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Abstract

A real number x is called a normal number (in a base β ≥ 2) if all possible blocks
of digits appear with the same asymptotic frequency in the β-ary expansion of x. This
notion was introduced by E. Borel in 1909, who proved that almost all real numbers (in
the sense of Lebesgue measure) are normal numbers. There exist many constructions of
normal numbers, most of which are based on assembling appropriate function values to
obtain the digital expansion of x. Volkmann showed that normal numbers constructed in
this way can be slightly modified without losing the normality property. In the present
note, we generalize the result of Volkmann.
Let C(β) denote the set of reals which have a β-ary representation with asymptotic fre-
quency of non-zero digits equal to 0. We prove that if x is normal in base β, then x+ qy
is also normal in the same base, for any y ∈ C(β) and q ∈ Q.
Likewise, let S denote a set of positive integers of asymptotic density 0. We prove that a
normal number x retains the normality property, if an arbitrary digit is inserted between
positions j and j + 1 for each j ∈ S.

1 Introduction and statement of results

Let x be a real number, and let β ≥ 2 be an integer. Then x can be written in the form

x = bxc+

∞∑
j=1

xjβ
−j , xj ∈ {0, . . . , β − 1}.

Let Bk = y1y2 . . . yk be a block of k digits in base β (that is, 0 ≤ yj ≤ β − 1, 1 ≤ j ≤ k). Let

N(Bk, x, n) = #{j ∈ N, 1 ≤ j ≤ n− k + 1 : xj = y1, . . . , xj+k−1 = yk},

i.e. the function N counts the number of occurrences of the block Bk within the first n digits
(after the decimal point) of the β-ary expansion of x. Then x is called normal in base β if
for all k ≥ 1 and all possible blocks Bk of k digits

N(Bk, x, n)

n
→ 1

βk
as n→∞.

This notion was introduced by Borel [1] in 1909, who showed that almost all numbers (in the
sense of Lebesgue measure) are normal numbers. The first example of a normal number was
given by Champernowne [2], who showed that the number
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constructed by assembling the decimal representations of the consecutive positive integers, is
normal in base 10. Later, this method was generalized to prove that, for some appropriately
chosen function f , the number

0.f(1) f(2) f(3) f(4) f(5) . . . (1)

or
0.bf(1)c bf(2)c bf(3)c bf(4)c bf(5) c . . . (2)

(if f is not an integer-valued function) is normal in a certain base. Various constructions of
this type appear in the papers of Copeland and Erdős [4], Davenport and Erdős [5], Nakai
and Shiokawa [11, 12, 13]. The results of Madritsch [8] and Madritsch, Thuswaldner and
Tichy [9] are the most recent contributions in this area. For a general reference on normal
numbers, see [6, 7, 16].

There exist only few results on modifications of normal numbers. Recently, Pellegrino [15]
showed that if the number

0.x1x2x3 . . .

is normal, then the number
0.x1(x1x2)(x1x2x3) . . .

is normal as well.
Another result, due to Volkmann [17], is tailor-made for normal numbers which are con-
structed using the technique described in equations (1), (2). Let x be a normal number,
whose β-ary expansion is given by assembling positive integers p1, p2, p3, . . . in their β-ary
representation

x = 0.p1 p2 p3 . . . ,

where pj →∞ as j →∞. Let q1, q2, q3, . . . be positive integers. Then the normality of x also
implies the normality of the number

x̂ = 0.(p1 + q1) (p2 + q2) (p3 + q3) . . . ,

provided that log qj = o(log pj) as j → ∞. In other words, Volkmann showed that if as-
sembling a certain sequence of blocks of digits produces a normal number, then assembling a
slightly modified version of this sequence produces a normal number as well.

Let C(β) denote the set of all reals for which the set of indices of nonzero digits (in their
expansion in base β) has asymptotic density zero. More precisely, C(β) contains all real
numbers x = bxc.x1x2x3 . . . for which

lim
n→∞

#{1 ≤ j ≤ n : xj 6= 0}
n

= 0.

Moreover, let C(β)Q denote the set of all reals which are a rational multiple of a number in
C(β), i.e.

C(β)Q := {x ∈ R : x = yz for some y ∈ Q, z ∈ C(β)}.

We mention that in particular Q ⊂ C(β)Q, and that x+ y ∈ C(β)Q for all x, y ∈ C(β)Q.

We will prove the following two theorems:
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Theorem 1 Let β ≥ 2, and let y ∈ C(β)Q. If x is normal in base β, then x+y is also normal
in base β.

Theorem 2 Let β ≥ 2, and assume that x is normal in base β. Let S be a set of indices
which is of asymptotic density zero, and assume that y results from adding an arbitrary digit
in the base-β-expansion of x between positions j and j + 1 for each j ∈ S. Then y is also
normal in base β.

Remark 1: The assumptions of Theorem 1 imply not only the normality of x+y, but also the
normality of x−y. In fact, the normality of x also implies the normality of −x (see [10]), and
thus by Theorem 1 the normality of x implies the normality of −x+y and −(−x+y) = x−y.

Remark 2: By applying Theorem 2 repeatedly, we can insert a block of at most K digits (for
some fixed K) in the β-ary representation of x between positions j and j + 1 for each j ∈ S
without loosing the normality property, provided S is of asymptotic density zero.

Remark 3: Theorem 1 and Theorem 2 together imply the aforementioned result of Volkmann.
We will a give a short explanation of this assertion at the end of the present paper.

In connection with the two theorems above we pose the following two open problems:

Open problem 1: Let β ≥ 2. Write D(β) for the set of reals which preserve normality if added
to a normal number. More precisely,

D(β) := {y ∈ R : x+ y is normal in base β for all x which are normal in base β}.

Then by Theorem 1 we have CQ(β) ⊂ D(β). Find a complete characterization of D(β).

Open problem 2: Characterize the set D∗ of all real numbers, which preserve absolute nor-
mality if added to an absolutely normal number.

Concerning Problem 1, we remark that the set D(β) is necessarily of Lebesgue measure zero:
normality of x implies normality of −x. Therefore D(β) can not contain any normal number
x, since (−x)+x = 0 and 0 is not normal; by the result of Borel [1] the set of normal numbers
has full measure, so necessarily λ(D(β)) = 0. Concerning Problem 2, we note that Q ⊂ D∗,
and that D∗ of course also has measure zero.

2 Proofs

If x is normal in base β, then qx is also normal in base β for any q ∈ Q\{0}, see [3, 10]. Every
y ∈ CQ(β) can be written in the form qŷ, where q ∈ Q and ŷ ∈ C(β). Then x+ y is normal if
and only if x/q + ŷ is normal. Thus it is sufficient to prove Theorem 1 for y ∈ C(β) instead
of y ∈ CQ(β).

A number x is normal in base β if and only if the sequence (〈βkx〉)k≥1, where 〈·〉 denotes the
fractional part of a real number, is uniformly distributed modulo one. This was first observed
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by Wall [18] (see also [14, p. 110]). By Weyl’s criterion (see [6] or [7]) a sequence (zk)k≥1 of
reals from the unit interval is uniformly distributed modulo one (u.d. mod 1) if and only if

lim
n→∞

1

n

n∑
k=1

e2πihzk = 0 for all h ∈ Z, h 6= 0. (3)

Lemma 1 Let y ∈ C(β). Then

lim
n→∞

1

n

n∑
k=1

〈βky〉 = 0.

Proof: Let y = byc+ 〈y〉 = byc+ 0.y1y2y3 . . . . Then, by assumption,

lim
n→∞

#{1 ≤ j ≤ n : yj 6= 0}
n

= 0. (4)

It is easily seen that
〈βky〉 = 0.yk+1yk+2yk+3 . . . (5)

By (4), for any fixed K ≥ 1,

lim
n→∞

#{1 ≤ j ≤ n : (yj , . . . , yj+K−1) 6= (0, . . . , 0)}
n

= 0.

By (5), this implies

1

n

n∑
k=1

〈βky〉

≤

(
1

n

n∑
k=1

β−K+1

)
+

#{1 ≤ j ≤ n : (yj , . . . , yj+K−1) 6= (0, . . . , 0)}
n

≤ β−K+1 + o(1).

Since K was arbitrary, this proves the lemma.

Proof of Theorem 1: Assume that x is normal in base β. By Weyl’s criterion this implies

lim
n→∞

1

n

n∑
k=1

e2πihβ
kx = 0 for all h ∈ Z, h 6= 0. (6)

As mentioned before we may assume w.l.o.g. that y ∈ C(β). Then for all h ∈ Z, h 6= 0 we
have ∣∣∣∣∣ 1n

n∑
k=1

e2πihβ
k(x+y)

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
k=1

e2πihβ
kx
(
e2πihβ

ky − 1
)

+
1

n

n∑
k=1

e2πihβ
kx

∣∣∣∣∣
≤ 1

n

n∑
k=1

∣∣∣e2πihβky − 1
∣∣∣+

∣∣∣∣∣ 1n
n∑
k=1

e2πihβ
kx

∣∣∣∣∣
≤ 1

n

n∑
k=1

2π|h|〈βky〉+

∣∣∣∣∣ 1n
n∑
k=1

e2πihβ
kx

∣∣∣∣∣ . (7)
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The first sum in (7) tends to 0 as n→∞ by Lemma 1. The second sum in (7) also tends to
0 by (6). This proves Theorem 1.

Proof of Theorem 2: Let x = bxc+ 〈x〉 = bxc+ 0.x1x2x3 . . . , and assume that x is normal in
base β. Write y = 0.y1y2y3 . . . for the number which results from adding an arbitrary digit
in the base-β-expansion of x between positions j and j + 1, for each j ∈ S. To be able to
distinguish the digits of x and y we introduce the functions u,w, S and the set T .

By assumption,
#{1 ≤ j ≤ n : j ∈ S}

n
→ 0 as n→∞. (8)

For m ≥ 1, define
S(m) = # {1 ≤ k ≤ m− 1 : k ∈ S} .

The function S(m) counts how many additional digits are inserted into the expansion of x
prior to position m. Then by assumption

S(m)

m
→ 0 as m→∞.

Write u(j) for the position of the digit xj in the expansion of y, i.e.

u(j) = j + S(j).

Define
T := {j ≥ 1 : there exists an k ≥ 1 such that j = k + S(k)} .

Then

lim
n→∞

n∑
j=1

1(j 6∈ T )

n
= 0. (9)

We define w(j) as the index of the digit yj in the expansion of x, provided it exists. More
precisely, w(j) is the index k for which

k + S(k) = j.

This number w(j) exists if j ∈ T .

Fix K ≥ 1, and set

SK := {j ≥ 1 : (1j∈S + · · ·+ 1j+K−1∈S) ≥ 1} . (10)

Then, by (8),

lim
n→∞

n∑
j=1

1(j ∈ SK)

n
= 0. (11)

For w(j) 6∈ SK we have

(xw(j), . . . , xw(j)+K−1) = (yj , . . . , yj+K−1) ,

which implies ∣∣∣〈βw(j)x〉 − 〈βjy〉∣∣∣ ≤ β−K+1,
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and for any h ∈ Z, h 6= 0, ∣∣∣e2πihβw(j)x − e2πihβjy
∣∣∣ ≤ 2π|h|β−K+1. (12)

Let n ≥ 1. We may assume that n ∈ T , since the difference between two consecutive elements
of T is at most 2. Then there exists an m = m(n) such that

n = m+ S(m),

and
{w(j) ≤ n, j ∈ T } = {1, . . . ,m}.

Using (12), we get∣∣∣∣∣∣ 1n
n∑
j=1

e2πihβ
jy

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1

n

∑
1≤j≤n,
j∈T

e2πihβ
jy +

1

n

∑
1≤j≤n,
j 6∈T

e2πihβ
jy

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
1

n

∑
1≤j≤n,

j∈T ,w(j)∈SK

e2πihβ
jy

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
1

n

∑
1≤j≤n,

j∈T ,w(j)6∈SK

e2πihβ
jy

∣∣∣∣∣∣∣∣+
#{1 ≤ j ≤ n : j 6∈ T }

n

≤

∣∣∣∣∣∣∣∣
1

n

∑
1≤j≤n,

j∈T ,w(j)6∈SK

e2πihβ
w(j)x

∣∣∣∣∣∣∣∣+
2π|h|
βK−1

+
#{1 ≤ j ≤ n : j 6∈ T or w(j) ∈ SK}

n
. (13)

The third term in (13) tends to zero as n→∞ by (9) and (11). The second term in (13) can
be made arbitrarily small since K was arbitrary. Finally, the first term in (13) is bounded by

#{1 ≤ j ≤ n, j ∈ T , w(j) ∈ SK}
n

+
1

n

∑
1≤j≤n,
j∈T

e2πihβ
w(j)x

=
#{1 ≤ j ≤ m, j ∈ SK}

n
+

1

n

m∑
j=1

e2πihβ
jx

≤ #{1 ≤ j ≤ m, j ∈ SK}
m

+
1

m

m∑
j=1

e2πihβ
jx,

which also tends to zero by (11) and since x is normal in base β. This proves Theorem 2.

In conclusion we give a short proof of Remark 3. Let p1, p2, p3, . . . be positive integers (in a
fixed base β) and assume that pj →∞ as j →∞. Let q1, q2, q3, . . . also be positive integers,
and assume that

log qj = o(log pj) as j →∞. (14)
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We want to show that the normality of the number

x = 0.p1 p2 p3 . . . (15)

implies the normality of

x̂ = 0.(p1 + q1) (p2 + q2) (p3 + q3) . . . .

Since finitely many digits do not affect the normality property, we can assume that qj ≤ pj
for j ≥ 1. This means that the number of digits of (pj + qj) exceeds the number of digits
of pj at most by 1. Whenever the number of digits of (pj + qj) is larger than the number of
digits of pj (that is, whenever a carry occurs) we replace pj (understood as a block of digits)
by p̂j = “0pj”. In other words, the block p̂j consists of the same digits as pj , but with an
additional leading digit “0”. Write d(m) for the number digits (in base β) of an integer m.
Then for any M ≥ 1 the number of digits of the combination of the blocks p1 . . . pM is∑M

j=1 d(pj). Consider the expansion of x, truncated somewhere between the end of the block
pM and the end of the block pM+1. The number of positions, where additional digits are
inserted, is at most M + 1, while the number of digits of the truncated expansion is at least∑M

j=1 d(pj). By assumption limj→∞ pj =∞, which implies limj→∞ d(pj) =∞ and

lim
M→∞

M + 1∑M
j=1 d(pj)

= 0.

Thus the set of positions in the β-ary expansion of x, where additional digits are inserted, is
of asymptotic density zero, and by Theorem 2 the normality of the number (15) implies the
normality of

x̃ = 0.p̂1 p̂2 p̂3 . . . .

Now replace the blocks q1, q2, q3, . . . by blocks q̂1, q̂2, q̂3, . . . , which are padded with so many
additional leading digits “0” that the number of digits of q̂j equals the number of digits of p̂j ,
for all j ≥ 1. Set

q = 0.q̂1 q̂2 q̂3 . . . .

Then by (14) the asymptotic frequency of non-zero digits in the β-ary representation of q
is zero. More precisely, the number of nonzero digits in the expansion of q, truncated at
the end of the M -th block ˆqM , is at most A(M) :=

∑M
j=1 d(qj), while the total number

of digits in the truncated expansion is at least B(M) :=
∑M

j=1 d(pj). By (14) we have
limj→∞ d(qj)/d(pj) = 0, and thus the ratio of A(M)/B(M) → 0 as M → ∞ by the Stolz-
Cesàro theorem. If one truncates inside ˆqM before the block qM , then the ratio is bounded
by

A(M − 1)

B(M − 1) + r
<
A(M − 1)

B(M − 1)

(where r denotes the number of padding zeros at the end of the truncated expansion). If one
truncates at the block qM , then the ratio is bounded by

A(M)− r
B(M)− r

<
A(M)

B(M)

(where r is the number of missing digits from the end of the truncated expansion to the end
of the block qM ). Thus the asymptotic frequency of nonzero digits in the expansion of q is
equal to 0. Therefore q ∈ C(β), and by Theorem 1 the number x̃+ q is normal. Finally, it is
easily seen that the numbers x̃ and q are constructed in such a way that x̃ + q = x̂. Thus x̂
is also normal, which proves Remark 3.
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