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Abstract

We extend the average case analysis of numerical integration in the
sense of Traub and Woźniakowski to homogeneous spaces. Various exam-
ples are described and the connections to minimal energy point sets are
outlined.
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1 Introduction

Persi Diaconis [5] considered numerical integration of real valued functions on
the unit interval [0, 1] from a Bayesian point of view. He surveyed on methods
how to get information on the integral, provided that the prior distribution
of the functions is known (for instance Brownian motion). He also mentions
several applications such as random surfaces (as used in tomography) and
statistical geodesy. In particular, Lauritzen [20, 21, 22] used such methods and
ideas to estimate the gravity potential of the earth from the knowledge of a
certain number of measurements.

From a different point of view numerical integration of functions on the s-
dimensional unit cube [0, 1]s was analyzed by Traub, Wasilkowski, and Woźnia-
kowski (cf. [33, 32, 34]). These authors approximated the integral by the
arithmetic mean of N function values. They equipped the space of continuous
functions on [0, 1]s with Wiener measure and investigated the average case error
in the sense of quadratic mean. Furthermore, they proved that the average case
complexity is optimal, provided that the integration points have L2-discrepancy
of optimal order of magnitude.

Advances in Multivariate Approximation; W. Haußmann, K. Jetter and M. Reimer (eds.)

Mathematical Research, Vol. XXX, pp. 1–16, ISBN Y–YY–YYYYYY–Y

oc Wiley-VCH 1999



2 Peter J. Grabner, Pierre Liardet, & Robert F. Tichy

We extend these ideas to functions defined on homogeneous spaces X. In
section 2 we construct a Gaussian stochastic process on X by prescribing the
covariance function. Of course, a very interesting special case is the sphere,
and in this case such processes have been investigated in [2, 3]. For similar
processes in the more general setting of hypergroups we refer to [1].

In section 3 we outline several examples and related concepts of discrepancy.
We start with a discontinuous process defined via the Walsh orthogonal system.
Then we introduce the diaphony, the L2-discrepancy, and various kinds of
geodesic discrepancies and relate them to suitably defined Gaussian processes.
For a more detailed study of different notions of discrepancies on spheres we
refer to our earlier paper [11].

In the final section 4 we outline an extension of the Traub Woźniakowski ap-
proach to numerical integration of functions on homogeneous spaces and its
connection to minimal energy point sets.

2 Construction of the Process

Let G be a compact group acting transitively and continuously on a met-
ric space X and µ0 the normalized Haar measure on G. Then X can be
topologically identified with the quotient G/K of G modulo the stabilizer
K ⊆ G of a point. A natural probability measure on X ∼= G/K is given
by µ(M) = µ0({g ∈ G | gK ∈M}) (cf. [15, 6, 27]).
For any ρ ∈ G∗ (the dual of G modulo equivalence of representations) let

m
(ρ)
ij (g) = (U (ρ)(g)aj , ai), i, j = 1, . . . , nρ

be the coordinate functions of the irreducible unitary representation U (ρ) in the
finite dimensional Hilbert space generated by an orthonormal system a1, . . . , anρ .
We will denote the trivial representation by ρ0. This system can be chosen such
that for a certain dρ ≤ nρ

Sp({m(ρ)
ij | i, j = 1, . . . , nρ}) ∩ L2(G/K) = Sp({m(ρ)

ij | 1 ≤ i ≤ nρ, 1 ≤ j ≤ dρ}),
where Sp(S) denotes the linear space generated by S. By the theorem of Peter-

Weyl and well-known algebraic tools it can be deduced that for Jρ = Sp({m(ρ)
ij |

i = 1, . . . , nρ, j = 1, . . . ,mρ})

L2(G/K) =
̂⊕

ρ∈G∗

Jρ (Hilbert orthogonal sum).



Average Case Analysis . . . 3

By reordering orthonormal bases of the Jρ’s we obtain a complete orthonormal
system ψn,ρ(x) (ρ ∈ G∗ n = 1, . . . , dρ = dim(Jρ)) of continuous real functions.

Define now a symmetric kernel function by

K(x, y) =
∑

ρ∈G∗

aρ

mρ
∑

n=1

ψn,ρ(x)ψn,ρ(y) (2.1)

with strictly positive coefficients aρ and

∑

ρ∈G∗

aρmρ = 1.

Furthermore, K(x, y) = 1, if and only if x = y, the series (2.1) is uniformly
convergent and the kernel function is positive definite. The term “positive
definite” refers to the fact that

M
∑

i,j=1

K(xi, xj)uiuj ≥ 0

for all choices of xi ∈ X and ui ∈ R, i = 1, . . . ,M . This is the generalization
of the usual concept of positive definite functions to harmonic spaces (cf. [15],
[30]). If K acts transitively on every geodesic sphere around the point stable
under K, then the kernel can be written as function of the distance d(x, y),
which would give the notion of positive definiteness studied in [29] and [30].
This will always be the case in our examples.

Remark 1 The function d(x, y) =
√

1−K(x, y) defines a G-invariant metric
on X. Conversely, for an arbitrarily given metric d the function 1 − d(x, y)2

can be considered, and it is a natural question, whether it is positively definite.
The identity

∣

∣

∣

∣

∣

∣

1 1− d(x, y)2 1− d(x, z)2

1− d(x, y)2 1 1− d(y, z)2

1− d(x, z)2 1− d(y, z)2 1

∣

∣

∣

∣

∣

∣

=

(d(x, y) + d(y, z) − d(x, z))(d(x, z) + d(z, y) − d(x, y))×
(d(x, z) + d(x, y)− d(y, z))(d(x, y) + d(x, z) + d(y, z))

−2d(x, y)2d(x, z)2d(y, z)2

shows that in the case of a geodesic metric (take d(x, z) = d(x, y) + d(y, z))
there is no positive definiteness of the function 1− d(x, y)2.
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Definition 1 Let An,ρ, ρ ∈ G∗, n = 1, . . . ,mρ be independent normal random
variables with mean 0 and variance aρ. Define the process

Y (x) =
∑

ρ∈G∗

mρ
∑

n=1

Aρ,nψn,ρ(x). (2.2)

Equip now the space of continuous functions C(X) with the Lévy measure λ
defined by this process.

Remark 2 The series (2.2) is a.s. uniformly convergent by Kolmogorov’s
three series theorem.

Remark 3 The process Y (x) could be defined alternatively as a Gaussian pro-
cess with mean EY (x) = 0 and covariance function EY (x)Y (y) = K(x, y).
This equivalent definition would avoid Fourier series.

We are now ready to compute the integral of the square of the integration error
with respect to λ.

Proposition 1

∫

C(X)

(

1

N

N
∑

n=1

y(xn)−
∫

X

y(x) dµ(x)

)2

dλ(y) = (2.3)

∑

ρ∈G∗\{ρ0}

aρ

mρ
∑

m=1

(

1

N

N
∑

n=1

ψm,ρ(xn)

)2

. (2.4)

Proof: Observe first that
∫

X
Y (x) dµ(x) = Aρ0,1. Thus we can rewrite the first

integral as
∫

C(X)





1

N

N
∑

n=1

∑

ρ6=ρ0

mρ
∑

m=1

Am,ρψm,ρ(xn)





2

λ(dY ).

Interchanging the orders of summation and using the independence of the
Am,ρ’s gives the result.

3 Examples and Geodesic L
2-Discrepancy

We will now present a list of examples which will show that several concepts
of diaphony and L2-discrepancy fit into the general approach decribed above.
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3.1 Example 1, Dyadic Diaphony

In [14] a concept of diaphony based on the orthonormal system of Walsh-
functions on the unit cube [0, 1)s is introduced. As general references for Walsh
functions we refer to [10] and [28].

For x =
∑∞

k=0
εk

2k+1 given by its binary digital expansion (in case of ambiguity

we take the finite version of the digital expansion) and m =
∑K

k=0 δk2
k we

define the m-th Walsh function by

wm(x) = (−1)
∑K

k=0 εkδk . (3.1)

For x ∈ [0, 1)s and m ∈ Ns we define

wm(x) =

s
∏

j=1

wmj
(xj).

The dyadic diaphony of a sequence ω = (x1,x2, . . .) is then given by

FN (ω) =





1

3s − 1

∑

m 6=0

ρ(m)|SN (wm, ω)|2




1
2

, (3.2)

where ρ(m) =
∏s

j=1 ρ(mj) with

ρ(m) =

{

2−2g for 2g ≤ m < 2g+1, g ∈ N

1 for m = 0
(3.3)

and

SN (wm, ω) =
1

N

N
∑

n=1

wm(xn)

denotes the Weyl sum with respect to the Walsh functions.

At first sight this concept does not fit into the scheme introduced above, since
the Walsh functions are not the group characters on [0, 1)s. But there is the
bijection

ξ :

∞
∑

k=0

εk
2k+1

∈ [0, 1) 7→ (ε0, ε1, . . .) ∈ FN
2

between [0, 1) and a subset of measure 1 of the group FN
2 (the group of infinite

sequences of 0, 1 equipped with the product topology and the Haar measure).
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This map is also continuous except for the dyadic rational points. Clearly the
component-wise map between s-tuples enjoys the same properties. [0, 1) also
inherits an addition law from FN

2 , which is just x+̇y = ξ−1(ξ(x)+ξ(y)). Again,
this addition will be performed component-wise on the s-tuples.

Since the function

ϕ(x) =

{

3− 3 · 21+⌊log2 x⌋ for x ∈ (0, 1)
3 for x = 0

(3.4)

has the Walsh expansion

ϕ(x) =

∞
∑

k=0

ρ(k)wk(x)

we can write (under an additional condition on the values of the xn)

F 2
N (ω) =

1

3s − 1

1

N2

N
∑

n,m=1

φ(xn+̇xm) (3.5)

with

φ(x) =
s
∏

j=1

ϕ(xj)− 1.

Notice, that wk(x+̇y) = wk(x)wk(y), if either one of x and y is a dyadic rational
or x+̇y is not a dyadic rational (this describes the condition indicated above).

With the restriction on the choice of the values xn formula (3.5) fits into the
general theory developed above. We will now derive some properties of the
stochastic process behind this type of diaphony. The process is given as the
Gaussian process with covariance function

EX(x)X(y) = φ(x+̇y), (3.6)

which is equivalent to

E(X(x)−X(y))2 = 2(3s − 1)− 2φ(x+̇y) ≤ 2 · 3s
s
∑

j=1

ϕ(xj+̇yj). (3.7)

Equation (3.7) implies that the process is continuous whenever x → y implies
x+̇y → 0. This is the case exactly when y has no dyadic rational entry. It
remains to consider the case, when one of the components of the vector y is
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a dyadic rational. Then it follows from the right continuity of the function φ
that x+̇y → 0, if the components of x with the same indices as the dyadic
rational components of y converge monotonically decreasing to this value. It
follows from the fact that the Walsh functions only have jump discontinuities,
that the limits in the other 2s − 1 orthants exist. For these limits to be the
same, the Fourier coefficients would have to satisfy linear relations, which are
certainly only satisfied with probability 0. Thus we have proved

Proposition 2 The Gaussian process X(x), x ∈ [0, 1)s given by EX(x) = 0
and (3.6) gives the dyadic diaphony as defined in [14] and has trajectories
which are continuous in every point x with no dyadic rational component. In
all points with at least one dyadic rational component the limits in the different
orthants exist but are different with probability 1, if a rational component is
approached from two different directions.

Remark 4 Similar results could be derived for arbitrary Cantor-type digital
expansions and the characters of A-adic numbers as defined in [15]. Espe-
cially, there is a generalization of the above results to arbitrary q-adic digital
expansions.

3.2 Example 2, Euclidian L
2-Discrepancy

It was first observed by O. Strauch [31] that the usual L2-discrepancy on the
interval can be written as a Wiener integral

1
∫

0

(

1

N

N
∑

n=1

χ[0,x)(xn)− x

)2

dx = 2

∫

(

1

N

N
∑

n=1

f(xn)−
∫ 1

0
f(x) dx

)2

df,

where the second integral is extended over all continuous functions on [0, 1]
with f(0) = 0.

We give an alternative interpretation of L2-discrepancy which is based on a
process with periodic trajectories. The corresponding diaphony can be written
as

6

π2

∞
∑

k=1

1

k2

∣

∣

∣

∣

∣

1

N

N
∑

n=1

e2πikxn

∣

∣

∣

∣

∣

2

=
6

π2

∞
∑

k=1

1

k2





∣

∣

∣

∣

∣

1

N

N
∑

n=1

sin(2πkxn)

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

1

N

N
∑

n=1

cos(2πkxn)

∣

∣

∣

∣

∣

2


.
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This yields the corresponding kernel function

K(x, y) =
6

π2

∞
∑

k=1

1

k2
cos(2πk(x− y))

= 6

(

‖x− y‖ − 1

2

)2

− 1

2
,

where ‖x − y‖ denotes the chordal distance on the circle R/Z: ‖x − y‖ =
min
n∈Z

|x− y − n|. This definition of the process is equivalent to

E (X(x) −X(y))2 = 12‖x− y‖ (1− ‖x− y‖) ,
which implies that the trajectories are continuous functions.

Remark 5 Note that the simpler kernel function K(x, y) = 1 − α‖x − y‖
(with 0 < α < 4 for positive definiteness) would give trajectories X(x) with the
unwanted property that X(x) +X(x+ 1

2) = const. This is a consequence of

E

(

X(x)−X(x+
1

2
)−X(y) +X(y +

1

2
)

)2

= 2α

(

‖x− y‖+ ‖x− y +
1

2
‖−1

)

,

which vanishes for geometric reasons.

The computations above immediately generalize to the s-dimensional torus.
Here the kernel function corresponding to the usual L2-discrepancy is given by

Ks(x,y) =
1

2s − 1





s
∏

j=1

(

6

(

‖xj − yj‖ −
1

2

)2

+
1

2

)

− 1





=
1

2s − 1





s
∏

j=1

(K(xj , yj) + 1)− 1



 .

We once again have continuous periodic trajectories.

Remark 6 It is also known that the discrepancy function

DN (x, xn) =
1√
N

(

N
∑

n=1

χ[0,x)(xn)− x

)

behaves like a trajectory of the Brownian bridge as N → ∞. This yields to
a new proof of Kolmogorov’s theorem (cf. [16]) on the distribution of the dis-
crepancy (cf. [7, 8]). It is possible to use this fact to study the distribution of
L2-discrepancy of sequences (cf. [12]).
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3.3 Example 3, Geodesic L
2-Discrepancy

Since X is supposed to be compact and metrizable with G-invariant metric
d : X ×X → [0, R] it is natural to define a discrepancy by

DG
N (xn) =

∫

X

R
∫

0

(

1

N

N
∑

n=1

χB(x,r)(xn)− µ(B(x, r))

)2

dr dµ(x),

where R denotes the diameter of X. Expanding and integrating term by term
yields

DG
N (xn) =

1

N2

∑

m,n=1

∫

X

R
∫

0

χB(xm,r)(x)χB(xn,r)(x) dr dµ(x)

− 2

N

N
∑

n=1

∫

X

R
∫

0

χB(xn,r)(x)µ(B(x, r)) dr dµ(x) +

∫

X

R
∫

0

µ(B(x, r))2 dr dµ(x)

=
1

N2

N
∑

m,n=1

R
∫

1
2
d(xm,xn)

µ(B(xm, r) ∩B(xn, r)) dr −
R
∫

0

µ(B(·, r))2 dr. (3.8)

We take the function

K(x, y) = f(d(x, y)) =

R
∫

1
2
d(x,y)

µ(B(x, r)∩B(y, r)) dr−
∫ R

0
µ(B(·, r))2 dr (3.9)

as the kernel function.

As a first special case let us consider the circle R/Z. Then we have by (3.8)

DG
N (xn) =

∫ 1

0

∫ 1
2

0

(

1

N

N
∑

n=1

χ(x−r,x+r)(xn)− 2r

)2

dr dx

=
1

N2

N
∑

m,n=1

(

∫ 1
2
(1−‖xm−xn‖)

1
2
‖xm−xn‖

(2r − ‖xm − xn‖) dr +

∫ 1
2

1
2
(1−‖xm−xn‖)

(4r − 1) dr

)

− 1

6
,



10 Peter J. Grabner, Pierre Liardet, & Robert F. Tichy

since

1
2π

∫ 2π

0
χ(xm−r,xm+r)(x)χ(xn−r,xn+r)(x) dx

=























0 if r ≤ 1
2‖xm − xn‖

2r − ‖xm − xn‖ if 1
2‖xm − xn‖ < r
≤ 1

2 − 1
2‖xm − xn‖

4r − 1 if r > 1
2 − 1

2‖xm − xn‖.

Computing the remaining integrals and collecting terms yields

DG
N (xn) =

1

N2

N
∑

m,n=1

(

1

6
− 1

2
‖xm − xn‖+

1

2
‖xm − xn‖2

)

. (3.10)

The next special case which will be considered is the sphere S2. Here we have
to compute the kernel function

K(x,y) =

π
∫

1
2
arccos〈x,y〉

µ (B(x, ϕ) ∩B(y, ϕ)) dϕ− 1

4

∫ π

0
(1− cosϕ)2 dϕ. (3.11)

In order to compute the normalized surface measure of B(x, ϕ) ∩ B(y, ϕ),
we express the characteristic function of the cap B(u, ϕ) by its Fourier series
(cf. [23, 24])

χB(u,ϕ)(x) =
1− cosϕ

2
+

∞
∑

n=1

(Pn+1(cosϕ)− Pn−1(cosϕ))

n
∑

k=−n

Knk(u)Knk(x).

Pn denotes the n-th Legendre polynomial. Integrating χB(x,ϕ)(u)χB(y,ϕ)(u)
we obtain

µ (B(x, ϕ)∩B(y, ϕ))=
(1−cosϕ)2

4
+

∞
∑

n=1

(Pn+1(cosϕ)−Pn−1(cosϕ))
2

2n+ 1
Pn(〈x,y〉).

Inserting this into (3.11) and integrating with respect to ϕ yields

K(x,y) =

∞
∑

n=1

anPn (〈x,y〉) (3.12)
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with

an = 16−n

(

1

16

n+1
∑

m=0

(

2m

m

)2(2n+ 2− 2m

n+ 1−m

)2

+16

n−1
∑

m=0

(

2m

m

)2(2n− 2− 2m

n− 1−m

)2

− 2
n
∑

m=1

(

2m

m

)(

2m− 2

m− 1

)(

2n + 2− 2m

n+ 1−m

)(

2n− 2m

n−m

)

)

,

where we have used the Fourier expansion of Legendre polynomials (cf. [23],
p. 229). Thus we have for the geodesic discrepancy on S2

DG
N (xn) =

1

N2

N
∑

i,j=1

K(xi,xj),

where K is given by the Fourier expansion (3.12).

In the case of the sphere one could obtain a more explicit formula for the
L2-discrepancy by replacing the measure dr by sin r dr, which amounts to a
change of the metric; this new metric is no more geodesic. This yields as above
the Fourier coefficient of the kernel

an =
2

(2n+ 3)(2n − 1)
,

which leads to the explicit expression for the kernel

K(x,y) =
2

3
−
√

1− 〈x,y〉
2

,

where we have used [23] p. 238 for λ = 1
2 . The expression

√

1−〈x,y〉
2 is clearly

half the Euclidean distance between the points x and y in R3. We obtain for
the discrepancy with respect to this new metric

D̃G
N (xn) =

1

N2

N
∑

i,j=1

(

2

3
−
√

1− 〈xi,xj〉
2

)

.

4 Average Case Analysis

In this final section we outline Woźniakowski’s approach of the average case
analysis of numerical integration. In [34] the author considered real valued



12 Peter J. Grabner, Pierre Liardet, & Robert F. Tichy

functions on the s-dimensional unit cube and the classical Wiener measure; for
further surveys on this theory we refer to [33, 32, 9].

Here we will extend the basic ideas of this approach to numerical integration of
real valued functions on homogeneous spaces. Let f be a continuous real-valued
function on the homogeneous space X ∼= G/K and set

I(f) =

∫

X

f(x) dµ(x), (4.1)

with the natural probability measure µ on X associated to the Haar measure
on G. We approximate I(f) by the arithmetic mean

IN (f) =
1

N

N
∑

n=1

f(xn) (4.2)

extended over the integration points xn ∈ X.

Usually integration algorithms with low costs are desirable. In this context the
costs would depend on computation time and the approximation error. In the
case of the approximation of I(f) by IN (f) the cost cost(IN ) is proportional
to N , the number of function evaluations. The average error of numerical
integration with respect to the Lévy measure λ as defined in section 2 is given
by

Eavg(IN ) =

(

∫

C(X)
(I(f)− IN (f))2 λ(df)

) 1
2

. (4.3)

The average case ε-complexity is given as the minimal cost of all algorithms
with average error ≤ ε:

compavg(ε,C(X)) = inf{cost(IN) | Eavg(IN) ≤ ε}. (4.4)

By Proposition 1 we have

Eavg(IN ) = FA
N (xn), (4.5)

where

FA
N (xn) =





∑

ρ∈G∗\{ρ0}

aρ

mρ
∑

m=1

(

1

N

N
∑

n=1

ψm,ρ(xn)

)2




1
2

is the diaphony of the point set xn with respect to the coefficients A = (aρ).
The classical notion of diaphony was introduced by Zinterhof [35] in the case
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of the s-dimensional unit cube (see also [9]). In this case the coefficients are
given by

a(h) =
1

∏s
k=1max(1, |hk |)

.

As it is shown in section 3 in many important cases the diaphony can be
expressed in terms of suitably chosen concepts of L2-discrepancies, such as the
classical discrepancy on [0, 1)s (cf. [19, 9]) or the geodesic discrepancy on the
sphere.

In order to establish a bound for the average case complexity of numerical inte-
gration we need suitable point sets of small diaphony. Note that the diaphony
can be interpreted as an energy functional.

Definition 2 A set zn ∈ X is called a minimal energy set on X, if the function
FA
N (xn) attains its minimal value in the point (x1, . . . , xN ) = (z1, . . . , zN ). The

minimal value is denoted by Φ(N).

In the classical case of the s-dimensional unit cube Φ(N) = O( log
s−1
2 N
N

); this
value is attained for instance for the Hammersley point set. In the case of the
sphere various authors such as Kuijlaars, Rakhmanov, Saff, Zhou and others
considered minimal energy problems for different kinds of functionals (cf. [17,
18, 25, 26]). In the spherical case explicit constructions for the point sets are
presently not known. In [13] spherical designs were shown to be minimal energy
point sets for certain functionals. (Just recall that a spherical t-design is a set
of integration points giving exact integration for polynomials up to order t; for
more details, see [4]).

Thus the problem of estimating the average case complexity of numerical in-
tegration is reduced to finding the minimal energy point configuration for the
corresponding diaphony. In particular, the average case ε-complexity is given
by the smallest N such that Φ(N) ≤ ε, provided that Φ is decreasing.

Acknowledgement. The authors are indebted to Persi Diaconis for pointing
out the references [20, 21, 22].
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the sphere. East J. Approx., 1:111–123, 1995.

[4] P. Delsarte, J. M. Goethals, and J. J. Seidel. Spherical codes and designs.
Geometriae Dedicata, 6:363–388, 1977.

[5] P. Diaconis. Bayesian numerical analysis. In S.S. Gupta and J.O. Berger,
editors, Statistical Decision Theory and Related Topics IV, Papers from
the 4th Purdue symposium on statistical decision theory, West Lafayette,
IN, pages 163–175, Berlin, New York, 1988. Springer.
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