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Abstract

In this paper the known upper bound 1096 for the number of Diophantine quintuples is
reduced to 6.8·1032. The key ingredient for the improvement is that certain individual bounds
on parameters are now combined with a more efficient counting of tuples, and estimated by
sums over divisor functions. As a side effect, we also improve the known upper bound 4 ·1070

for the number of D(−1)-quadruples to 5 · 1060.

1 Introduction

Let n 6= 0 be an integer. A set of m positive integers is called a Diophantine m-tuple with the
property D(n), or simply a D(n)-m-tuple, if the product of any two of them increased by n
is a perfect square. A D(1)-m-tuple is often called a Diophantine m-tuple, which is the most
frequently studied case. Let us briefly review the history and some of the key results on this
subject.

Diophantus of Alexandria was the first to look for such sets and it was in the case n = 1. He
found a set of four positive rational numbers with the above property

{
1
16 ,

33
16 ,

17
4 ,

105
16

}
. However,

Fermat found a first Diophantine quadruple, the set {1, 3, 8, 120}. Euler was later able to add the
fifth positive rational, 777480

8288641 , to Fermat’s set. There is a folklore conjecture that Diophantine
quintuples (i.e. five such positive integers) do not exist at all. Actually there is a stronger version
of this conjecture.

Conjecture 1.1 (cf. [1, 5]). Let {a, b, c, d} be a Diophantine quadruple such that a < b < c < d,
then

d = d+ = a+ b+ c+ 2(abc+ rst),

where r, s and t are positive integers given by ab+ 1 = r2, ac+ 1 = s2 and bc+ 1 = t2.

A Diophantine quadruple {a, b, c, d}, where d > max{a, b, c}, is called a regular quadruple if
d = d+. So, it is conjectured that all Diophantine quadruples are regular. There have been a
number of previous results on this problem. Dujella [4] first proved that there are no Diophantine
9-tuples, and at most finitely many 8-tuples, and later [5] significantly improved this proving
there are no sextuples, and at most finitely many quintuples, giving an upper bound [6] of 101930

for the number of conceivable quintuples. This upper bound was later reduced to 10276 by the
third author [14], and to 1096 by the second and third authors [12].
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A variety of different methods have been used to study this problem, including linear forms
of logarithms, elliptic curves, theory around Pell’s equation, elementary methods, separating the
problem into several subproblems depending on the size of parameters etc. A detailed survey
on the subject is the webpage [7] by Andrej Dujella.

The main result in the present paper is the following:

Theorem 1.2. The number of Diophantine quintuples is less than 6.8 · 1032.

We remark that a complete computer search based on this bound is still out of reach of
current computers, but that the new bound makes one much more optimistic about a complete
solution. Is it possible that one or two further ideas can reduce the bound to the region where
a complete computer search can finish the problem?

There are several sources where this improvement comes from. On the one hand side, the
upper bounds on b and d have been reduced by a more careful study of all subcases that appear.
The methods used for this are the same as the ones from [14] and [12], i.e. congruence method,
linear forms in three logarithms and some improvement of the hypergeometric method: dividing
the relevant case into subcases enables us for example to conclude d > b4 in the worst case for
the bound on d, which gives us a much better bound on b. However, the main new ingredient
is a more efficient way of estimating upper bounds on the number of tuples, when bounds
on individual parameters are known, by an averaging process. For this we have made use of
explicit sum of divisor estimates. Similar ideas have already been used in Dujella [6] and Martin
and Sitar [17] but it is not apparent how their result can be used for counting the number of
quintuples.

There is a vast literature on the subject of counting D(m)-tuples, and it seems likely to
us that divisor estimates of the type used in this paper can be frequently combined with the
existing methods and results on D(m)-tuples. As a further example we show that a simple
divisor estimate also gives an improvement on a very recent paper on D(−1)-quadruples. While
it is conjectured that D(−1)-quadruples do not exist, it is known that no D(−1)-quintuple
exists and that if {a, b, c, d} is a D(−1)-quadruple with a < b < c < d, then a = 1 ([9]). Dujella,
Filipin and Fuchs [8] proved that there are at most finitely many D(−1)-quadruples, by giving
an upper bound of 10903 for the number. This bound was improved to 10356 by the second and
third authors ([11]), and recently to 4 · 1070 by Bonciocat, Cipu and Mignotte ([2]). Here we
show that a simple divisor estimate improves this as follows:

Theorem 1.3. The number of D(−1)-quadruples is less than 5 · 1060.

The organization of this paper is as follows: In section 2 we collect a number of known
results on Diophantine tuples that we will use in our proofs. In secton 3 we collect some divisor
estimates and prove some variants. Section 4 gives bounds on individual parameters, and section
5 combines the lemmas from sections 2-4 to prove the main theorem on Diophantine quintuples.
Finally, section 6 gives a short proof of the result on D(−1)-quadruples.

2 Upper bounds for the number of extensions

Let us first recall two useful results from [13] and [14].
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Lemma 2.1 ([13, Theorem 2]). Let {a, b, c, d, e} be a Diophantine quintuple with a < b < c <
d < e. Then, d = d+.

Lemma 2.2 ([14, Theorem 1.2]). Let {a, b, c} be a Diophantine triple with a < b < c. Then
there are at most four ways of extending this triple to a Diophantine quintuple {a, b, c, d, e} with
a < b < c < d < e.

3 Explicit bounds on the divisor function

In this section we collect some explicit elementary bounds on the divisor function. Asymptot-
ically, slightly stronger bounds are known in the literature, but almost all statements in the
literature use inexplicit error estimates. Denote by ω(n) the number of distinct prime divisors
of n.

Lemma 3.1.
N∑
n=1

2ω(n) < N(logN + 1).

Proof. As in the proof of Lemma 2 in [6], we see that

N∑
n=1

2ω(n) =
N∑
n=1

∑
y|n

µ2(y)=1

1 =
N∑
y=1

µ2(y)=1

⌊
N

y

⌋
≤ N

N∑
y=1

1

y
< N(logN + 1).

Observing that kω(n) ≤ dk(n), where dk(n) denotes the number of ways to write n as a
product of k positive integers, we will make use of the following explicit bound:

Lemma 3.2 (Bordellès, [3, Theorem 2.1]). Let k ≥ 3 be an integer. For any real number
N ≥ 13, we have: ∑

n≤N
dk(n) ≤ N

(n− 1)!
(logN + n− 2)n−1.

By the above remarks the following is an immediate consequence:

Lemma 3.3.
N∑
n=1

4ω(n) ≤
N∑
n=1

d4(n) ≤ N

6
(logN + 2)3.

Denote by d(n) the number of positive divisors of n, which coincides with d2(n).

Lemma 3.4 (Consequence of Vinogradov [19, Chapter 5, §4 g]).
(1) The number of solutions of x2 ≡ 1 (mod b) with 0 < x < b is at most 2ω(b)+1.
(2) The number of solutions of x2 ≡ −1 (mod b) with 0 < x < b is at most 2ω(b).
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Lemma 3.5.
N∑
n=2

d(n2 − 1) < 2N
(
(logN)2 + 4 logN + 2

)
.

Proof. By elementary estimates and Lemma 3.4 (1) we have

N∑
n=2

d(n2 − 1) ≤ 2
N∑
n=1

n∑
y=1

y|n2−1

1 = 2
N∑
y=1

N∑
n=y

n2≡1 (mod y)

1

≤ 2
N∑
y=1

N

y
2ω(y)+1 = 4N

N∑
y=1

2ω(y)

y
.

Putting A(N) =
∑N

y=1 2ω(y), we know by Lemma 3.1 that A(N) < N(logN + 1), and we see
that

N∑
y=1

2ω(y)

y
=

N∑
y=1

A(y)−A(y − 1)

y
=

N−1∑
y=1

A(y)

y(y + 1)
+
A(N)

N

<
N∑
y=2

log(y − 1) + 1

y
+ logN + 1 <

N∑
y=2

log y

y
+ 2 logN + 1

=
N∑
y=2

f(y) +

∫ N

1

log u

u
du+ 2 logN + 1,

where

f(y) =

∫ y

y−1

(
log y

y
− log u

u

)
du.

Since f(y) is increasing for y ≥ 5, limy→∞ f(y) = 0 and f(5) < 0, we have f(y) < 0 for y ≥ 5,

from which one can easily check that
∑N

y=2 f(y) < 0 for N ≥ 21. Therefore, we obtain

N∑
n=2

d(n2 − 1) < 4N

(∫ N

1

log u

u
du+ 2 logN + 1

)
= 2N

(
(logN)2 + 4 logN + 2

)
for N ≥ 21. It is also easy to check that the desired inequality holds for 2 ≤ N ≤ 20.

We will use the last lemma in the cases when we get an upper bound N on r, because then it
yields that the number of Diophantine pairs {a, b} such that a < b is less thanN

(
(logN)2 + 4 logN + 2

)
.

The same argument shows

Lemma 3.6.
N∑
n=2

d′(n2 − 1) < 2N
(
(logA)2 + 4 logA+ 2

)
,

where d′(n2 − 1) only counts divisors a ≤ A.
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The following is a key to prove Theorem 1.3.

Lemma 3.7. For N ≥ 2, we have

N∑
n=1

d(n2 + 1) < N
(
(logN)2 + 4 logN + 2

)
.

Proof. One can easily prove this lemma in the same way as Lemma 3.5, noting Lemma 3.4
(2).

No attempt has been made of optimising this estimate. Asymptotically it is known that this
case gives a better order of magnitude, namely

∑N
n=1 d(n2 + 1) ∼ 3

πN logN , see McKee [18], as
n2 + 1 is irreducible over Z, whereas n2− 1 is not. For comparison, it is known (see Hooley [15])
that

∑N
n=2 d(n2 − 1) ∼ CN(logN)2, for some positive constant C.

4 Upper bounds for the second and the fourth elements

In this section our main goal is to improve the known bounds from [12] on elements b and d in
Diophantine quintuple {a, b, c, d, e} with a < b < c < d < e. First, we recall the definition of
standard triples in [14].

Definition 4.1. Let {a, b, c} be a Diophantine triple with a < b < c. We call {a, b, c} a
Diophantine triple of

(i) the first kind if c > b5;

(ii) the second kind if b > 4a and c ≥ b2;

(iii) the third kind if b > 12a and b5/3 < c < b2.

A Diophantine triple is called standard if it is of the first, the second or the third kind.

Lemma 4.2. Any Diophantine quadruple contains a standard triple. More precisely, if {a, b, c, d}
is a Diophantine quadruple with a < b < c < d, then one of the following holds:

(i) {a, b, d} is of the first kind.

(ii) {a,B, d} is of the second kind satisfying one of the following:

• B = b with b > 4a;

• B = c with b < 4a and c = a+ b+ 2r;

• B = c such that {a, b, c, d} is not a regular Diophantine quadruple.

(iii) {a, c, d} is of the third kind with b < 4a and c = (4ab+ 2)(a+ b− 2r) + 2(a+ b).
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Proof. Let {a, b, c, d} be a Diophantine quadruple with a < b < c < d. If it is irregular, then
from [5, Lemma 6] we have d > c2 and c > 4a, so in this case {a, c, d} is of the second kind. So,
we can assume that {a, b, c, d} is a regular quadruple. Then, it is easy to see that

c(4ab+ 1) < d < 4c(ab+ 1).

If b > 4a, then d > b2 shows that {a, b, d} is a triple of the second kind. Let us consider the case
when b < 4a. Then, by [16, Theorem 8] we have c = ck, k ≥ 1 or c = ck, k ≥ 2, where (ck) and
(ck) are defined by

c0 = 0, c1 = a+ b+ 2r, ck = (4ab+ 2)ck−1 − ck−2 + 2(a+ b),

c0 = 0, c1 = a+ b− 2r, ck = (4ab+ 2)ck−1 − ck−2 + 2(a+ b).

If c > b3, then d > 4abc > b5 and we see that {a, b, d} is a triple of the first kind. If c ≤ b3, since
c2 = 4r(a + r)(b + r) > 4ab2 > b3, we have c = c1 or c = c2. If c = c1 = a + b + 2r, we have
4a < c < 4b, which yields d > 4abc > c2, so in this case {a, c, d} is a triple of the second kind. If
c = c2 = (4ab+2)(a+b−2r)+2(a+b), then since we may assume b > a+2 (otherwise c2 = c1),
we have d = c3 < c2 and d > c5/3 in which case {a, c, d} is a triple of the third kind.

We now recall some useful results on extending a Diophantine triple. Let {a, b, c} be a
Diophantine triple with a < b < c such that ab + 1 = r2, ac + 1 = s2, bc + 1 = t2, where r, s, t
are positive integers. Assume that {a, b, c, d} is a Diophantine quadruple. Then, there exist
positive integers x, y, z satisfying ad + 1 = x2, bd + 1 = y2, cd + 1 = z2. Eliminating d from
these equations, we obtain the system of simultaneous Diophantine equations

az2 − cx2 = a− c, (4.1)

bz2 − cy2 = b− c. (4.2)

The solutions of equations (4.1) and (4.2) are respectively given by the following recursive
definitions: z = vm and z = wn with positive integers m and n, where

v0 = z0, v1 = sz0 + cx0, vm+2 = 2svm+1 − vm,
w0 = z1, w1 = tz1 + cy1, wn+2 = 2twn+1 − wn

with some integers z0, z1, x0, y1 (cf. [4, Section 2]).
Moreover, if {a, b, c, d, e} is a Diophantine quintuple with a < b < c < d < e, then there exist

integers α, β, γ, δ such that

ae+ 1 = α2, be+ 1 = β2, ce+ 1 = γ2, de+ 1 = δ2,

from which we obtain the system of Diophantine equations

aδ2 − dα2 = a− d, (4.3)

bδ2 − dβ2 = b− d, (4.4)

cδ2 − dγ2 = c− d. (4.5)
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The solutions of equations (4.3), (4.4) and (4.5) respectively are given by δ = Ui, δ = Vj and
δ = Wk with positive integers i, j and k, where

U0 = ±1, U1 = ±x+ d, Ui+2 = 2xUi+1 − Ui,
V0 = ±1, V1 = ±y + d, Vj+2 = 2yVj+1 − Vj ,
W0 = ±1, W1 = ±z + d, Wk+2 = 2zWk+1 −Wk.

The indices satisfy 4 ≤ k ≤ j ≤ i ≤ 2k and j ≥ 6 and all of i, j and k are even. Moreover,
by Lemma 4.2 {a, b, c, d} contains a standard triple {A,B,C} with A < B < C = d. Hence,
considering {A,B, d, e} as a quadruple we get from extending the triple {A,B, d}, that vm and
wn correspond to two of Ui, Vj and Wk. We have the following lemma from [14], the only
difference is that we now state it with three decimal places instead of two which gives us slight
improvement.

Lemma 4.3. (cf. [14, Lemma 3.5]) Let {a, b, c, d, e} be a Diophantine quintuple with a < b <
c < d < e. Assume d ≥ 4.2 · 1076.

(i) If {a, b, c, d} contains a triple of the first kind, then j > d0.025.

(ii) If {a, b, c, d} contains a triple of the second kind, then j > d0.244.

(iii) If {a, b, c, d} contains a triple of the third kind, then j > d0.199.

Furthermore, using this lemma and a result on linear forms in logarithms from [14, proposi-
tion 4.2.], where the third author proved (using m ≥ j and C = d)

m

log(351m)
< 2.786 · 1012(log d)2, (4.6)

we can prove the following proposition. It is also good to remember that we usually get a better
bound when using the hypergeometric method but to use that we need to have some gap between
elements b and c in Diophantine triple {a, b, c} with a < b < c, which is the case only in the
standard triple of the first kind.

Proposition 4.4. Let {a, b, c, d, e} be a Diophantine quintuple with a < b < c < d < e. Then,
b < 1.03 · 1038 and d < 3.5 · 1094. More precisely, the following estimates hold:

(i) If {a, b, d} is of the first kind, then b < 6.98 · 109 and d < b7.7 < 6.28 · 1075.

(ii) If either {a, b, d} with b > 4a or {a, c, d} with b < 4a and c = a + b + 2r is of the second
kind, then b < 1.03 · 1038 and d < 4.2 · 1076.

(iii) If {a, c, d} is of the third kind with b < 4a and c = (4ab + 2)(a + b − 2r) + 2(a + b), then
b < 4.33 · 1023 and b4 < d < 3.5 · 1094.

Proof. By Lemma 4.2, we may assume that one of the assumptions in (i), (ii) and (iii) holds.
(i) The proof is the same as the proof of [12, Proposition 2.11]. We combine the lower bounds

for indices that we get from congruence relations together with the upper bound we get from
the hypergeometric method to get a contradiction for large values of b and d. In [12] we did
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not have to prove this result as precise as now, because later in that paper we only needed that
d < 10100.

(ii) Lemma 4.3 together with (4.6) implies d < 4.2 · 1076. Since d > 4abc > 4b2, we obtain
b < 1.03 · 1038.

(iii) Lemma 4.3 together with (4.6) implies d < 3.5 · 1094. Since b < 4a and c > 4ab, we
obtain

d > 4abc > (4ab)2 > (b2)2 = b4.

5 Proof of Theorem 1.2

Proof of Theorem 1.2. Our strategy is to sum up the bounds computed in the cases of (i) to (iii)
in Lemma 4.2 separately. The proof proceeds in order of (ii), (i), (iii).

Assume that {a, b, c, d, e} is a Diophantine quintuple with a < b < c < d < e.
(ii) In this case, we know by Proposition 4.4 that d < 4.2 · 1076. We compute the number by

dividing this case into the following subcases:

(ii-1) b > 4a and 4ab+ a+ b ≤ c ≤ b1.5;

(ii-2) b > 4a and c = a+ b+ 2r;

(ii-3) b > 4a and c > b1.5;

(ii-4) b < 4a and c = a+ b+ 2r.

(ii-1) With r =
√
ab+ 1 ≥ 3 (see [10]) and d = d+ > 4abc, it follows that 4.2 · 1076 > d >

4abc > 16a2b2 > 12.64r4. This proves r < 7.6 · 1018 =: N1. By r2 − 1 = ab the number of pairs
{a, b} with a < b is at most

∑N1
r=2 d(r2− 1)/2. It follows from Lemma 3.5 that there are at most

1.58 · 1022 pairs {a, b}.
For a fixed pair {a, b}, an integer c such that {a, b, c} is a Diophantine triple belongs to the

union of finitely many binary recurrent sequences, and the number of those sequences is less
than or equal to the number of solutions of the congruence t20 ≡ 1 (mod b) with −0.71b0.75 <
t0 < 0.71b0.75 (see [4, Lemma 1]). By Lemma 3.4 (1) this number is less than 2 · 2ω(b)+1. Since
we now have b <

√
d/20 < 4.59 · 1037 and the product of the first 26 primes exceeds 2 · 1038, the

number of such sequences is less than

2 · 2ω(b)+1 ≤ 2 · 226 < 1.35 · 108.

Each sequence t = tν satisfies ν ≤ 3, since if ν ≥ 4, then (2r − 1)ν−1 < tν =
√
bc+ 1, which

together with c ≤ b1.5 implies (
√
b+ 1 − 1)3 <

√
b2.5 + 1, but this is impossible. To obtain the

above inequality, we have used that if we want to extend the Diophantine pair {a, b} to a triple
{a, b, c}, there exist positive integers s and t satisfying ac+1 = s2 and bc+1 = t2. Eliminating c
we get that t is a solution of Pellian equation at2−bs2 = a−b. In our notation t0 is a fundamental
solution for which we have estimates, and the satisfying recurrence tν+2 = 2rtν+1 − tν , which
inductively gives us the lower bound tν > (2r − 1)ν−1.
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Moreover, for a fixed Diophantine triple {a, b, c}, there are at most four ways for it to be
extended to a quintuple by Lemma 2.2. Therefore, the number of Diophantine quintuples is less
than

1.58 · 1022 · 1.35 · 108 · 3 · 4 < 2.56 · 1031. (5.1)

(ii-2) Since d > 4abc ≥ 4(r2 − 1)(3r + 2) > 12r3, we have r < 1.52 · 1025 =: N2. Lemma 3.5
implies that the number of pairs {a, b} with a < b is at most

1

2

N2∑
r=2

d(r2 − 1) < N2

(
(logN2)

2 + 4 logN2 + 2
)
.

In this case, c is uniquely determined, and there are at most 4 possibilities to extend a triple to
a quintuple. Hence the number of such quintuples is at most 2.19 · 1029.

(ii-3) With the current bounds on the subcases this is the most relevant case. Therefore,
we took care to treat the occurring factors of 2ω(b) in a more efficient way, by averaging over
it. This estimate gives a number of Diophantine triples which is not too far off from the true
number of Diophantine triples.

If a ≥ 5.16 · 1011, then d > 4 · 5.16 · 1011b2.5 and b < 5.29 · 1025 =: N3.
For a fixed b, the number of Diophantine pairs {a, b} with a < b is less than 2ω(b)+1 by

Lemma 3.4 (1). Thus, the number of Diophantine pairs {a, b} is less than 2
∑N3

b=1 2ω(b). For a
fixed {a, b}, the number of sequences t = tν corresponding to c is less than 2 · 2ω(b)+1 and each
ν satisfies ν ≤ 5. It follows from Lemma 3.3 that the number of Diophantine quintuples is less
than

8
N3

6
(log(N3) + 2)3 · 5 · 4 < 3.24 · 1032. (5.2)

If a < 5.16 · 1011 =: A3, then b < (d/4)1/2.5 < 2.57 · 1030 and r < 1.001
√

51.6 · 105 ·
√
b <

1.153 · 1021 =: N ′3.
Lemma 3.6 implies that the number of Diophantine pairs {a, b} is less than

2N ′3
(
(logA3)

2 + 4 logA3 + 2
)
< 1.931 · 1024.

Since the product of the first 22 primes exceeds 3 · 1030, we have ω(b) ≤ 21. We also have ν ≤ 5.
Hence, the number of Diophantine quintuples is less than

1.931 · 1024 · 4 · 221 · 5 · 4 < 3.24 · 1032. (5.3)

(ii-4) We know by d > 4abc > b2(b/4 + b + b) = 9b3/4 that b < 2.66 · 1025 =: N4. Then,
Lemma 3.1 shows that the number of Diophantine pairs is less than

2

N4∑
b=1

2ω(b) < 2N4(logN4 + 1).

Since c is unique, the number of Diophantine quintuples is less than

2N4(logN4 + 1) · 4 < 1.27 · 1028. (5.4)
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Summing up the right-hand sides of (5.1) to (5.4), we see that the number of Diophantine
quintuples which contain {a, b, c, d} satisfying (ii) in Lemma 4.2 is less than

2.56 · 1031 + 2.19 · 1029 + 3.24 · 1032 + 3.24 · 1032 + 1.27 · 1028 < 6.74 · 1032. (5.5)

(i) By Proposition 4.4 we have b < 6.98 · 109 =: N5. Then, the number of Diophantine pairs
is less than 2

∑N5
b=1 2ω(b). For a fixed {a, b}, the number of sequences t = tν is less than 4 · 2ω(b),

and ν ≤ 9. It follows from Lemma 3.3 that the number of Diophantine quintuples which contain
{a, b, c, d} satisfying (i) in Lemma 4.2 is less than

8 · N5

6
(logN5 + 2)3 · 9 · 4 < 5.03 · 1015. (5.6)

(iii) By Proposition 4.4 we have b < 4.33 · 1023 =: N6. Since c is unique, we see from Lemma
3.1 that the number of Diophantine quintuples which contain {a, b, c, d} satisfying (iii) in Lemma
4.2 is less than

2N6(logN6 + 1) · 4 < 1.92 · 1026. (5.7)

Therefore, we conclude from (5.5), (5.6) and (5.7) that the number of Diophantine quintuples
is less than

6.74 · 1032 + 5.03 · 1015 + 1.92 · 1026 < 6.8 · 1032.

6 Proof of Theorem 1.3

Proof of Theorem 1.3. Assume that {1, b, c, d} is a D(−1)-quadruple with b < c < d. By Propo-
sition 4.1 in [2], we have b < 2.69 · 10110. Thus, the number of D(−1)-pairs {1, b} is less than

r =
√
b− 1 < 1.641 · 1055 =: N.

For each D(−1)-pair {1, b}, the number of sequences t = tm defining the third elements c with
b < c is at most the number of solutions of t2 ≡ −1 (mod b) with 0 < t < b, which is less than
2ω(b) by Lemma 3.4 (2). Since the index m is at most 9 (see Section 5 in [2]) and the number of
extensions of {1, b, c} to {1, b, c, d} with c < d is at most 2 by Theorem 1.1 in [11], we see from
Lemma 3.7 that the number of D(−1)-quadruples is less than

2 · 9
N∑
r=1

2ω(r
2+1) ≤ 18

N∑
r=1

d(r2 + 1)

< 18N
(
(logN)2 + 4 logN + 2

)
< 4.93 · 1060,

which completes the proof of Theorem 1.3.
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