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Abstract

By a classical heuristics, systems of the form (cos2mngz)r>1 and (f(nkx))k>1, where
(ng)k>1 is a rapidly growing sequence of integers, show probabilistic properties simi-
lar to those of independent and identically distributed (i.i.d.) random variables. For
example, Erddés and Gal proved the law of the iterated logarithm (LIL) in the form
limsupy_ . (2N loglog N)~Y/2 5" | cos2mnge = 1/v/2 a.e., valid for (ng)g>; satisfy-
ing the lacunary growth condition ngi1/ng > ¢ > 1, k > 1. Weiss extended this to
limsupy_ o (2B% loglog By) ™2 >N | cos2mnpa = 1 ae., again for lacunary (ng)gs1,
where B2, = Zgﬂ ¢?, under the additional assumption cx = o(Bx/(loglog By)'/?) as
N — oo. This directly corresponds to a general LIL for i.i.d. random variables due to
Kolmogoroff. In this paper we generalize Weiss’s result to systems (f(ngx))r>1, where
f is a function of bounded variation, under an almost best possible growth condition for
the coefficients (c)r>1, thus partially solving a problem posed by Walter Philipp in his
famous paper of 1975.

1 Introduction

A increasing sequence (ny) of positive integers is called a lacunary sequence if it satisfies the

Hadamard gap condition
N+1

ng

>qg>1, k>1
A classical heuristics states that the systems

(cos 2TnKT ) k>1 or  (f(nxx))r>1, (1)

where (n)r>1 is a lacunary sequence of integers and f is a “nice” function, exhibit properties
similar to those of systems of independent and identically distributed (i.i.d.) random variables.
For example, Erdés and Gél [6] proved in 1955 that for a lacunary sequence (ny)g>1

N
. COS 2mngx 1
lim sup Zk*l k2

Nooo V2N loglog N _ﬁ
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a.e.,




which is similar to the law of the iterated logarithm for i.i.d. random variables, stating that
for an i.i.d. sequence X1, Xo,... satisfying EX; =0, EX? = 02 < oo,

N
Zkzl X

limsup —="=—— =0 a.s. (2)

N—ooo V2N loglog N

If the function cos 27z is replaced by another function f(x) satisfying

1
fa+1) = f(a), /0 f(x) dz =0,

and if f is additionally Lipschitz continuous (Takahashi [12], 1962) or of bounded variation
on [0,1] (Philipp [10], 1975), then

N
lim sup —Zk:l 1 () <C
Nooo V2N loglog N

for some constant C. On the other hand, there are examples showing that an exact law of
the iterated logarithm (LIL) like (2) will not necessarily hold in the case of general functions
f(z) instead of cos 2mx: choose e.g. f(z) = cos2mx + cos4mr, and ng, = 2% + 1, k> 1. Then

N
lim sup —Zk:l AWED)

Nooo V2N loglog N

as was pointed out by Erdés and Fortet.

a.e. (3)

= V2| cos x| ae., (4)

There exists an important generalization of the LIL (2) to the case of independent, not
identically distributed random variables, proved by Kolmogoroff [7] in 1929. Let X1, Xo,...
be independent random variables satisfying EX; = 0, IEX,% = 0,% < oo (k>1), and define

N 1/2
By = (Z ag> , N>1.
k=1

Then

N
X
lim sup Zk:l k

=1 as., (5)
N—oo \/QB%VloglogBJQV

provided By — oo and there exists a sequence my, such that

__ By
vl1oglog By

There are several possibilities to modify (5) to our situation of systems of the form (1). One
way is to bound the number of elements ny, lying in dyadic intervals of the form [27,27F1),
r =1,2,.... The author proved, together with I. Berkes [4], the following result: Let f(z) be
a function satisfying

| Xk <myg, k>1, and mN:o< > as N — oo.

1
fa+1) = f(a), /Of<x> dr=0, Vargy f<2. (6)



Define
an, =#{k <N : ni € [2r,2r+1)}, r>0, N>1,

and

0 1/2
By = (Z a%v7r> ,  N>L
r=0

Then

N
lim sup k=1 f () <C ae.
N—oo \/QBJQV log log B%;
for some constant C, provided
any = O (By(log N)™)

for some constant « > 3, uniformly for r» € N.

Another possibility is to introduce coefficients (c¢x);>1 and consider

(crpcos2mnpx)e>1 or (cpf(nex))r>1

instead of (1). In 1959 Weiss [13] proved the following: Let

1N 1/2
BN:<§ZC§> , N >1,

k=1

and assume By — oo as N — oo. Then

N
52
lim sup 21 Ok CO8 2y =1 ae, (7)

N—oo \/QBJQV log log B%,

provided

B
c, =0 S B— as N — oo,
vlog log By

in perfect analogy with Kolmogoroff’s result (the upper bound in (7) was already shown in
1950 by Salem and Zygmund [11]).

It is reasonable to assume that a result similar to (7) should also hold if the function cos 27z
is replaced by f(x) for f satisfying (6). In his famous paper [10] from 1975 entitled “Limit
theorems for lacunary series and uniform distribution mod 1” Walter Philipp stated the prob-
lem in the following form:

Give a detailed proof that

N
Jim sup > ket i f (ngx)

<1 ae, (8)
N—oo \/2B]2VloglogB]2V



where

N 1/2
BN = <ZC ) — 00,

1

k=
— 9
o ( Vioglog By BN) ®)

The purpose of this paper is to give a partial solution of the problem, and to verify (8) under
a condition slightly stronger than (9):

Theorem 1 Let f(x) be a function satisfying (6), and let (ng)r>1 be a lacunary sequence of
integers. Then

N
lim sup Zk 1ckf(nk$)

N—oo \/232 log log B%;

N 1/2
By = (Z ci> — 00 (10)

k=1

<C ae.,

for some constant C, provided

and

By
—o(—2N ), 11
N <(log10gBN)3/2> 1

In fact, we are not sure if the theorem would really remain true with (11) replaced by (9).
The problem to find the best possible upper bound for ¢y in (11) remains unsolved.

In view of (3) and (4) it is clear that no stronger result than (8), i.e. no exact LIL like in (2)
and (7) can be expected in our case. Nevertheless, we know that the exact law of the iterated
logarithm for (f(ngz))g>1 for lacunary (ng)r>1 and f satisfying (6) is valid in the form

N
lim sup —Zk':l f(nkx)

Nooo V2N loglog N

provided the number of solutions of Diophantine equations of the type

=7l ae,

any = bn; = c, a,b,ceZ, k,l <N,

is “not too large” compared with N ([2]; cf. also [1], [3]). It is reasonable to assume that
under a similar number-theoretic condition it is possible to prove an exact law of the iterated
logarithm also for systems of the form (cg f(nrx))k>1-

2 Preliminaries

Without loss of generality we assume that f is an even function, i.e. the Fourier series of f

can be written in the form -
x) ~ Z a;j cos 2mjx
j=1



(the proof in the general case is exactly the same). Since by assumption Vary ;) f < 2 the

Fourier coefficients of f satisfy
jagl <57 G>1 (12)

(cf. Zygmund [14, p. 48]). We write p(x) for the J-th partial sum of the Fourier series of f,
and r(z) for the remainder term, i.e.

J 00
pla) = ajcos2rjz,  r(@)= Y ajcos2mjz.
J=1 j=J+1

The value of J will be determined later. Throughout this section we will assume that N is
fixed. For the function p we have

HpHoo < Hf”oo +Va1"[0,1] [ <3, (13)

by (4.12) of Chapter IT and (1.25) and (3.5) of Chapter III of Zygmund [14], independent of
J.

Lemma 1

max < BNJ_l/Q.

1<M<N

M
> crr(ng)
=1

(here and in the sequel, the constant implied by the symbol “<” must not depend on N, J,
but may depend on q, f).

Proof: By the orthogonality of the trigonometric system, (12), Minkowski’s inequality and
the Carleson-Hunt inequality (see e.g. Mozzochi [9] or Arias de Reyna [5]) we have

M
| max ;ckr(nkx) ‘

IN

M
max Z Ck Z a; cos(2mjn,x) (14)
k=1

1<M<N —
JE[Jqt, Jgit)

jelJgt,Jgit)
M

ch Z j Y cos(2mjngx)
k=1

JE[JqHJqit)

<« By S il

<

[e.e]
>
1=0
00 M
< Z ch Z a; cos(2mjngx)
1=0 ||k=1
o
2

< ByJ 12

Observe that the Carleson-Hunt inequality allows us to eliminate the “max” in (14). This
is possible because splitting the Fourier series of r(x) into parts containing only frequencies
in one interval of the form [Jq’, J¢'™!) for some i > 0 guarantees that for ki > ko always



Jing, > J@tng, > J¢tqny, > Jq'ting,, provided ji, j2 € [Jq', J¢t) for some i > 0. O
Now we choose

J = J(N) = [log Bx1°. (15)
As a consequence of Lemma 1 we easily get

Lemma 2

M
S r(ne)

P{x €(0,1): max
k=1

1<M<N

> BN} < Jlx (logBN)_G.
Here and in the sequel, P denotes the Lebesgue-measure on (0,1).

3 Exponential inequality

We still assume that N is fixed. By (11) there exists a constant C such that

C1BnN

< N > 1. 16
N = (loglog By)3/2’ - (16)

By the choice of J in (15) it is possible to find a “small” number Cy, which must not depend

on N, J, such that
Co+/Toglog By _ (log log By )?/? 1

. 17
By ~  6CiBy  [log,(4J)] 1
We write e(x) = e”.
Lemma 3
1 N
/ e ()\chp(nkx)> dr <e ()\ZC’BJQV) ,
0 k=1
for some number C' (independent of J, N ), provided
0< A< Cavloglog By Vloé;bgBN_ (18)
N

Proof: Divide the integers 1,2,..., N into blocks Ay, Ag, ..., A, (for some appropriate w),
such that every block contains [log,(4.)] numbers (the last block may contain less), i.e.

Ay ={1,...,[log,(4J)]}, Ay = {[log,(4])] + 1,...,2[log,(4J)]}, ... Write

I, = /le 2 Z chp(nkx) dx
0

1<i<w keA;
i even

I, = /16 2 Z chp(nkx) dx.
0

1<i<w keA;
i odd




Then by the Cauchy-Schwarz-inequality

1 N
/ e <Achp(nkx)> do < (I11,) Y. (19)
0 k=1
Writing
Ui = Z cxp(ne), i>1,
keA;
we have
I, = / el 2\ Z ckp(ngz) | dx
0 1<i<w keA;
i even
2
< / 142X\ Z crp(npx) + 402 Z ckp(ngz) dx
0 1<i<w keA; keA;
i even
_ / [1 (1+2M\0; +45202) da, (20)
0 1<i<w
i even
where we used the inequality
e" <14+ 27 valid for |z| <1,
and the fact that (11), (13), (17) and (18) imply
2003 < 20| Y cillplloo
ke,
< 6AJA] (max|ck|>
C1Bn
< 6A[l 4| ——"—
<1
(|A;| denotes the number of elements in A;). Now
2
J
Ui2 = Z ckZaj COoS 2mjnET
keA; Jj=1
= X D ntkans,
ki,k2€A; 1<j1,j2<J
(cos 27 (j1ng, + Jonk,)x + cos 2w (jing, — jgnkQ)x> (21)
2
= Vi + W, (22)

say, where V; is a sum of trigonometric functions having frequencies in [n; ,2J nj], and W; is
a sum of trigonometric functions having frequencies in [0,n;) (here n; denotes the smallest



and n;" the largest number in A;). No other frequencies can occur, since the largest possible
frequency in (21) is
Jn;-F + Jn;-F = 2Jn27".
We note that the frequencies of the trigonometric functions in U; are also in the interval
[n;,2Jn]], and write
X; =2\U; +V; (23)

Using Minkowski’s inequality we have

w; < % Z Z Cky Cky Aj1 Ay

k1,ka€A; 1<41,52<J

l71mky —F2mey |<ng

1
< > D ChCkT
k1 ko€ Ak <k 1<j1ja<J Jijz
j1>j2nk2/nk1_1
© Y Yaa
— 1 2] n

k1,ko€N;,k1<ks j=1

IN
[\
‘s{
[\
S
c|’_‘

]CEA,’ v=0 q
4q 2
keA;

Let 41 < 79 be two distinct even numbers. Then the frequency of any trigonometric function
in X;, is at least twice as large as the frequency of any trigonometric function in Xj;,. In fact,
the largest trigonometric function in W;, is at most 2Jn;g, and the smallest trigonometric
function in X;, at least n;_, and since

min{k € A, } — max{k € A; } > [log,(4J])]

we have
- log, (4J)],,+ +
niQ > q’—ogq( )] nil 2 4Jn21
This implies that for any distinct y,...,...,4, (v is arbitrary), all even, the functions
Xiys...,X;, are multiplicatively orthogonal, i.e.

1
0

From (20), (22), (23), (24) and (25) we conclude

Iy g/ I (+Xi+43°w)de

0 1<i<w
Z even

16)\%q
1+ X; +— dx
/0 3

1<i<w kGA
1 even

IN



1672
< [0 [+ LS ¢
0 1<i<w kGA
Z even
162 16A%¢
< dz
[ 11 iy

1<i<w kEA
1 even

16)%q 9
= el 2 72
1<i<w 977 ke,
1 even

A similar estimate for Iy can be obtained in the same way, and finally (19) yields

1 N
/ e ()\ Z ckp(nkx)> dx
0 k=1

1/2
16\%q 5 16)%¢
< el X ooy e X oy
1<i<w 477 Ken, isw TR
i even i odd
8\%q 2
=l X
1<i<w 4 keA;
8A\%q o
= B
‘ <q—1 Ny
which proves the lemma. ]

Lemma 4 There exists a “large” number Cs, independent of J, N, such that

]P’{ > C34/B% log log BN} < 2(log By) ™

Proof: In Lemma 3 we choose

N

> p(nie)

k=1

\ = C'g\/log log BN
== 5,
which is consistent with (18), and get

P

{
:]p{
(o
(

Zp (ngz) > C34/ B3 loglog B%, }
()\Zp (ngx ) > e ()\03\/32 loglog32>}
8\? [ 22 2
By loglog By,
q—

8qC’2 log log By
q—1

- CQCg log log BN>

9



< e(—6loglog By)
= (log By)™°

(26)

for sufficiently large C3. A results similar to Lemma 3 is possible for — Zgzl p(ngz) instead

of Z]kvz1 p(ngx), which yields
N
P {— Zp(nkx) > C34/B% log logB]QV} < (log By)~S.
k=1

Combining (26) and (27) we get the lemma. O

4 Proof of Theorem 1

We define a sequence Ny, Ns, ... recursively in the following way:
Let
Ny =1,

and for m > 1 let

N Ny +1 if &,y >20m")
™) max {M > Ny, : Z]k\/[:Nm—i—l e < 2(7”1/3)} otherwise

This means that always

Nmg1—1 N1
1/3 1/3
E & < 2m’?) and E 2 > 2m7)
k=N +1 k=Np+1

(the sum on the left side may be over an empty index set), and in particular
m
B]2Vm > Z 2(”1/3) > 2(m1/3)m2/3‘
v=1

Also, (16) guarantees, together with (28), that

1/3) ClBNm+1
(loglog Bn,,., )3/2

which in particular implies
B, < 2203

and

B

By,

(27)

(29)

(30)

For C4 > C3 — 3 we apply the results from the previous two sections (for N = N,,11) and get

M
> f(ngx)
k=1

P \/B2 log log B2
{NerlISnJ\%)éNm-H > C4 N 08108 TN,

10

(31)



IN

IN

<

M
> crp(ng)
k=1

_ 2 2
P {Nmﬂgl]\a}};Nmﬂ > (Cy 1)\/BNm log log BNm}

M
+P {Nm IV kzl ek (ngz)| > BNm} (32)
Nm
P { Z cp(ngz)| > (Cy — 3)\/vam log log BJQVm} (33)
k=1

2 2
+P Nm+1§r1\n4€g§vm+1—1 Z cxp(ngz) >\/BleoglogBNm

k=N +1
—l—P{{cNmﬂp(nkx)‘ > \/szvm log log Blem} (34)
+(log By, )™°

M
P Yy k%ﬂ%p(nw) > \/B?Vm loglog B2, (35)

Here we used Lemma 2 to estimate (32), Lemma 4 to estimate (33), and (34) vanishes for
sufficiently large m because of (11) and (30). It remains to find an appropriate estimate for
(35). We have

IN

IN

<

<

|VlOg BNm+11G M

“OgBNm-rJ6 M

loglog Bn,,, .,

Nen+1<M<Npp1—1

Nen+1<M<Npp1—1

4
M

max Z ckp(ngz)

k=Nm+1

M |VlOg BNm+116

max Z Ck Z a; cos(2mjngx)

k=Np+1 j=1

Z |laj] max Z ¢k cos(2mingx)
gt N 1M <Npa =1 | 4=

4

1
E Ty hax . E ¢k cos(2mngx)
j:1 ] m+ > >IVm+1— k:Nm-‘rl

4
M

Z ¢k cos(2mngx)

max
Nyt 1< M< Ny i1 —1
S = T N1

4
[log, 21—1

loglog By, , Z max Z ¢k cos(2mngx)

N, 1<M<N, —1
s=0 m+t1SM=Nmi1 Nn+1<k<M

k=s mod [log, 2]

11



4
[log, 21—1
< loglog By,,., Z Nm+1§r1{1/[a§XNm+1—1 Z ¢k cos(2mngx)
s=0 Ny 1<k<M
k=s mod [log, 2]
4
[log, 21—1
< loglog By,,,, Z Z e cos(2mngx)|| (36)
5=0 || Nm+1<k<Npmi1—1
k=s mod [log, 2]

where the last estimate follows from the Carleson-Hunt inequality. If two distinct integers
k1, ko are in the same residue class (mod [log, 2]) then necessarily ng, /ng, & [1/2,2]. Thus

4

1
/ Z ek cos(2mngx) | dx
0

N +1<k<Npjp1—1
k=s mod [log, 2]

< Z Chy Chy Chis Chey - L(Ngy £ Mgy £ Mgy £ g, = 0)
N +1<k1,k2,k3,ka<Npm41—1
k1,k2,k3,ka=s mod ﬂogq 2]

< E Cly Cko ClisCey * ]l(nkl — Ny = 0) . ]l(nkS — Nk, = 0)
N +1<k1,k2,k3,ka<Npm41—1
k1,k2,k3,ka=s mod ﬂogq 2]

2 2
<K Z Cklck2

N +1<k1,k2a<Np41—1
k1,ko=s mod Dogq 2]

< v
Nm+1§k§Nm+1_1
k=s mod [log, 2]

< > a

N 1<k <Ny -1

< (2™

B2\’
< |\ e

by the definition of N, N;,+1, which implies, in view of (30) and (36),

4
M
B, loglog By,
N 1M <N -1 k_%:ﬂckp(nkx) < ml/3

12



Thus

M
2 2
Nm+1grz\%?§vm+l,1 Z ckp(ni) >\/BNm10g10gBNm
k=N, +1
log log By, )?
(08108 BN )" (10 )2 =413, -
(ml/s)

Writing A, for the set in (31), m > 1, i.e.

M
_ . 2 2
Ap = {x €(0,1): O ;ckf(nk:c) > C4\/BNm log log BNm} ,

by (35) and (37) we have
—6
P(A,,) < (log By,,) "% + (log m)?m~4/3 « (m1/3) + (log m)>m~4/3

and thus -
Z P(A,,) < occ.
m=1

Therefore the Borel-Cantelli-lemma implies that

max

C\/B2 log log B2
Nyt 1EM <N 11 -1 > G4\ P, 08108 B,

M
> e f(ngx)
k=1

for at most finitely many m for all € (0, 1), except a set of measure zero. Thus, in view of
(30), if C5 > C4 we also have

N

> e (nge)

k=1

> C54/B% loglog B

for only finitely many values of N, again for all z € (0,1) except a set of measure zero.
Therefore we have

(S0 et ()|
lim sup <1 a.e.,

N—oo (5, /B3 loglog B%, a

which proves Theorem 1.

13
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