<k≤M

ckf(kx)

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

≤ N−2
2 + c exp

(

3 log N2

2 log log N2

)





∑

N1<k≤N2

c2
k





1/2

.

This proves Lemma 5. �

Proof of Lemma 6:

Assume that for every given ε > 0 there exists an M0 such that
∥

∥

∥

∥

∥

∥

sup
N>M0

∣

∣

∣

∣

∣

∣

N
∑

k=M0+1

ckf(kx)

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

≤ ε. (18)

By Minkowski’s inequality this implies
∥

∥

∥

∥

∥

∥

sup
N2>N1>M0

∣

∣

∣

∣

∣

∣

N2
∑

k=N1

ckf(kx)

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

≤ 2ε.

Therefore
∥

∥

∥

∥

∥

∥

inf
M

sup
N2>N1>M

∣

∣

∣

∣

∣

∣

N2
∑

k=N1

ckf(kx)

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

= 0

and

inf
M

sup
N2>N1>M

∣

∣

∣

∣

∣

∣

N2
∑

k=N1

ckf(kx)

∣

∣

∣

∣

∣

∣

= 0 a.e.,

which implies the a.e. convergence of

∞
∑

k=1

ckf(kx).
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4 Proof of Theorem 1

Assume that (ck)k≥1 satisfies

∞
∑

k=1

c2
k exp

(

2 log k

log log k

)

< ∞. (19)

As a consequence of (19) we have for r ≥ 1

2r+1
∑

k=2r+1

c2
k ≤ c exp

(−2 log(2r)

log log(2r)

)

.

By the monotone convergence theorem and Minkowski’s inequality we have, for any m ≥ 1,

∥

∥

∥

∥

∥

sup
M>2m

∣

∣

∣

∣

∣

M
∑

k=2m+1

ckf(kx)

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

= lim
w→∞

∥

∥

∥

∥

∥

sup
2m<M≤2m+w

∣

∣

∣

∣

∣

M
∑

k=2m+1

ckf(kx)

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

≤ lim
w→∞

∑

m≤r≤m+w−1

∥

∥

∥

∥

∥

max
2r<M≤2r+1

∣

∣

∣

∣

∣

M
∑

k=2r+1

ckf(kx)

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

.

Together with Lemma 5 this implies

∥

∥

∥

∥

∥

sup
M>2m

∣

∣

∣

∣

∣

M
∑

k=2m+1

ckf(kx)

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

≤
∑

r≥m

∥

∥

∥

∥

∥

max
2r<M≤2r+1

∣

∣

∣

∣

∣

M
∑

k=2r+1

ckf(kx)

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

≤
∑

r≥m






(2r)−2 + c exp

(

3 log(2r)

2 log log(2r)

)





∑

2r<k≤2r+1

c2
k





1/2






≤ 2−2m +
∑

r≥m

c exp

( − log(2r)

2 log log(2r)

)

(20)

For any given ε > 0, we can choose m so large that (20) is smaller than ε. Therefore, by
Lemma 6 the series

∞
∑

k=1

ckf(kx)

is a.e. convergent.
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