Potenzreihen

Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Definition. Ist (a_k) eine Folge reeller (bzw. komplexer) Zahlen und $x_0 \in \mathbb{R}$ (bzw. $z_0 \in \mathbb{C}$), dann heißt die Reihe $\sum_{k=0}^{\infty} a_k (x - x_0)^k$ (bzw. $\sum_{k=0}^{\infty} a_k (z - z_0)^k$) eine **Potenzreihe** mit **Entwicklungspunkt** x_0 (bzw. z_0).

(Im folgenden verwenden wir die reelle Notation. Die Ergebnisse gelten aber auch sinngemäß im Komplexen. Statt Konvergenzintervalle treten dort dann Konvergenzkreisscheiben auf.)

Sei nun $\sum_{k=0}^{\infty} a_k (x-x_0)^k$ eine Potenzreihe.

Es ist evident, dass die Potenzreihe an der Stelle $x=x_0$ konvergiert.

Nun betrachten wir die Folge $(\sqrt[k]{|a_k|})$. Ist $\limsup_{k\to\infty}\sqrt[k]{|a_k|}=+\infty$, dann hat $(\sqrt[k]{|a_k|})$ eine unbeschränkte Teilfolge und für jedes feste $x\neq x_0$ hat die Folge $(\sqrt[k]{|a_k|}|x-x_0|)$ ebenfalls eine unbeschränkte Teilfolge, und somit kann die Reihe $\sum\limits_{k=0}^{\infty}a_k(x-x_0)^k$ nach dem Wurzelkriterium **nicht** konvergent sein. Wir setzen in diesem Fall R=0.

Ist $\limsup_{k\to\infty} \sqrt[k]{|a_k|} = 0$ und $x \neq x_0$, dann gilt $\sqrt[k]{|a_k|} \leq \frac{1}{2|x-x_0|}$ bzw. $\sqrt[k]{|a_k|}|x-x_0| \leq \frac{1}{2}$ für fast alle k. Nach dem Wurzelkriterium folgt damit die absolute Konvergenz der Reihe $\sum\limits_{k=0}^{\infty} a_k(x-x_0)^k$. Wir setzen in diesem Fall $R=\infty$.

Schließlich sei $0 < \limsup_{k \to \infty} \sqrt[k]{|a_k|} < \infty$. Wir setzen $\frac{1}{R} = \limsup_{k \to \infty} \sqrt[k]{|a_k|}$.

Für ein festes x mit $|x-x_0| < R$ gilt dann $\limsup_{k \to \infty} \sqrt[k]{|a_k|} < \frac{1}{|x-x_0|}$.

Wähle nun ein $\xi \in \mathbb{R}$ mit $\limsup_{k \to \infty} \sqrt[k]{|a_k|} < \xi < \frac{1}{|x-x_0|}$. Dann gilt

$$\sqrt[k]{|a_k|} \le \xi$$
 bzw. $\sqrt[k]{|a_k|}|x - x_0| \le \xi |x - x_0| = q < 1$ für fast alle $k \in \mathbb{N}$.

Nach dem Wurzelkriterium liegt damit die absolute Konvergenz der Reihe $\sum_{k=0}^{\infty} a_k (x-x_0)^k \ \text{vor}.$

Ist
$$|x-x_0|>R$$
, dann ist $\limsup_{k\to\infty}\sqrt[k]{|a_k|}>\frac{1}{|x-x_0|}$ und $\sqrt[k]{|a_k|}\geq\frac{1}{|x-x_0|}$ bzw. $\sqrt[k]{|a_k|}|x-x_0|\geq 1$ für unendlich viele k .

Nach dem Wurzelkriterium liegt somit Divergenz vor.

Zusammenfassung. Setzen wir $\frac{1}{R} = \limsup_{k \to \infty} \sqrt[k]{|a_k|}$, dann gilt für die Reihe $\sum_{k=0}^{\infty} a_k (x - x_0)^k$:

- absolute Konvergenz, falls $|x x_0| < R$
- Divergenz, falls $|x x_0| > R$
- falls $|x-x_0|=R$, dann ist vorderhand keine Aussage möglich. Dieser Fall muß gesondert untersucht werden.

Falls R=0, dann konvergiert die Reihe nur in $x=x_0$. Falls $R=\infty$, dann konvergiert die Reihe für alle $x\in\mathbb{R}$.

Definition.

R heißt der Konvergenzradius der Potenzreihe $\sum_{k=0}^{\infty} a_k (x-x_0)^k$.

Bemerkungen.

(i) Im allgemeinen ist also der Konvergenzbereich einer reellen Potenzreihe ein Intervall um den Entwicklungspunkt x_0 .

Für komplexe Potenzreihen wird entsprechend der Konvergenzbereich im allgemeinen eine Kreisscheibe um den Entwicklungspunkt z_0 sein.

(ii) Ist die Folge $(\sqrt[k]{|a_k|})$ konvergent, dann gilt offenbar $\frac{1}{R} = \lim_{k \to \infty} \sqrt[k]{|a_k|} .$

(iii) Durch analoge Überlegungen (mittels des Quotientenkriteriums) kann gezeigt werden :

Ist die Folge $\left(\left|\frac{a_{k+1}}{a_k}\right|\right)$ konvergent, dann gilt $\frac{1}{R} = \lim_{k \to \infty} \left|\frac{a_{k+1}}{a_k}\right|$.

Beispiele.

1) Betrachte $\sum_{k=1}^{\infty} k^k (x-2)^k$.

Wegen $\limsup_{k\to\infty} |a_k|^{\frac{1}{k}} = \lim_{k\to\infty} k = \infty$ ist R = 0.

2) Betrachte $\sum_{k=1}^{\infty} \frac{3^k}{k} (x+1)^k$.

Wegen $\limsup_{k\to\infty}|a_k|^{\frac{1}{k}}=3\lim_{k\to\infty}\left(\frac{1}{k}\right)^{\frac{1}{k}}=3$ ist $R=\frac{1}{3}$. Die Potenzreihe konvergiert also (absolut) für alle x mit $|x+1|<\frac{1}{3}$, i.e. für alle x mit $-\frac{4}{3}< x<-\frac{2}{3}$.

3) Betrachte $\sum_{k=0}^{\infty} \frac{x^k}{k!}$.

$$\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \left| \frac{\frac{1}{(k+1)!}}{\frac{1}{k!}} \right| = \lim_{k \to \infty} \frac{1}{k+1} = 0 . \text{ Also ist } R = \infty .$$

Wie zuvor erwähnt, konvergieren Potenzreihen in symmetrischen Intervallen (bzw. Kreisscheiben) um einen Punkt $x_0 \in \mathbb{R}$ (bzw. $z_0 \in \mathbb{C}$). Im Hinblick auf gliedweise Integration bzw. Differentiation von Potenzreihen ist die Frage von Interesse, auf welchen Teilmengen der Konvergenzmenge gleichmäßige Konvergenz vorliegt.

Satz. Eine Potenzreihe $\sum_{k=0}^{\infty} a_k (x-x_0)^k$ mit Konvergenzradius R, $0 < R \le \infty$ konvergiert auf jeder kompakten Teilmenge der Konvergenzmenge gleichmäßig.

Beweis.

Zu jeder kompakten Menge $X \subseteq U_R(x_0) = \{x : |x-x_0| < R\}$ gibt es ein r mit 0 < r < R mit $X \subseteq U_r(x_0) \subseteq U_R(x_0)$. Dann ist aber die Reihe $\sum_{k=0}^{\infty} a_k r^k$ gemäß früher absolut konvergent und wegen der auf X gültigen Abschätzung $|a_k(x-x_0)^k| \leq |a_k| r^k$ nach dem Weierstrass Kriterium auf X gleichmäßig konvergent. \square

Satz. Sei $\sum_{k=0}^{\infty} a_k(x-x_0)^k$ eine Potenzreihe mit Konvergenzradius R, $0 < R \le \infty$. Dann gilt für die von der Reihe erzeugte Funktion $A(x) = \sum_{k=0}^{\infty} a_k(x-x_0)^k$:

- 1) A(x) ist stetig auf $U_R(x_0)$,
- 2) A(x) ist auf $U_R(x_0)$ beliebig oft differenzierbar, und es gilt dort für die n-te Ableitung

$$A^{(n)}(x) = \sum_{k=n}^{\infty} a_k k(k-1) \cdots (k-n+1)(x-x_0)^{k-n} = n! \sum_{k=n}^{\infty} {k \choose n} a_k (x-x_0)^{k-n}$$

wobei diese Potenzreihe ebenfalls den Konvergenzradius R besitzt,

3) A(x) ist auf jedem Intervall $[a, b] \subseteq U_R(x_0)$ Riemann-integrierbar und die Potenzreihe darf gliedweise integriert werden, i.e.

$$\int_{a}^{b} A(x)dx = \int_{a}^{b} \left(\sum_{k=0}^{\infty} a_{k}(x - x_{0})^{k} \right) dx = \sum_{k=0}^{\infty} \left(a_{k} \int_{a}^{b} (x - x_{0})^{k} dx \right).$$

Beweis.

zu 1): Sei $x \in U_R(x_0)$. Dann gibt es eine **kompakte** Umgebung U(x) von x mit $U(x) \subseteq U_R(x_0)$. Auf U(x) liegt gleichmäßige Konvergenz

vor und nach einer früheren Aussage ist A(x) damit stetig in x.

zu 2) : Wir zeigen zuerst, dass die Reihe der Ableitungen den gleichen Konvergenzradius R besitzt.

$$\sum_{k=1}^{\infty} k a_k (x - x_0)^{k-1} = \frac{1}{x - x_0} \sum_{k=1}^{\infty} k a_k (x - x_0)^k = \frac{1}{x - x_0} \sum_{k=1}^{\infty} b_k (x - x_0)^k$$

wobei $b_k = ka_k$.

$$\frac{1}{R^*} = \limsup_{k \to \infty} |b_k|^{\frac{1}{k}} = \lim_{k \to \infty} k^{\frac{1}{k}} \limsup_{k \to \infty} |a_k|^{\frac{1}{k}} = \frac{1}{R} , \text{ weil } \lim_{k \to \infty} k^{\frac{1}{k}} = 1 .$$

Die Reihe der Ableitungen konvergiert dann auf jeder kompakten Teilmenge X (insbesondere auf kompakten Umgebungen) von $U_R(x_0)$ gleichmäßig. Da die Potenzreihe selbst z.B. für x_0 konvergiert, ist nach einem früheren Satz die Summenfunktion in jedem $x \in U_R(x_0)$ differenzierbar und die Potenzreihe darf gliedweise differenziert werden.

Mittels vollständiger Induktion ergibt sich der Beweis für die höheren Ableitungen.

zu 3): A(x) ist stetig auf [a,b] und $a_k(x-x_0)^k$ ist Riemann-integrierbar auf [a,b]. Gemäß früher ist dann auch A(x) Riemann-integrierbar auf [a,b] und die Potenzreihe darf gliedweise integriert werden. Der Konvergenzradius der gliedweise integrierten Potenzreihe ist (analog zur gliedweise differenzierten Potenzreihe) wiederum R. \square

Eine weitere wichtige Aussage ist durch folgendes Ergebnis gegeben.

Satz. Sei $\sum_{k=0}^{\infty} a_k(x-x_0)^k$ eine Potenzreihe mit Konvergenzradius R, $0 < R \le \infty$, und bezeichne A(x) die Summenfunktion.

Dann gilt für alle $n \ge 0$, dass $a_n = \frac{A^{(n)}(x_0)}{n!}$, d.h. es ist

$$A(x) = \sum_{k=0}^{\infty} \frac{A^{(k)}(x_0)}{k!} (x - x_0)^k.$$

Beweis. $A^{(n)}(x) = n! \sum_{k=n}^{\infty} {k \choose n} a_k (x-x_0)^{k-n}$. Für $x = x_0$ folgt dann $A^{(n)}(x_0) = n! a_n$. \square

Bemerkungen.

- (i) A(x) ist auf $U_R(x_0)$ bereits durch die Werte auf einer beliebig kleinen Umgebung von x_0 vollständig bestimmt.
- (ii) Potenzreihen erscheinen formal als Polynome "unendlich hohen Grades". Bei Polynomen wissen wir, dass zwei Polynome vom Grad n identisch sind, wenn sie an mindestens n+1 Stellen übereinstimmen. Für zwei Potenzreihen ist es allerdings nicht ausreichend, dass sie nur an unendlich vielen Punkten übereinstimmen, wie das Beispiel der beiden Funktionen $f(x) = \sin(\pi x)$ und $g(x) \equiv 0$ zeigt, die an allen ganzzahligen x übereinstimmen, aber nicht identisch sind.

Satz. (Identitätssatz für Potenzreihen)

Besitzen $A(x) = \sum_{k=0}^{\infty} a_k (x-x_0)^k$ und $B(x) = \sum_{k=0}^{\infty} b_k (x-x_0)^k$ an unendlich vielen von x_0 verschiedenen Stellen x_1, x_2, \ldots , die sich an x_0 häufen, denselben Wert, i.e. $A(x_i) = B(x_i)$, dann gilt $a_k = b_k \quad \forall k$, d.h. A(x) = B(x) auf $X = U_{R_1}(x_0) \cap U_{R_2}(x_0)$.

Bemerkung. Dieser Identitätssatz wird in der Funktionentheorie verallgemeinert und ist dort ein mächtiges Werkzeug zum Beweis vieler Sätze (z.B. die Eindeutigkeit der Fortsetzung von holomorphen Funktionen).