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1. Introduction

Many cryptosystems are proven to be secure under a particular computational assumption, such
as RSA [8] for instance, resting its security on the difficulty of the Factoring Problem. Many others,
such as ElGamal [4], are based on the Discrete Logarithm Problem [6] and several other related
problems on which the focus of this abstract lies. Henceforth, we consider a group Gq of prime
order q. Therein, the Discrete Logarithm Problem (DLP) is the following: given y, g ∈ Gq, g 6= 1,
and q, find x ∈ Zq, such that y = gx. The integer x is called the discrete logarithm of y to the base
g, denoted as dlogg(y). The problem of constructing gx1x2 solely from (gx1 , gx2) is known as the
Diffie-Hellman Problem (DHP) [3]. To decide, whether a given triple (y1, y2, y3) ∈ G3

q is of the form
(gx1 , gx2 , gx1x2) is known as the Decision Diffie-Hellman Problem (DDP) [1]. Obviously, solving
the DLP gives trivial solutions to the DHP and the DDP, respectively. Similarly, solving the DHP
leads to an efficient solution of the DDP. The converse directions are less obvious. Some results
concerning the relations between the DLP and the DHP can be found in [5]. However, it is still an
open question (of course it depends on the group used), how solutions of the DDP can be used to
solve the DHP. This is also known as the Gap Diffie-Hellman Problem [7]. Several cryptosystems
are based on the DLP, DHP or DDP. The ElGamal encryption scheme, for instance, is semantically
secure under the assumption that solving the DHP is hard. Moreover, under the assumption that
the DDP is hard, it is guaranteed that upon two given ciphertexts, it is not efficiently possible
to decide, if both contain the same plaintext. Unfortunately, the ElGamal encryption scheme is
insecure against chosen ciphertext attacks [11]. The Cramer-Shoup cryptosystem [2] overcomes
this drawback, while resting its security on the DDP.

We recently developed a particular algebraic structure together with a function ξ that shares
fundamental properties with ordinary exponentiation in Gq. The main difference is that ξ requires
pairs of elements of Gq in the basis and pairs of elements of Zq in the exponent. ξ is designed
such that its execution uniformly includes all four input-elements for the computation of the
output, a pair of elements of Gq. We call this inclusion fusion. As ξ shares basic properties with
exponentiation, we call it fusion-exponentiation and define the Fusion DLP (FDLP), the Fusion
DHP (FDHP) and the Fusion DDP (FDDP) in the usual way.

The remainder of this abstract is organized as follows. Firstly, we collect the basic prop-
erties of ordinary exponentiation, as these make up the minimum requirements for the fusion-
exponentiation function ξ, being introduced afterwards through a constructive approach. This
enables us to define the FDLP, FDHP and FDDP. Finally, we sketch the problem of showing the
computational equivalence of the DDP and FDDP and discuss its advantageous effect on related
cryptosystems.

2. Ordinary Exponentiation

An element g ∈ Gq may be raised to the power of x ∈ Zq by multiplying g with itself x-times.
For all g, h ∈ Gq and x, y ∈ Zq we have:

(gx)y = gxy(1)
gx+y = gxgy(2)
(gh)x = gxhx(3)

Furthermore, g0 = 1 and g−x = (gx)−1. The properties stated above are fundamental for realizing
(basic) discrete-logarithm-based cryptosystems.
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3. Fusion-Exponentiation

In the fusion-setting, we define exponents as pairs of integers of Zq. It would be convenient to
have the exponents of our generalized exponentiation come from a field (in fact a commutative
ring with 1 would suffice, but a field gives rise to a wider class of possible applications), while in
the basis we only require a group. A natural choice for the source of the exponents is thus a field
of order p = q2, which is easily constructed by choosing q ≡ 3 (mod 4), and Fp := Zq[X]/(X2 +1).
For simplicity, we sometimes abbreviate a pair (a, b) by a sans-serif font letter, e.g. x.

In the following, we get started by deriving property (1) for our new exponentiation where
exponents consist of two integers. Let us define a simple form, taking a pair in the exponent, as

(4) gx = g(c,d) := (gc, gd),

where x ∈ Fp, x = (c, d) and g ∈ Gq \ {1}. Suppose we are given a term gx according to the
convention (4), and we wish to find (gx)y such that the result equals gxy, i.e. we need to calculate
the latter term given only gx = (gc, gd) and y = (e, f), where y ∈ Fp. This is easily done, as

gxy = g(c,d)(e,f) = g(ce−df,cf+de)

(4)
= (gce−df , gcf+de)

(1),(2)
= ((gc)e(gd)−f , (gc)f (gd)e).(5)

Hence, we can define the exponentiation

(gx)y = (g(c,d))(e,f) (4)
= (gc, gd)(e,f)

through (5) as
(gx)y := ((gc)e(gd)−f , (gc)f (gd)e) = gxy.

Because g is a generator of Gq, we can write any two elements a, b ∈ Gq as a = gc, b = gd for
some integers c, d ∈ Zq. Substituting the powers of g in (5), we obtain

(6) (gx)y = (aeb−f , afbe),

and the fusion-exponentiation ξ : Gp × Fp → Gp is found by observing that by (4), any pair
(a, b) ∈ Gq × Gq =: Gp can be written using powers of g as (gc, gd), such that with gx being
represented by (a, b), from (6) we arrive at the definition

(a, b)(e,f) := (aeb−f , afbe),

satisfying (1) by construction. Since Gp is simply the outer product of Gq with itself, it is a group
with component-wise multiplication, i.e. (a1, b1)(a2, b2) = (a1a2, b1b2) for (a1, b1), (a2, b2) ∈ Gp.
Having this together with Fp being a field, the properties (2) and (3) can be shown to hold [10].
To keep computing discrete logarithms hard, it is intrinsic that exponentiation is done using a
basis of large order. In Gq, every element g 6= 1 has maximum order q. An analogous result can be
shown for Gp regarding fusion-exponentiation. Every element g 6= (1, 1) can be used to generate
Gp using fusion-exponentiation. A proof can be found in [10].

4. Fusion Discrete Logarithm Problems

The FDLP, FDHP and FDDP can be defined analogously to the DLP, DHP and DDP. The
Fusion Discrete Logarithm Problem is the following: given y, g ∈ Gp, g 6= (1, 1), and q, find an
element x ∈ Fp, such that y = gx. We call x the fusion discrete logarithm of y to the base g denoted
as fdlogg(y). The Fusion Diffie-Hellman Problem is the following: given y1, y2, g ∈ Gp, g 6= (1, 1),
and q, find y3 ∈ Gp, such that (y1, y2, y3) is of the form (gx1 , gx2 , gx1x2), for some x1, x2 ∈ Fp.
To decide whether a given triple is of this form, we define as the Fusion Decision Diffie-Hellman
Problem. In addition to these three problems, one can define several sub-problems. For instance,
given y, g ∈ Gp, g 6= (1, 1), find x1 or x2, where (x1, x2) ∈ Fp, such that y = g(x1,x2). Or another
variant: given x1 (resp. x2) in addition, find x2 (resp. x1). Interestingly, all sub-problems of this
form are equally hard to solve and not easier than the above defined ones. This is due to the fact
that both parts of the exponent are uniformly included during computations [9, 10].
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5. Open Problem

Solving the FDDP leads to a trivial solution of the DDP: let OFDDP be an oracle, which on
input y1, y2, y3, g ∈ Gp, g 6= (1, 1), efficiently decides if fdlogg(y3) = fdlogg(y1)fdlogg(y2). The
DDP can then be solved as follows: given (y1, y2, y3) ∈ G3

q and g ∈ Gq, g 6= 1, query

OFDDP((y1, 1), (y2, 1), (y3, 1), (g, 1)),

which returns true if and only if (y1, y2, y3) is of the form (gx1 , gx2 , gx1x2), for some x1, x2 ∈ Zq,
because

fdlog(g,1)((yi, 1)) = (dlogg(yi), 0) =: (xi, 0)
for i = 1, 2, 3 and

(x1, 0)(x2, 0) = (x3, 0)
if and only if x3 = x1x2, and false otherwise. For the reverse direction let ODDP be an oracle that
on input y1, y2, y3, g ∈ Gq, g 6= 1, efficiently decides if dlogg(y3) = dlogg(y1)dlogg(y2). We have

gx1 = (gx11
1 g−x12

2 , gx12
1 gx11

2 ) and gx2 = (gx21
1 g−x22

2 , gx22
1 gx21

2 ),

where x1 = (x11, x12), x2 = (x21, x22) and (g1, g2) ∈ Gp, and want to decide if gx3 is of the form

(gx11x21−x12x22
1 g−x11x22−x12x21

2 , gx11x22+x12x21
1 gx11x21−x12x22

2 ).

The problem arises from the oracle’s inability to provide more than true/false-decisions. All of our
current approaches to give an efficient reduction to the DDP end up in the necessity to have an
oracle for solving the DHP. Such an oracle, however, is not available for the reduction.

6. Conclusion

The above stated open problem yields an interesting conjecture: if the computational equiv-
alence between the DDP and FDDP cannot be shown, then the FDDP seems to be a stronger
problem than the DDP. Thus, if the DDP is efficiently solved directly (i.e. without solving the
DLP or DHP), then related cryptosystems like ElGamal or Cramer-Shoup will become vulner-
able. However, if our conjecture remains unrefuted, then such cryptosystems will still remain
secure within the fusion-setting. Certainly, if the computational equivalence between the DDP
and FDDP is shown, then fusion-exponentiation will not bring an advantage concerning security.
Notice also that the bit-security is always associated to the same prime q, no matter which setting
is used. But it offers some interesting algebraic properties and perhaps some security features in
a different manner.
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