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Deciding “whether two Boolean functions are affine equivalent” is a very important question in
Boolean function theory. Walsh spectra, autocorrelation spectra, algebraic degree are frequently
used to partially solve this decision problem. However, the problem becomes even more difficult
in the case of two bent functions having equal algebraic degree, since any two bent functions
have same autocorrelation spectra and same Walsh spectra up to complementation. In this paper
we construct an invariant to distinguish between two bent functions of the same degree. This
invariant is the frequency distribution of a spectrum consisting of second derivatives of the function
under consideration at all pairs of points which form a Gauss-Jordan basis of cardinality 2. First
we present an efficient algorithm having O(n22n) time complexity to compute this spectrum.
Using this invariant we show that there exist 6 and 8-variable bent functions which are not affine
equivalent to rotation symmetric bent functions. Further, we use this invariant to show that there
are at least six affine nonequivalent partial spreads bent functions on 8 variables. We come to this
conclusion by evaluating the spectrum on the subclass consisting of all the PS−ap bent functions
on 8 variables.

1. Basic Definitions

Let F2 be the prime field of characteristic 2 and Fn
2 be the n dimensional vector space over

F2. A function from Fn
2 into F2 is called a Boolean function on n variables. The set of all such

functions is denoted by Bn. We denote the group of n × n invertible linear transformations over
F2 by GL(n, F2). Two Boolean functions f , g ∈ Bn are said to be affine equivalent if there exists
A ∈ GL(n, F2), b, λ ∈ Fn

2 and ε ∈ F2 such that g(x) = f(Ax+ b)+λ ·x+ ε, where λ ·x is the inner
product of λ and x.

Let a, b ∈ Fn
2 be two distinct nonzero elements such that a = (zn−1, . . . , z0), b = (wn−1, . . . , w0)

respectively, where zi, wi ∈ F2 for all i = 0, 1, . . . n − 1. Suppose zi1 = zi2 = . . . = zir = 1 and
zi = 0 otherwise where i1 > i2 > . . . > ir. The elements a, b are said to form a Gauss-Jordan basis
of cardinality 2 if and only if wi = 0 for all i ≥ i1 and zj = 0 where j = max{i : wi = 1}. Let
J2 be the set of all distinct Gauss-Jordan bases of Fn

2 of cardinality 2. It can be checked that the
cardinality of J2, |J2| = (2n−1)(2n−1−1)

3 . Clearly |J2| is the number of all distinct two dimensional
subspaces of Fn

2 .
The derivative of a function f ∈ Bn with respect to a ∈ Fn

2 is defined as Daf(x) = f(x+a)+f(x),
for all x ∈ Fn

2 . The second derivative at a, b ∈ Fn
2 is DaDbf(x) = f(x + a + b) + f(x + b) + f(x +

a) + f(x) for all x ∈ Fn
2 .

2. Technical Results

Suppose a, b ∈ Fn
2 and f ∈ Bn. Let S(f : a, b) =

∑
x∈Fn

2
DaDbf(x) =

∑
x∈Fn

2
(f(x + a + b) +

f(x + b) + f(x + a) + f(x)). Our main result is as follows which we present without proof due to
space constraint.

Theorem. The multiset [S(f : a, b) : {a, b} ∈ J2] is invariant with respect to affine transformation
on f .
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Proof. Suppose f, g ∈ Bn are affine equivalent functions. Then there exist A ∈ GL(n, F2), v, λ ∈
Fn

2 and ε ∈ F2 such that g(x) = f(Ax + v) + λ · x + ε. Then for any {a, b} ∈ J2 we obtain,

S(g : a, b) =
∑
x∈Fn

2

(g(x + a + b) + g(x + b) + g(x + a) + g(x))

=
∑
x∈Fn

2

(f(A(x + a + b) + v) + λ · (x + a + b) + ε + f(A(x + b) + v)

+λ · (x + b) + ε + f(A(x + a) + v) + λ · (x + a) + ε + f(Ax + v) + λ · x + ε)

=
∑
x∈Fn

2

(f(A(x + a + b) + v) + f(A(x + b) + v) + f(A(x + a) + v) + f(Ax + v))

=
∑
x∈Fn

2

(f((Ax + v) + Aa + Ab) + f((Ax + v) + Ab) + f((Ax + v) + Aa) + f(Ax + v))

=
∑
x∈Fn

2

(f(x + Aa + Ab) + f(x + Ab) + f(x + Aa) + f(x))

(since x 7→ Ax + v is bijective on Fn
2 )

= S(f : Aa,Ab) = S(f : Aa + Ab, Ab) = S(f : Aa,Aa + Ab).

It is to be noted that exactly one set among {Aa,Ab}, {Aa+Ab, Ab} and {Aa,Aa+Ab} is a Gauss-
Jordan basis of cardinality 2. This implies the equality of the two multisets [S(f : a, b) : {a, b} ∈ J2]
and [S(g : a, b) : {a, b} ∈ J2]. �

Given a function f ∈ Bn we use the multiset [S(f : a, b) : {a, b} ∈ J2] as a spectrum related to
f . The sum S(f : a, b) =

∑
x∈Fn

2
(Daf(x + b) + Daf(x)) = 2n−1 − 1

2

∑
x∈Fn

2
(−1)Daf(x+b)+Daf(x) =

2n−1 − 1
2CDaf (b). Thus [S(f : a, b) : {a, b} ∈ J2] can be computed as follows:

(1) For each a ∈ Fn
2 construct the set Ba = {b : a, b ∈ J2}.

(2) For each b ∈ Ba compute CDaf (b) and S(f : a, b) = 2n−1 − 1
2CDaf (b).

The number of points in J2 is O(22n) and for each pair of points {a, b}, computing S(f : a, b)
has complexity O(2n). Therefore total complexity of the naive algorithm to compute the above
spectrum is O(23n). Interestingly, using Fast Walsh Transform one can obtain a more efficient
algorithm to compute this spectrum in O(n22n) time.

The computation from [W 2
f (0), . . . ,W 2

f (2n−1)] to [Cf (0), . . . , Cf (2n−1)] can be done in O(n2n)
time complexity by using Fast Walsh Transform due to the relationship [Cf (0), . . . , Cf (2n − 1)] =
2−n[W 2

f (0), . . . ,W 2
f (2n − 1)]Hn obtained in [3]. Now we propose the following algorithm.

Algorithm 1
1. For a ∈ Fn

2 compute Daf .
2. Compute [WDaf (0), . . . , WDaf (2n − 1)] by using Fast Walsh Transform.

3. Compute [W2
Daf (0), . . . , W2

Daf (2n − 1)].

4. Compute [CDaf (0), . . . , CDaf (2n − 1)] by using Fast Walsh Transform.
5. Repeat step 1 to 4 from each a ∈ Fn

2 .

The following table lists the time complexity of each step:
Step No. 1 2 3 4

Time complexity O(2n) O(n2n) O(2n) O(n2n)

The total complexity is O((n + 1)2n+1). These four steps are to be repeated 2n times. Therefore
the time complexity of computing the spectrum is O((n + 1)22n+1).

3. Implication of our results

Rotation symmetric (RotS) bent functions have been studied extensively in literature (see [7]
and the references therein). Experimental results show that there are varied types of bent functions
in the rotation symmetric class. Thus there arises a natural question whether all the bent functions
(at least on low dimensional spaces) are affine equivalent to rotation symmetric bent functions.
By using our invariant we prove that even for n as low as 6 and 8 there exist bent functions which
are not affine equivalent to any rotation symmetric bent.

Given f ∈ Bn compute the vector P(f) = (P1(f), P2(f), P3(f)) ∈ Z × Z × Z, where P1(f) is
the number of elements {a, b} ∈ J2 at which S(f : a, b) = 0, P2(f) is the number of elements
Abstract — 8th Central European Conference on Cryptography 2008 2



{a, b} ∈ J2 at which S(f : a, b) = 2n and P3(f) is the number of elements {a, b} ∈ J2 at which
0 < S(f : a, b) < 2n. We shall refer to P(f) as the P -vector of f . From the theorem proved above,
it is clear that if f, g ∈ Bn are such that P(f) 6= P(g) then f is not affine equivalent to g.

It is observed that the vector (35, 56, 560) is not a P -vector for any RotS bent function on
6 variables. Thus no rotation symmetric bent function is affine equivalent to the bent function
x1x2x3 ⊕ x2x4x5 ⊕ x1x2 ⊕ x1x4 ⊕ x2x6 ⊕ x3x5 ⊕ x4x5 whose P -vector is (35, 56, 560).

Again we observe that the vectors (651, 736, 9408) and (203, 288, 10304) do not appear as a
P -vector of any RotS cubic bent on 8 variables. This proves that no rotation symmetric 8-variable
cubic bent function is affine equivalent to the bent functions x1x2x7 ⊕ x3x4x7 ⊕ x5x6x7 ⊕ x1x4 ⊕
x3x6⊕x2x5⊕x4x5⊕x7x8 or x1x2x3⊕x2x4x5⊕x3x4x6⊕x1x4x7⊕x3x5⊕x2x7⊕x1x5⊕x1x6⊕x4x8

having P -vectors (651, 736, 9408) and (203, 288, 10304) respectively.
Next we consider the PS−ap bent functions on 8 variables. For details of PSap type bents we

refer to [4, 5, 6]. It is to be noted that all these bent functions have algebraic degree 4 and algebraic
immunity either 3 or 4. This makes them indistinguishable (in terms of affine nonequivalence)
using algebraic degree. Two different values of algebraic immunity implies that there are at least
two affinely nonequivalent classes if we consider transformations of the type x 7→ Ax+ b. However
addition of an affine function can change the algebraic immunity by 1 [2]. Thus according to our
definition of affine equivalence even this resolution may not be possible. The fastest algorithm
to compute algebraic immunity has time complexity Ω(22n), [1]. Since this algorithm requires
solution of large system of linear equations the effective running time of this algorithm is more
than the time required for computation of our spectrum. Thus by using the same amount of
computation as algebraic immunity we are able to obtain a better distinguisher with respect to
affine nonequivalence.

We generate all PS−ap bents on 8 variables and for each of them compute [S(f : a, b) : {a, b} ∈
J2]. It is observed that there are 6 distinct such multisets. This proves that there are at least 6
affinely non equivalent PS−ap (and hence PS) bent functions on 8 variables.

In the following table, the first row contains the possible values of S(f : a, b) attained by
these PS−ap bents. The remaining six rows correspond to the six different frequency distributions.
The last column provides the number of functions corresponding to each of the six frequency
distributions.

0 16 32 48 64 80 96 112 128 144 160 176 192 # of
functions

0 0 0 0 0 0 940 2360 3885 2360 1220 0 30 8160
0 0 0 0 75 0 605 1760 5640 1600 1055 0 60 4080
0 0 0 0 0 0 750 2800 3360 2800 1080 0 5 2040
0 0 0 0 0 0 590 2280 4635 2440 850 0 0 8160
0 0 0 0 0 0 510 2440 4635 2280 930 0 0 1360

35 0 0 0 240 0 640 0 8760 0 640 0 480 510

Table 1. Classes of PS−ap bents on 8-variables that are not affinely equivalent.
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