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Abstract

We consider two rather strong conditions on topological spaces and use them to
characterize strongly compact spaces and semi compact spaces. As a consequence we
obtain that there exist no infinite spaces which are both strongly compact and semi
compact.

1 Introduction

Let (X, τ) be a topological space and let A be a subset of X . We denote the closure of A

(resp. the interior of A) by clA (resp. intA) . A subset S of (X, τ) is called semi–open (resp.

preopen, somewhat preopen) if S ⊆ cl(intS) (resp. S ⊆ int(clS) , int(clS) 6= ∅ ) . These

notions were introduced by Levine[9], Mashhour et al. [10] and Piotrowski [12], respectively.

Piotrowski used the term ”somewhat nearly open” instead of ”somewhat preopen”. A space

(X, τ) is said to be semi compact (resp. strongly compact) if every cover of X by semi–open

(resp. preopen) sets has a finite subcover. Semi compactness was studied by Dorsett [5] , [6]

and [7] , while the concept of strong compactness is due to Mashhour et al. [11] .
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2 Strong Compactness

Definition 1 A space (X, τ) is said to satisfy condition (C1) if every infinite subset of X

has nonempty interior.

The following result is easily established. Its proof is hence omitted.

Proposition 2.1 For a space (X, τ) the following are equivalent:

(1) (X, τ) satisfies (C1) .

(2) For any A ⊆ X , if intA = ∅ then A is finite.

(3) For any A ⊆ X , A \ intA is finite.

(4) For any A ⊆ X , clA \ A is finite.

It is clear that every finite space and every discrete space satisfies (C1) . Our next result

shows that spaces satisfying (C1) are not far away from being discrete.

Theorem 2.2 For a space (X, τ) let IX be the set of isolated points of (X, τ) . Then (X, τ)

satisfies (C1) if and only if X \ IX is finite.

Proof. It is obvious that, if X \ IX is finite then (X, τ) satisfies (C1) . To prove the

converse, let A = X \ IX and suppose that A is infinite. Then A can be represented as a

disjoint union A =
⋃{An : n ∈ N} where each An is infinite. Since (X, τ) satisfies (C1)

there is a point an ∈ intAn for each n ∈ N . If B = {an : n ∈ N} , then B is infinite and

hence there exists an m ∈ N such that am ∈ intB . Clearly intB ∩ intAm = {am} so that

am ∈ IX , contradicting the fact that am ∈ A . 2

Remark 2.3 The previous result has been obtained independently also by Jankovic, Reilly

and Vamanamurthy [8] who used a completely different approach.

Recall that a space (X, τ) is said to be quasi H–closed if every open cover of X has a

finite subfamily the closures of whose members cover X .
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Theorem 2.4 For a space (X, τ) the following are equivalent:

(1) (X, τ) is strongly compact.

(2) (X, τ) is compact and satisfies (C1) .

(3) (X, τ) is quasi H–closed and satisfies (C1) .

Proof. (1) ⇒ (2) : It is obvious that every strongly compact space is compact. Let

A ⊆ X such that intA = ∅ , i.e. X \A is dense. For each x ∈ A , if Sx = (X \A)∪{x} then

Sx is preopen. By assumption, the preopen cover {Sx : x ∈ A has a finite subcover. This

shows that A is finite and (X, τ) satisfies (C1) by Proposition 2.1 .

(2) ⇒ (3) is obvious.

(3) ⇒ (1) : Let {Sα : α ∈ I} be a preopen cover of (X, τ) . Then {int(clSα) : α ∈ I}
is an open cover of (X, τ) . Since (X, τ) is quasi H–closed there is a finite subset I ′ ⊆ I such

that X =
⋃{clSα : α ∈ I ′} . By (C1), clSα \ Sα is finite for each α ∈ I ′ . Hence there

is a finite subset F of X such that X =
⋃{Sα : α ∈ I ′} ∪ F . This shows that (X, τ) is

strongly compact. 2

Corollary 2.5 The 1–point–compactification of any discrete space is strongly compact.

3 Semi Compactness

We now proceed by considering a less restrictive condition on topological spaces.

Definition 2 A space (X, τ) is said to satisfy condition (C2) if every infinite subset is

somewhat preopen.

It is clear that condition (C1) is stronger than condition (C2) . The cofinite topology τ

on an infinite set S provides an example of a space (X, τ) which satisfies (C2) but not (C1)

.

The proof of the following result is straightforward and hence omitted.
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Proposition 3.1 For a space (X, τ) the following are equivalent:

(1) (X, τ) satisfies (C2) .

(2) For any A ⊆ X , if int(clA) = ∅ then A is finite.

(3) For any open set U ⊆ X , clU \ U is finite.

(4) For any A ⊆ X , clA \ int(clA) is finite.

In analogy to the well known ”countable chain condition” in General Topology we say

that space (X, τ) satisfies the ”finite chain condition”, abbreviated FCC, if every disjoint

family of nonempty open sets is finite. Dorsett’s [5] characterization of semi compactness

may then be stated in the following form.

Theorem 3.2 [5] A space (X, τ) is semi compact if and only if it satisfies both (C2) and

FCC.

We are now going to improve Theorem 3.2 . Recall that a space (X, τ) is S–closed [13] if

every semi–open cover of (X, τ) has a finite subfamily the closures of whose members cover

X . Cameron [4] has shown (X, τ) is S–closed if and only if every cover of X by regular closed

subsets has a finite subcover, where a subset S of X is called regular closed if S = cl(intS) .

Proposition 3.3 Every space (X, τ) which satisfies FCC is S–closed.

Proof. Suppose that (X, τ) satisfies FCC and there is a regular closed cover {Fα :

α ∈ I} of (X, τ) having no finite subcover. By induction we shall construct a sequence

(αn) ⊆ I and a disjoint family {Un : n ∈ N} of nonempty open sets such that Un ⊆ Fαn

and Un ∩ (Fα1 ∪ ...Fαn−1) = ∅ for each n ∈ N . Pick α1 ∈ I such that Fα1 is nonempty and

let U1 = intFα1 . Given {αi : 1 ≤ i ≤ n} and nonempty disjoint open sets {Ui : 1 ≤
i ≤ n} such that Ui ⊆ Fαi

and Ui ∩ (Fα1 ∪ ...Fαi−1
) = ∅ for each 1 < i ≤ n , we observe

that there is an αn+1 ∈ I such that (X \ (Fα1 ∪ ... ∪ Fαn)) ∩ intFαn+1 is nonempty. Let

Un+1 = (X \ (Fα1 ∪ ... ∪ Fαn)) ∩ intFαn+1 . This produces an infinite family of nonempty

disjoint open sets contradicting the fact that (X, τ) satisfies FCC. 2
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Remark 3.4 The converse of Proposition 3.3 is false. The Stone Cech compactification βN
of N is S–closed [13] and { {n} : n ∈ N} is an infinite family of nonempty disjoint open sets.

Thus βN does not satisfy FCC .

Question. Under what circumstances does an S–closed space satisfy FCC ?

In view of Proposition 3.3 the following result is an improvement of Theorem 3.2 .

Theorem 3.5 A topological space (X, τ) is semi compact if and only if it is S–closed and

satisfies (C2) .

Proof. The ’only if’ part follows from Theorem 3.2 and Proposition 3.3 . Assume that

(X, τ) is S–closed and satisfies (C2) , and let {Sα : α ∈ I} be a semi–open cover of (X, τ)

. By the S–closedness there is a finite subset I ′ ⊆ I such that X =
⋃{clSα : α ∈ I ′}

. Since (X, τ) satisfies (C2) and clSα \ Sα = cl(intSα) \ Sα ⊆ cl(intSα) \ intSα , we have

that clSα \ Sα is finite for each α ∈ I ′ . Hence there is a finite subset F ⊆ X such that

X =
⋃{Sα : α ∈ I ′} ∪ F . This shows that (X, τ) is semi compact. 2

4 Concluding Remark

Following Abd El-Monsef et al. [1] , a subset S of a space (X, τ) is called β–open if S ⊆
cl(int(clS)) . β–open sets have been called semi–preopen by Andrijevic [3] . A space (X, τ)

is said to be β–compact [2] if every cover of (X, τ) by β–open sets has a finite subcover.

Since preopen sets and semi–open sets are clearly β–open, every β–compact space has to be

strongly compact and semi–compact. Now, if (X, τ) is an infinite strongly compact space,

the set IX of isolated points of (X, τ) is finite by Theorem 2.2. It follows that (X, τ) does not

satisfy FCC and so is not semi compact by Theorem 3.2 . Consequently, infinite β–compact

spaces do not exist.
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