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SPATIAL EQUIDISTRIBUTION OF BINOMIAL

COEFFICIENTS MODULO PRIME POWERS

Guy Barat — Peter J. Grabner
†

Dedicated to the memory of Pierre Liardet

1. Introduction and Results

Binomial coefficients and their number theoretic properties are the subject of a vast num-
ber of investigations. For instance, divisibility properties have been studied by D. Singmas-
ter [11], who proved that for any integer m almost all binomial coefficients are divisible by
m in the following sense

lim
N→∞

2

N(N + 1)
#

{

k, n ; 0 ≤ k ≤ n < N ∧m |
(

n

k

)}

= 1.

After this it is natural to ask what happens for the remaining set of density 0, or how the
binomial coefficients behave after dividing out the highest possible power of m. For prime
p, the first question has been answered independently in [2] and [5], namely the binomial
coefficients not divisible by p are evenly distributed in the prime residue classes modulo p

lim
N→∞

#
{

k, n ; 0 ≤ k ≤ n < N ∧
(

n
k

)

≡ a (mod p)
}

#
{

k, n ; 0 ≤ k ≤ n < N ∧
(

n
k

)

6≡ 0 (mod p)
} =

1

p− 1
for (a, p) = 1.

The methods used in these two papers are rather different: in [2] multiplicative characters
are used, whereas in [5] polynomial congruences over finite fields are applied. Both methods

are based on É. Lucas’ [10] congruence
(

n

k

)

≡
(

n0

k0

)(

n1

k1

)

· · ·
(

nL

kL

)

(mod p),

where n =
∑L

ℓ=0 nℓp
ℓ and k =

∑L
ℓ=0 kℓp

ℓ are the respective p-adic digital expansions of n
and k (with possible leading zeroes in the expansion of k). The result was extended to
prime powers in [1] using a generalisation of Lucas’ congruence due to A. Granville [7], see
Theorem 3. The second question was addressed in the same paper, where it was shown
that the p-free parts of the binomial coefficients are uniformly distributed in Z

∗
p (p-adic
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integers). Notice that the p-free part of an integer n is given by n(p) = np−vp(n), where vp
denotes the p-adic valuation. The result reads as
(1)

lim
N→∞

2

N(N + 1)
#

{

k, n ; 0 ≤ k ≤ n < N ∧
(

n

k

)

(p)

≡ a (mod ps)

}

=
1

φ(ps)
=

1

ps−1(p− 1)

for all s ∈ N and all a not divisible by p; φ denotes Euler’s totient as usual.
Furthermore, the number of binomial coefficients up to row N which have p-adic valu-

ation j, has been studied by L. Carlitz [3]. This is based on E. E. Kummer’s result [9],
which states that the p-valuation of

(

n
k

)

equals the number of carries in the subtraction
n − k performed in base p. In [1] Carlitz’ result could be refined to a precise asymptotic
formula; recently L. Spiegelhofer and M. Wallner [12] found expressions for

#

{

k, n ; 0 ≤ k ≤ n ∧ vp

((

n

k

))

= j

}

in terms of the numbers of certain blocks occurring in the digital expansion of n.
Also recently, F. Greinecker [8] could prove that binomial coefficients, Stirling numbers,

and more generally number schemes satisfying generalisations of Lucas’ congruence are
spatially uniformly distributed modulo p in a sense that we will make precise below.

The present paper exhibits detailed properties of the distribution of binomial coefficients
in residue classes modulo prime powers in the respects introduced above.

The first theorem states that p-free parts of
(

n
k

)

are uniformly distributed in residue
classes modulo ps and simultaneously spatially with respect to two-dimensional Lebesgue
measure λ2 (restricted to the triangle {(x, y) ∈ R

2 ; 0 ≤ x ≤ y ≤ 1} and normalised).

Theorem 1. Let p be a prime, s ≥ 1, and (a, p) = 1. Then for any λ2-continuity set A
we have

lim
m→∞

2

pm(pm + 1)
#

{

k, n ; 0 ≤ k ≤ n < pm ∧
(

n

k

)

(p)

≡ a (mod ps) ∧ (k, n)p−m ∈ A

}

(2)

=
λ2(A)

φ(ps)
.

Let µ be the
log p(p+1)

2

log p
-dimensional Hausdorff measure restricted to the “p-adic Sierpiński

gasket” – the attractor of an iterated function system given in [13] and described below.
The second theorem states that for given j the binomial coefficients with prescribed p-
valuation equal to j exhibit a similar behaviour as well; their p-free parts are uniformly
distributed modulo ps, whereas they are spatially uniformly distributed with respect to µ.

Theorem 2. Let p be a prime, s, j ≥ 1, and (a, p) = 1. Then for any µ-continuity set A
we have
(3)

lim
m→∞

#
{

k, n ; 0 ≤ k ≤ n < pm ∧ pj‖
(

n
k

)

∧ p−j
(

n
k

)

≡ a (mod ps) ∧ (k, n)p−m ∈ A
}

#
{

0 ≤ k ≤ n < pm ; pj‖
(

n
k

)} =
µ(A)

φ(ps)
.
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Remark 1. Notice that Theorem 1 implies (1) choosing A = {(x, y) ; 0 ≤ x ≤ y ≤
Np−⌊log

p
N⌋}. Similarly, Theorem 2 implies [1, Theorem 6] (except for the error term) with

the same choice of A.

2. Proofs

The proofs will make use of exponential sums involving additive characters on R
2 and

multiplicative characters on Z/psZ. As usual in this context, we write e(t) = e2πit.

In the sequel we will use the notation (n!)p for the product of all integers less than or
equal to n, which are not divisible by p. Since the subscript p will only occur with factorials
this should not cause any confusion. With the help of this notation we can formulate the
following theorem due to A. Granville [7]. For an earlier version of this congruence we refer
to [4].

Theorem 3. Suppose that a prime power ps and positive integers n = m + r are given.
Write n = n0 + n1p + · · · + ndp

d in base p, and let Nj be the least positive residue of
[n/pj ] mod ps for each j ≥ 0 (so that Nj = nj + nj+1p+ · · ·+ nj+s−1p

s−1); also make the
corresponding definitions for mj ,Mj , rj, Rj. Let ej be the number of ‘carries’, when adding
m and r in base p, on or beyond the j-th digit. In particular, we have pe0‖

(

n
m

)

. Then

(4)
1

pe0

(

n

m

)

≡ (±1)es−1

(

(N0!)p
(M0!)p(R0!)p

)(

(N1!)p
(M1!)p(R1!)p

)

. . .

(

(Nd!)p
(Md!)p(Rd!)p

)

mod ps,

where (±1) is (−1) except if p = 2 and s ≥ 3.

Preliminary results

We will make use of two technical Lemmas.

The first Lemma is [6, Lemma 5] (with 2 replaced by p).

Lemma 1. Let B(t) be a matrix function mapping vectors t ∈ R
d to square matrices

satisfying

‖B(t)− B‖ ≤ C‖t‖ for ‖t‖ ≤ T,(5)

|[B(t)]i,j| ≤ [B]i,j for all i, j(6)

for some C, T > 0, some non-negative matrix B, and the matrix norm ‖ · ‖ induced by the
maximum norm on the vector space. Assume that B has 1 as simple dominating eigenvalue.
Then the sequence of matrices

PK(t) = B(p−Kt)B(p−(K−1)t) · · ·B(p−1t)

converges to a limit P (t) for all t; P (t) is continuous at t = 0.

In the sequel ‖ · ‖ will always denote the matrix norm induced by the maximum norm.
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Remark 2. It is not stated in [6, Lemma 5] but immediately follows from the proof that
if B(t) depends continuously on t, then the convergence to P (t) as stated in the Lemma
is uniform in t on compact subsets of Rd and P (t) is continuous on R

d. Furthermore, the
relation P (t) = P (0)P (t) holds. Since the matrix P (0) has rank 1 by the Perron-Frobenius
theorem, this implies that the matrix P (t) has rank at most 1.

The second lemma is a generalisation of Lemma 1.

Lemma 2. Let A(t) and B(t) be matrix functions mapping vectors t ∈ R
d continuously to

square matrices satisfying

‖B(t)−B(0)‖ ≤ C‖t‖ for ‖t‖ ≤ T(7)

‖A(t)−A(0)‖ ≤ C‖t‖ for ‖t‖ ≤ T(8)

|[B(t)]i,j| ≤ [B(0)]i,j for all i, j and all t(9)

|[A(t)]i,j| ≤ [A(0)]i,j for all i, j and all t(10)

for some C, T > 0. Furthermore, assume that B = B(0) has 1 as simple dominating

eigenvalue and set A = A(0). Define P
(j)
K inductively by setting

P
(0)
K (t) = B(p−Kt)B(p−(K−1)t) · · ·B(p−1t)

P
(0)
0 (t) = I

and

(11) P
(j)
K (t) =

K
∑

m=1

P
(0)
K−m(p

−mt)A(p−mt)P
(j−1)
m−1 (t).

Then

(12) P (j)(t) = lim
K→∞

P
(j)
K (t)
(

K
j

) = (P (0)A)jP (t),

where P (t) is the limit given in Lemma 1. The convergence is uniform on compact subsets
of Rd.

Remark 3. Notice that P
(j)
K (t) is the sum of all products of matrices A(·) and B(·)

containing exactly j matrices A(·). In our application, this will reflect the combinatorial
structure of j carries.

P r o o f. We proceed by induction on j to prove

lim
K→∞

P
(j)
K (t)
(

K
j

) = (P (0)A)P (j−1)(t).

From Lemma 1 and Remark 2 we have that (PK(t))K converges uniformly to P (t) on
compact subsets of Rd, which is the case j = 0.
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For the step j−1 → j we use the recursion formula (11). We split the range of summation

into m <
√
K,

√
K ≤ m < K −

√
K and m ≥ K −

√
K and estimate the first and the last

sum
∥

∥

∥

∥

∥

∥

∑

m<
√
K

P
(0)
K−m(p

−mt)A(p−mt)P
(j−1)
m−1 (t)

∥

∥

∥

∥

∥

∥

= O





∑

m<
√
K

mj−1



 = O(Kj/2)

∥

∥

∥

∥

∥

∥

∑

K−
√
K≤m≤K

P
(0)
K−m(p

−mt)A(p−mt)P
(j−1)
m−1 (t)

∥

∥

∥

∥

∥

∥

= O(Kj−1
√
K) = O(Kj−1/2).

For the middle sum, we write PK−m(p
−mt) = P (0) + o(1), A(p−mt) = A + o(1), and

P
(j−1)
m−1 (t) =

(

m−1
j−1

)

P (j−1)(t) + o(mj−1) (which hold uniformly on compact subsets of Rd)

and insert these to obtain
∑

√
K≤m<K−

√
K

P
(0)
K−m(p

−mt)A(p−mt)P
(j−1)
m−1 (t)

=
∑

√
K≤m<K−

√
K

P (0)A

(

m− 1

j − 1

)

P (j−1)(t) + o(Kj) =

(

K

j

)

(P (0)A)P (j−1)(t) + o(Kj).

Putting everything together, we obtain (12). �

Proof of Theorem 1

We study the following exponential sum

(13) S(1)
χ (m, t1, t2) =

∑

0≤k≤n<pm

χ

(

(

n

k

)

(p)

)

e
(

(kt1 + nt2)p
−m
)

,

where χ denotes a Dirichlet character modulo ps. In order to compute this sum, we
construct a finite automaton, which computes

(

n
k

)

modulo ps with the help of (3).

LetA = {0, 1, . . . , p−1}2 be the alphabet. The set of states is given by S = {0, . . . , ps−1−
1}2 × {0, 1}. The transitions are defined by

(14) (ε, δ) : (ν, κ, η) 7→







(

⌊ν
p
⌋+ εps−2, ⌊κ

p
⌋+ δps−2, 0

)

if (κ mod p) + η ≤ ν mod p
(

⌊ν
p
⌋+ εps−2, ⌊κ

p
⌋+ δps−2, 1

)

if (κ mod p) + η > ν mod p,

where κmod p denotes the non-negative remainder in the Euclidean division κ/p. The
states (·, ·, 0) represent the situation that no carry occurred in the subtraction of the least
significant digits, whereas (·, ·, 1) encode the situation that a carry occurred. A similar
automaton was used in [13, 14] in the study of the p-adic Sierpiński gasket.

For a given pair of integers (n, k) we start at the state (n mod ps−1, k mod ps−1); tech-
nically, we would have to add extra states, which emulate reading the first s− 1 digits.

5



G. BARAT — P. J. GRABNER

For t = (t1, t2) ∈ R
2 we define the marked transition matrix Mχ(t) of the automaton

defined above by

[Mχ(t)](ν1,κ1,η1),(ν2,κ2,η2) =











































































χ
(

(±1)η1 (n!)p
(k!)p((n−k−η1)!)p

)

e(εt1 + δt2) if n− k − η1 ≥ 0

and ν2 = ⌊ν1
p
⌋+ εps−2

and κ2 = ⌊κ1

p
⌋+ δps−2

and [[(κ1 mod p) + η1 > (ν1 mod p)]] = η2

χ
(

(±1)η1 (n!)p
(k!)p((ps−1+n−k−η1)!)p

)

e(εt1 + δt2) if n− k − η1 < 0

and ν2 = ⌊ν1
p
⌋+ εps−2

and κ2 = ⌊κ1

p
⌋+ δps−2

and [[(κ1 mod p) + η1 > (ν1 mod p)]] = η2

0 otherwise,

where we denote n = ν1 + εps−1 and k = κ1 + δps−1 for short. The value (±1) is chosen
according to Theorem 3. Here and later on we use Iverson’s notation [[A]], which is 1, if A
is true, and 0 otherwise.

Then we have

(15) S(1)
χ (m, t) = v(p−mt)TMχ(p

−(m−s)t)Mχ(p
−(m−s−1)t) · · ·Mχ(p

−1t)w,

where w denotes the column vector with all entries (1− η). The vector v(t) is given by

[v(t)](ν,κ,η) = e((νt1 + κt2)).

We write 1 for the vector with all entries 1 and observe that v(0) = 1.

We notice that the automaton defined by the transition function (14) has exactly p2

transitions emanating from each state. The marked transition matrix Mχ0(0) (χ0 being
the principal character) marks each of these transitions by 1; thus this matrix has exactly
p2 entries 1 per line and is a Perron-Frobenius matrix with dominating eigenvalue p2. From

(13) the sum S
(1)
χ (m, t) has pm(pm+1)

2
summands. Thus we divide (15) by pm(pm+1)

2
and let

m tend to infinity. For the principal character this results in

(16) λ̂(t) = lim
m→∞

(

pm(pm + 1)

2

)−1

Sχ0(m, t) = 1TP (t)w,

where

P (t) = lim
m→∞

(

pm(pm + 1)

2

)−1

Mχ0(p
−(m−s)t)Mχ0(p

−(m−s−1)t) · · ·Mχ0(p
−1t)

is a convergent infinite matrix product applying Lemma 1 with B(t) = 1
p2
Mχ0(t).

The limit λ̂(t) is the Fourier transform of the two-dimensional Lebesgue measure re-
stricted to the triangle {(x, y) ∈ R

2 ; 0 ≤ x ≤ y ≤ 1}, normalised to total measure 1.
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For non-principal characters χ, at least one non-zero entry of Mχ(0) differs from 1,
because

(

n
1

)

(p)
= n(p) implies that the character is evaluated at all prime residue classes

(mod ps); thus we have

‖Mχ(0)‖ < p2.

From this we conclude, using the continuity of Mχ(t) at t = 0,

lim
m→∞

(

pm(pm + 1)

2

)−1

Sχ(m, t)

= 1T lim
m→∞

(

pm(pm + 1)

2

)−1

Mχ(p
−(m−s)t)Mχ(p

−(m−s−1)t) · · ·Mχ(p
−1t)w = 0.

Summing up, we have

lim
m→∞

(

pm(pm + 1)

2

)−1
∑

0≤k≤n<pm

[[(

n

k

)

(p)

≡ a (mod ps)

]]

e((nt1 + kt2)p
−m)

=
1

φ(ps)

∑

χ

χ(a) lim
m→∞

(

pm(pm + 1)

2

)−1

S(1)
χ (m, t) =

1

φ(ps)
λ̂(t),

which finishes the proof of Theorem 1 by Levy’s continuity theorem.

Proof of Theorem 2

In order to obtain the desired result, we study the exponential sum

(17) S(2)
χ (m, j, t1, t2) =

∑

0≤k≤n<pm

[[

pj‖
(

n

k

)]]

χ

(

p−j

(

n

k

))

e
(

(kt1 + nt2)p
−m
)

.

The underlying automaton is the same as in the proof of Theorem 1, but we have to take
into account the number of carries in the subtraction. This is done by a new marking of
the transitions using the following two matrices

[B(t)](ν1,κ1,η1),(ν2,κ2,η2) =

{

2
p(p+1)

[Mχ0(t)](ν1,κ1,η1),(ν2,κ2,η2) if η1 = 0

0 if η1 = 1,

[A(t)](ν1,κ1,η1),(ν2,κ2,η2) =

{

[Mχ0(t)](ν1,κ1,η1),(ν2,κ2,η2) if η1 = 1

0 if η1 = 0.

The matrix B(t) encodes all transitions without carry, whereas A(t) encodes a carry in
the subtraction of the least significant digit. Notice that we normalise B(t) to satisfy the
assumption of Lemma 2.

We obtain

(18) Sχ0(m, j, t) =

(

p(p+ 1)

2

)m min(j,s−1)
∑

ℓ=0

vℓ(p
−mt)TP

(j−ℓ)
m−s (t)w,

7



G. BARAT — P. J. GRABNER

where the vectors vℓ encode starting blocks of s − 1 digits containing ℓ carries in the
subtraction:

vℓ(t)(ν,κ,η) =











e(νt1 + κt2) if η = [[ν < κ]]and there are exactly ℓ carries

in the subtraction ηps + ν − κ

0 otherwise.

Applying Lemma 2 yields

(19) lim
m→∞

Sχ0(m, j, t)
(

m
j

)

(

p(p+1)
2

)m = v0(0)
T (P (0)A)jP (t)w.

We now observe that v0(0) is a vector with non-negative entries and (P (0)A)j is a matrix
with non-negative entries. Thus v0(0)

T (P (0)A)j is a vector with non-negative entries.
Using the relation P (t) = P (0)P (t), we can rewrite the limit (19) as

v0(0)
T (P (0)A)jP (0)P (t)w;

the vector v0(0)
T (P (0)A)jP (0) is now proportional to the left Perron-Frobenius eigenvalue

of B, because P (0) is a matrix of rank 1 with this eigenvector. Thus the limit (19) is
proportional to vTP (t)w for any non-negative vector v.

We set

µ̂(t) = lim
m→∞

Sχ0(m, 0, t)
(

p(p+1)
2

)m .

Then by the above argument, we have

µ̂(t) = lim
m→∞

Sχ0(m, j, t)

Sχ0(m, j, 0)
.

From [13] we infer that the sets

Qm =

{

(n, k)p−m ; 0 ≤ k ≤ n < pm and p 6 |
(

n

k

)}

tend to the attractor Q of the iterated function system defined by

Fa,b(x, y) =

(

x+ a

p
,
y + b

p

)

,

where 0 ≤ b ≤ a < p (the “p-adic Sierpiński triangle”). Furthermore, the measures

µm =
1

(

p(p+1)
2

)m

∑

x∈Qm

δ
x

tend to the Hausdorff measure of dimension s =
log p(p+1)

2

log p
restricted to Q and normalised

to total mass 1. This implies that µ̂(t) is the Fourier transform of this measure.
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In order to sieve out the binomial coefficients with p−j
(

n
k

)

≡ a (mod ps) we consider the
sum

1

φ(ps)

∑

χ

χ(a)Sχ(m, j, t)

and observe, using the same arguments as in the proof of Theorem 1, that Sχ(m, j, t)
(for χ 6= χ0) is of smaller order of magnitude than Sχ0(m, j, t). This finishes the proof of
Theorem 2.
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