Konvergenz

I. Folgen

Definition. Sei (X, τ) ein topologischer Raum, (x_n) eine Folge in X und $x \in X$.

- (i) (x_n) konvergiert gegen x, wenn in jeder Umgebung von x fast alle Folgenglieder liegen,
- (ii) x ist **Häufungspunkt** von (x_n) , wenn in jeder Umgebung unendlich viele Folgenglieder liegen.

In metrischen Räumen können die Begriffe "abgeschlossene Hülle" und "Stetigkeit" mittels konvergenter Folgen beschrieben werden.

Seien (X,d) und (Y,ρ) metrische Räume, $A\subseteq X$ und $x\in X$. Dann gilt:

- (i) $x \in \overline{A} \iff \exists (a_n) \subseteq A \text{ mit } a_n \to x$.
- (ii) Eine Abbildung $f: X \to Y$ ist genau dann stetig, wenn sie "folgenstetig" ist, d.h. aus $(x_n) \to x$ folgt $f(x_n) \to f(x)$.

In allgemeinen topologischen Räumen sind diese beiden Aussagen i.a. **nicht** erfüllt.

Beispiel. Es gibt eine überabzählbare wohlgeordnete Menge Y, wo jedes Element von Y höchstens abzählbar viele Vorgänger besitzt.

Man nehme eine Wohlordnung "<" von \mathbb{R} . Hat jedes Element

nur abzählbar viele Vorgänger, setze $Y=\mathbb{R}$. Ansonsten wähle man das kleinste Element $z\in\mathbb{R}$, welches überabzählbar viele Vorgänger besitzt. Setze $Y=\{y\in\mathbb{R}:y< z\}$.

Man nehme ein Element $a \notin Y$, setze $X = Y \cup \{a\}$ und erweitere die Ordnung durch $y < a \ \forall \ y \in Y$. Dann ist X ebenfalls eine wohlgeordnete Menge und kann in der Form X = [0,a] geschrieben werden, wobei 0 das kleinste Element bzgl. der Wohlordnung bezeichnet. Nun wird X mit der Ordnungstopologie τ versehen.

Ist (y_n) eine Folge in Y, dann ist $\bigcup_{n \in \mathbb{N}} [0, y_n) \neq Y$ (weil sonst Y abzählbar wäre), also gibt es ein Element $y \in Y$ mit $y_n < y$ für alle $n \in \mathbb{N}$.

Dies bedeutet, dass (klarerweise) $a \in \overline{Y}$, es aber keine Folge aus Y gibt, die gegen a konvergiert.

Betrachtet man die Abbildung $f: X \to \{0, 1\}$ mit f(y) = 0 für alle $y \in Y$ und f(a) = 1, dann ist f folgenstetig, aber nicht stetig.

Seien (X, τ) und (Y, σ) topologische Räume, $A \subseteq X$ und $x \in A$. Offenbar gilt $x \in \overline{A}$, wenn es eine Folge (a_n) aus A gibt mit $a_n \to x$. Ebenso leicht zu sehen ist, dass aus der Stetigkeit einer Abbildung $f: X \to Y$ die Folgenstetigkeit folgt.

Man zeige: Ist (X, τ) darüberhinaus ein A_1 -Raum, dann gelten auch die Umkehrungen,

d.h. $x \in \overline{A} \implies \exists (a_n) \subseteq A \text{ mit } a_n \to x \text{, und ist eine Abbildung}$

 $f:(X,\tau)\to (Y,\sigma)$ folgenstetig, dann ist sie auch stetig.

II. Filter

Die vorherigen Betrachtungen machen eine Verallgemeinerung des Konvergenzbegriffes erforderlich, um die Begriffe "abgeschlossene Hülle" und "Stetigkeit" in Analogie zu den metrischen Räumen beschreiben zu können.

Definition. Sei $X \neq \emptyset$ eine Menge.

- 1) Eine nichtleere Familie \mathcal{F} von Teilmengen von X heißt ein **Filter auf** X, wenn
 - F1) $\emptyset \notin \mathcal{F}$
 - F2) $F_1, F_2 \in \mathcal{F} \Rightarrow F_1 \cap F_2 \in \mathcal{F}$
 - F3) $F \in \mathcal{F}$ und $F \subseteq F' \Rightarrow F' \in \mathcal{F}$
- 2) Eine nichtleere Familie \mathcal{B} von Teilmengen von X heißt eine Filterbasis auf X, wenn
 - FB1) $\emptyset \notin \mathcal{B}$
 - FB2) $B_1, B_2 \in \mathcal{B} \Rightarrow \exists B_3 \in \mathcal{B} \text{ mit } B_3 \subseteq B_1 \cap B_2$

Bemerkungen.

- 1) Jeder Filter ist zugleich auch eine Filterbasis.
- 2) Jeder Filterbasis \mathcal{B} kann ein Filter \mathcal{F} zugeordnet werden durch $\mathcal{F} = \{F \subseteq X : \exists B \in \mathcal{B} \text{ mit } B \subseteq F\}$. \mathcal{F} heißt **der von** \mathcal{B} **erzeugte Filter**. (Man überzeuge sich, dass \mathcal{F} tatsächlich die

Eigenschaften F1)-F3) erfüllt.

3) Im besonderen ist eine nichtleere Familie \mathcal{B} von Teilmengen von X, welche FB1) und die Eigenschaft $B_1, B_2 \in \mathcal{B} \Rightarrow B_1 \cap B_2 \in \mathcal{B}$ erfüllt, eine Filterbasis.

Beispiele.

- 1) Sei X eine Menge und $\emptyset \neq A \subseteq X$. Dann ist $\mathcal{B} = \{A\}$ eine Filterbasis. Der davon erzeugte Filter $\mathcal{F} = \{F \subseteq X : A \subseteq F\}$ heißt der von A erzeugte **Hauptfilter**.
- 2) Sei (X, τ) ein topologischer Raum und $x \in X$. Dann ist $\mathcal{U}(x)$ ein Filter, der sog. **Umgebungsfilter** in x. Des weiteren ist jede Umgebungsbasis in x eine Filterbasis, welche $\mathcal{U}(x)$ erzeugt.
- 3) (Folgen und Filter) Sei X eine Menge und (x_n) eine Folge in X. Für jedes $k \in \mathbb{N}$ heißt $S_k = \{x_n : n \ge k\} \subseteq X$ das **k-te Endstück** von (x_n) .

Offenbar ist $\mathcal{B} = \{S_k : k \in \mathbb{N}\}$ eine Filterbasis auf X, welche den sog. **Elementarfilter** von (x_n) erzeugt, i.e. $\mathcal{F} = \{F \subseteq X : \exists k \in \mathbb{N} \text{ mit } S_k \subseteq F\}.$

Jede Folge hat also einen zugeordneten Elementarfilter.

4) (Bildfilter)

Seien X, Y Mengen und $f: X \to Y$ eine Abbildung. Ist \mathcal{F} ein Filter auf X, dann ist $\{f(F): F \in \mathcal{F}\}$ i.a. zwar kein Filter auf Y, aber eine Filterbasis. Diese wiederum erzeugt den sog. **Bildfilter** $f(\mathcal{F})$ auf Y, i.e. $f(\mathcal{F}) = \{B \subseteq Y : \exists F \in \mathcal{F}\}$

 \mathcal{F} mit $f(F) \subseteq B$.

Sei nun (X, τ) ein topologischer Raum, \mathcal{F} ein Filter auf X und $x \in X$.

Definition.

- 1) \mathcal{F} konvergiert gegen x, $\mathcal{F} \to x$, wenn $\mathcal{U}(x) \subseteq \mathcal{F}$. (D.h. \mathcal{F} ist "feiner" als $\mathcal{U}(x)$, bzw. $\mathcal{U}(x)$ ist "gröber" als \mathcal{F})
- 2) x ist **Häufungspunkt von** \mathcal{F} , $x \in \mathrm{Hp}(\mathcal{F})$, wenn jede Umgebung von x jede Menge $F \in \mathcal{F}$ nichtleer schneidet, also wenn $x \in \overline{F} \ \forall F \in \mathcal{F}$.

Bemerkungen.

- 1) $\operatorname{Hp}(\mathcal{F}) = \bigcap_{F \in \mathcal{F}} \overline{F}$
- 2) $\mathcal{U}(x) \to x$ für alle $x \in X$
- 3) $\mathcal{F} \to x \Rightarrow x \in \mathrm{Hp}(\mathcal{F})$
- 4) Sei (x_n) eine Folge und $x \in X$. Des weiteren sei \mathcal{F} der von (x_n) erzeugte Elementarfilter. Dann gilt:
 - (i) $x \in \text{Hp}(\mathcal{F}) \iff x \text{ ist Häufungspunkt von } (x_n).$
 - (ii) $\mathcal{F} \to x \iff (x_n) \to x$

Einige Anwendungen.

- 1) Sei (X, τ) ein topologischer Raum, $\emptyset \neq A \subseteq X$ und $x \in X$. Folgende Aussagen sind äquivalent:
 - (i) $x \in \overline{A}$,
 - (ii) \exists Filter \mathcal{F} mit $\mathcal{F} \to x$ und $A \in \mathcal{F}$.
- 2) Sei $f:(X,\tau) \to (Y,\sigma)$ eine Abbildung. Dann ist f stetig in $x_0 \in X$ genau dann, wenn für jeden Filter \mathcal{F} auf X mit $\mathcal{F} \to x_0$ dann auch gilt, daß $f(\mathcal{F}) \to f(x_0)$.
- 3) (X, τ) ist ein T_2 -Raum genau dann, wenn jeder Filter gegen höchstens einen Punkt konvergiert.
- 4) (siehe später) Folgende Aussagen sind äquivalent:
 - (i) (X, τ) ist kompakt,
 - (ii) jeder Filter auf X hat einen Häufungspunkt,
 - (iii) jeder Ultrafilter auf X konvergiert.
- 5) (Filter auf Produkträumen) Sei (X_i, τ_i) ein topologischer Raum für alle $i \in I$, und $X = \prod_{i \in I} X_i$ der zugehörige Produktraum. Sei weiters \mathcal{F} ein Filter auf X und $x \in X$.

Satz 13.
$$\mathcal{F} \to x \iff p_i(\mathcal{F}) \to x_i \text{ für alle } i \in I.$$

III. Ultrafilter

Offenbar ist die Menge aller Filter auf einer Menge X partial geord-

net bezüglich der Relation $\mathcal{F}_1 \subseteq \mathcal{F}_2$.

Definition. Ein Filter \mathcal{U} auf X heißt **Ultrafilter**, wenn es keinen Filter \mathcal{F} auf X gibt mit $\mathcal{U} \subseteq \mathcal{F}$ und $\mathcal{U} \neq \mathcal{F}$.

Aus dem Lemma von Zorn folgt, dass es zu jedem Filter \mathcal{F} mindestens einen Ultrafilter \mathcal{U} gibt mit $\mathcal{F} \subseteq \mathcal{U}$. Damit ist die Existenz von Ultrafiltern gesichert.

Es gilt:

- 1) Sei \mathcal{U} ein Filter auf X. \mathcal{U} ist Ultrafilter $\Leftrightarrow \forall A \subseteq X : A \in \mathcal{U}$ oder $X \setminus A \in \mathcal{U}$
- 2) Sei \mathcal{U} ein Ultrafilter auf X. $x \in \mathrm{Hp}(\mathcal{U}) \implies \mathcal{U} \to x$
- 3) Ist \mathcal{U} ein Ultrafilter auf X und $f: X \to Y$ eine Abbildung, dann ist $f(\mathcal{U})$ ein Ultrafilter auf Y.