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Let Fq be a finite field and n > 1 be an integer. Let F⊥qn be dual of Fqn as a vector space over
Fq. Then the rank R(Fqn/Fq) over Fq is defined to be

R(Fqn/Fq) = min

{
` ∈ N

∣∣∣ ∃ui, vi ∈ F⊥qn , wi ∈ Fqn such that ∀a, b ∈ Fqn , ab =
∑̀
i=1

ui(a)vi(b)wi

}
.

R(Fqn/Fq) is also denoted by µq(n) and it is called the bilinear complexity of multiplication in Fqn

over Fq. It corresponds to the minimum number of Fq multiplications in order to multiply two
arbitrary elements of Fqn . Winograd [15] showed that this complexity is ≥ 2n−1 and it is equal to
2n− 1 if and only if n ≤ 1

2q + 1. Algorithms obtaining the lower bound are based on interpolation
algorithms on the rational function field [15]. D. V. Chudnovsky and G. V. Chudnovsky [6]
generalized this idea to algebraic function fields (of one variable) over Fq. Shokrollahi [11] obtained
optimal algorithms for the multiplication in certain finite fields using the principle of D. V. and
G. V. Chudnovsky algorithm and the elliptic curves. Shparlinski, Tsfasman and Vladut [12] gave
the asymptotic bounds for multiplication in finite fields by using curves with many points. Ballet
[1],[2] generalized Shokrollahi’s work to the algebraic function fields of genus g. Ballet and Rolland
[3] gave a generalization of D. V. Chudnovsky and G. V. Chudnovsky multiplication algorithm by
interpolating not only degree one places but also interpolating on degree two places. In [4], new
upper bounds of the bilinear complexity of multiplication in Fqn over Fq are obtained by proving
the existence of certain types of non-special divisors of g − 1 in the algebraic function fields of
genus g defined over Fq.

There is a related but different complexity notion. Let Mq(n) denote the number of multipli-
cations needed in Fq in order to multiply two arbitrary n-term polynomials in Fq[x] (cf. [15], [14],
[13], [8], [7], [5]). Here a polynomial is called an n-term polynomial in Fq[x] if it is of the form

a0 + a1x + · · ·+ an−1x
n−1 ∈ Fq[x].

As reduction modulo an irreducible polynomial in Fq[x] can be performed without multiplica-
tions in Fq, we have

µq(n) ≤ Mq(n).(1)

However µq(n) and Mq(n) are not necessarily equal in general. Using a polynomial basis {1, ξ, ξ2

, . . . , ξn−1, . . . , ξ2n−2} for Fq2n−1 over Fq, it is easy to show that

Mq(n) ≤ µq(2n− 1).

In this extended abstract we present a new method for multiplication in finite fields improving
µq(n) for certain values of q and n. We use local expansions, the length of which is a further
parameter that can be used to optimize the bounds on the bilinear complexity, instead of evaluation
into residue class field. Our basic principle is still based on the method of D. V. Chudnovsky and
G. V. Chudnovsky. The main idea in the new method can be summarized as follows. We use
algebraic function fields of one variable with places of arbitrary degrees and moreover we use some
places not only once but also many times. Here many times refers to using first ui > 1 coefficients
instead of the first (ui = 1) coefficient in the local expansion of a place Pi (see the map ϕ below).

Before stating our results we need to introduce another complexity notion. For a positive integer
`, let M̂q(`) denote the minimum number of multiplications needed in Fq in order to obtain the
first ` coefficients of the product of two arbitrary `-term polynomials in Fq[x]. It is not difficult
to obtain useful upper bounds on M̂q(`) for certain values `. For example we have M̂q(2) ≤ 3,
M̂q(3) ≤ 5, M̂q(4) ≤ 8 and M̂q(5) ≤ 11 for any prime power q (cf. [5, Proposition 1]).
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Let F/Fq be an algebraic function field with full constant field Fq. Let P1, P2, . . . , PN be distinct
places of arbitrary degrees. Assume that Q is a place of degree n. Let OQ be the valuation ring
of the place Q. Note that the residue field OQ/Q is isomorphic to Fqn . Let D be a divisor such
that suppD ∩ {Q,P1, P2, . . . , PN} = ∅. Let L(D) be the Riemann-Roch space of D. Assume also
that the evaluation map EvQ from L(D) into the residue field OQ/Q is onto. For 1 ≤ i ≤ N , let
ti be a local parameter at Pi. For f ∈ L(2D), let

f = αi,0 + αi,1ti + αi,2t
2
i + · · ·

be the local expansion at Pi with respect to ti, where αi,0, αi,1, . . . ∈ Fqdeg(Pi) . Let ui be a positive
integer and consider the Fq-linear map

ϕi : L(2D) →
(
Fqdeg(Pi)

)ui

f 7→ (αi,0, αi,1, . . . , αi,ui−1) .

Let ϕ be the Fq-linear map given by

ϕ : L(2D) →
(
Fqdeg(P1)

)u1 ×
(
Fqdeg(P2)

)u2 × · · · ×
(
Fqdeg(PN )

)uN

f 7→ (ϕ1(f), ϕ2(f), . . . , ϕN (f)) .

Finally we assume that the map ϕ is injective.
Theorem 1. Under the notation and assumptions as above we have

µq(n) ≤
N∑

i=1

µq(deg(Pi))M̂qdeg(Pi)(ui).

Using Theorem 1 we obtain explicit algorithms for multiplications in Fqn . The conditions of
the following theorem guarantee that the assumptions of Theorem 1 are satisfied.

Theorem 2. Let F/Fq be an algebraic function field with full constant field Fq. Let g be the
genus of F . Let P1, P2, . . . , PN be distinct places of arbitrary degrees of F . Let u1, u2, . . . , uN be
arbitrary positive integers. Assume that

(1) there exists a non-special divisor of degree g − 1,
(2) there exists a place of degree n,
(3)

∑n
i=1 deg(Pi)ui ≥ 2n + g − 1.

Then we have

µq(n) ≤
N∑

i=1

µq(deg(Pi))M̂qdeg(Pi)(ui).

Remark 1. Under the notation and assumptions of Theorem 2, consider the subcase that N =
N1+N2, Pi is a degree one place for 1 ≤ i ≤ N1, Pi is a degree two place for N1+1 ≤ i ≤ N1+N2.
Moreover let ui = 1 for 1 ≤ i ≤ N1 + N2. Note that µq(1) = 1, µq(2) ≤ 3, and M̂qdeg(Pi)(1) = 1
for any deg(Pi). Therefore the condition (3) of Theorem 2 becomes

N1 + 2N2 ≥ 2n + g − 1,

and the bound of Theorem 2 on µq(n) becomes

µq(n) ≤ N1 + 3N2.

These coincide with the corresponding result of [3] (see also [4, Theorem 1.1]).

Remark. By Theorem 2, in order to obtain better upper bounds on µq(n), we need algebraic
function fields with full constant field Fq, with small genus g, and with enough number of rational
places of suitable degrees. It is well known that finding algebraic function fields over Fq with fixed
small genus g and many rational places is not easy (cf. [10, Chapter 4]). In Theorem 2, as deg(Pi)
and ui are further parameters to be chosen, the condition (3) is weaker than the corresponding
condition in [3, Theorem 2.2] (see also [4, Theorem 2.1]). Therefore we obtain improved bounds
on µq(n) using Theorem 2. We also illustrate our improvements by an example below.

Using u = 2 for degree one places and u = 1 for degree two places in Theorem 2, we obtain the
following corollary.
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Corollary 1. Let F/Fq be an algebraic function field with full constant field Fq. Let g be the
genus of F . Assume there exist at least N1 degree one and at least N2 degree two places of F . If

(1) there exists a non-special divisor of degree g − 1,
(2) there exists a place of degree n,
(3) 2N1 + 2N2 ≥ 2n + g − 1,

then we have

µq(n) ≤ 3n + 3
⌈

g − 1
2

⌉
.

We compare Corollary 1 with the corresponding results in [3] and [4]. The bound of Corollary
1 is at least as good as the bounds of [3, Theorem 2.2] and [4, Theorem 2.1]. The condition (3)
of Corollary 2 is weaker as the corresponding condition of [3] and [4] is N1 + 2N2 ≥ 2n + g − 1.
The other conditions of Corollary 1 are the same as the ones in [3] and [4]. Therefore Corollary 1
gives improved bounds on µq(n).

Example 1. Let q = 3 and n = 9. Using the results in the literature, to the best of our knowledge,
the best upper bound is µ3(9) ≤ 27, which can be derived by two alternative methods as follows.
Using [14], [8], and [5], we obtain the upper bounds on M3(9) as 36, 34 and 27, respectively. Hence
by [5] and (1) we get µ3(9) ≤ 27. For the method in [3], we have considered all algebraic function
fields of genus 0 and 1. Let E be elliptic curve y2 = x3 +x+2 over F3. It has 4 degree one places,
6 degree two places and 8 degree three places. As 4 + 2 · 6 < 2 · 9 + 1− 1, the method of [3] cannot
be applied directly. Using 3 degree one places, 6 degree two places, and 1 degree three places, all
with u = 1 as in [3], we obtain that µ3(9) ≤ 3 · 1 + 6 · 3 + 6 · 1 = 27. Now we improve this to
µ3(9) ≤ 26 using Theorem 2 together with u = 2 for some places. We take 2 degree one places
with u = 2, 2 degree one places with u = 1, and 6 degree two places with u = 1. Therefore we
obtain that µ3(9) ≤ 2 · 3 + 2 · 1 + 6 · 3 = 26. We also find an explicit formula of such an algorithm
via Theorem 1, which can be found in http://www.metu.edu.tr/∼ozbudak/formula3-9.pdf .

Finite field multiplication is widely used in many areas such as cryptography and coding theory.
For example, in elliptic curve cryptography finite fields of large number of elements are used. Some
of suitable finite fields are proposed by NIST (National Institute of Standards and Technology)
[9]. In that list it is suggested to use the field with 2163 elements. Now we will compute the
complexity for multiplication in F2163 using proposed method. The most suitable elliptic curve for
our method over F2 (up to isomorphism) is y2 + y = x3 + x + 1 which has 1 degree one places,
2 degree two places, 4 degree three places, 5 degree four places, 8 degree five places, 8 degree six
places, 16 degree seven places and 25 degree eight places. We take 1 degree one places with u = 5,
2 degree two places with u = 2, 4 degree three places with u = 1, 5 degree four places with u = 1,
8 degree five places with u = 1, 8 degree six places with u = 1, 15 degree seven places with u = 1
and 11 degree eight places with u = 1. Therefore we obtain

µ2(163) ≤ 11 + 2 · 9 + 5 · 9 + 8 · 13 + 8 · 15 + 15 · 22 + 12 · 24 = 916,

where we take M̂2(5) ≤ 11, M̂4(2) ≤ 3 [5] and µ2(4) ≤ 9, µ2(5) ≤ 13, µ2(6) ≤ 15, µ2(7) ≤ 22
and µ2(8) ≤ 24. In the full paper, how the latter bounds are obtained will be explained in detail.
On the other hand, the best we can expect from Karatsuba algorithm (together with (1)) is
µ2(163) ≤ N , where N is an integer with N > 2187, since it is given in [14] that M2(128) ≤ 2187.

Acknowledgments. The authors would like to thank the anonymous referees for their useful sug-
gestions. This work was supported by TÜBİTAK under Grant No. TBAG-107T826.
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