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BLOCK ADDITIVE FUNCTIONS ON THE GAUSSIAN

INTEGERS

MICHAEL DRMOTA*, PETER J. GRABNER†, AND PIERRE LIARDET‡

Abstract. We present three conceptually different methods to prove
distribution results for block additive functions with respect to radix
expansions of the Gaussian integers. Based on generating function ap-
proaches we obtain a central limit theorem and asymptotic expansions
for the moments. Furthermore, these generating functions as well as
ergodic skew products are used to prove uniform distribution in residue
classes and modulo 1.

1. Introduction

Let q = −a + i ∈ Z[i] for a positive integer a and N = {0, 1, . . . , a2}.
Then every Gaussian integer z ∈ Z[i] can be uniquely represented as

z =
∑

j≥0

εj(z) q
j

with εj(z) ∈ N . Formally we set εj(z) = 0 for all negative integers j < 0. It

will be convenient sometimes to use infinite or even doubly infinite sequences

(filled with zeros) for the representation of Gaussian integers. We denote

the length of the expansion by

lengthq(z) = max {j ∈ N0 | εj(z) 6= 0}+ 1

and lengthq(0) = 0. (We denote the positive integers by N and use N0 =

N ∪ {0} for the non-negative integers.) Throughout the paper we will use

the notation logb for the logarithm to base b. The following lemma was

proved in [15].

Lemma 1. There exists a positive constant c such that for all z ∈ Z[i]
∣
∣lengthq(z)− log|q| |z|

∣
∣ ≤ c.
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The fundamental domain of the base q representation on Z[i] is defined

by

Fq =

{ ∞∑

ℓ=1

εℓ
qℓ

| ∀ℓ : εℓ ∈ N
}

.

This subset of C plays the same rôle for q-adic numeration as the unit

interval does for classical number systems on the integers (cf. [10, 11, 15]).

More generally, radix representations of elements of the ring of integers ZK

of a number field K can be considered. A base α ∈ ZK together with the

digit set D = {0, 1, . . . , |NK|Q(α)| − 1} is called a canonical number system

(cf. [19, 20]), if every ζ ∈ ZK has a representation of the form

ζ =

n∑

ℓ=0

εℓα
ℓ

with εℓ ∈ D for 0 ≤ ℓ ≤ n. The point 0 is an inner point of Fq. This

follows from the general fact that (α,D) is a canonical number system, if

and only if the corresponding fundamental domain contains 0 as an inner

point (cf. [1]).

Let F : N L+1 → R be any given function (for some L ≥ 0) with

F (0, 0, . . . , 0) = 0. Furthermore, set

sF (z) =

∞∑

j=−L

F (εj(z), εj+1(z), . . . , εj+L(z)) .

This means that we consider a weighted sum over all subsequent digital

patterns of length L + 1 of the digital expansion of z. The function sF

is called block additive function of rank L + 1. This generalises the block-

additive digital functions studied in [6] for digital expansions on the rational

integers. This definition readily extends to functions taking values in an

arbitrary abelian group A. We will use this in the general considerations in

Section 5.

For example, for L = 0 we obtain completely additive functions such as

those studied in [18, Section 5], for instance for F (ε) = ε we just have the

sum-of-digits function studied in [12, 15, 16], or if L = 1 and F (ε, η) =

1 − δε,η (δx,y denoting the Kronecker symbol) then sF (n) is just counting

the number of times that a digit is different from the preceding one etc.

2. Overview of the Results

Our main objective is to get information on sums

(2.1) SN(x) =
∑

|z|2<N

xsF (z),

where x is a complex variable. It is clear that SN(x) encodes the distribution

of sF (z). For example, if we assume that sF (z) has only non-negative integer
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values then we have

SN(x) =
∑

k≥0

#{z ∈ Z[i] : |z|2 < N, sF (z) = k} xk.

More generally, let YN denote the random variable that is induced by the

distribution of sF (z) for |z|2 < N , that is, the distribution function of YN

is given by

(2.2) P{YN ≤ y} =
1

SN(1)
#{|z|2 < N : sF (z) ≤ y}.

Then we have

(2.3) E xYN =
1

SN(1)

∑

|z|2<N

xsF (z) =
1

SN(1)
SN(x).

In particular the moment generating function E eλYN and the characteristic

function E eitYN of YN can be expressed with help of SN(x). (Note that

SN (1) = πN +O
(

N
1
3

)

.)

In what follows we will present three different methods to obtain as-

ymptotic information for SN(x). In Section 3 we use a measure theoretic

approach showing that for real numbers x sufficiently close to 1 we have

(2.4) SN (x) = Φ(x, log|q|2 N)N log|q|2 λ(x) ·
(
1 +O

(
N−κ

))
,

where Φ(x, t) is a function that is analytic in x and periodic (with period 1)

and Hölder continuous in t, and λ(x) is the dominant eigenvalue of a certain

matrix A(x) defined in (3.1). This representation directly implies that the

random variable

XN =
YN − µ log|q|2 N
√

σ2 log|q|2 N
,

with

µ =
λ′(1)

λ(1)
and σ2 =

λ′′(1)

λ(1)
+

λ′(1)

λ(1)
− λ′(1)2

λ(1)2

satisfies a central limit theorem and we have convergence of all moments.

More precisely we get (uniformly in y)

1

πN
#
{

|z|2 < N : sF (z) ≤ µ log|q|2 N + y
√

σ2 log|q|2 N
}

=
1√
2π

∫ y

−∞
e−

1
2
u2

du+ o(1)

and (for every L ≥ 0)

1

πN

∑

|z|2<N

(
sF (z)− µ log|q|2 N

)L
=

1√
2π

∫ ∞

−∞
uLe−

1
2
u2

du+ o(1).

The drawback of the method given in Section 3 is that it only works for

real numbers x. In Section 4 we present a method that is based on Dirichlet

series that extends (2.4) to a complex neighbourhood of x = 1. Furthermore,

we provide upper bounds for SN(x) for complex x with modulus |x| close
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to 1. With the help of this extension we are able to provide more precise

distributional results. Besides the central limit theorem we also get a local

limit theorem, that is, asymptotic expansions for the numbers

#{z ∈ Z[i] : |z|2 < N, sF (z) = k}
if k is close to the mean µ log|q|2 N and if sF (z) is integer valued. Further-

more, we obtain very precise asymptotic expansions of the moments.

Next we consider the sequence sF (z) taking values in a compact abelian

group A. Then the closure of the set {sF (z) : z ∈ Z[i]} is a subgroup of A

denoted by A(F ). The results on exponential sums obtained in Section 4

are used to prove uniform distribution of (sF (z))z∈Z[i] in the groups R/Z

and Z/MZ with respect to the Haar measure λA under according natural

conditions. The method gives results for uniform distribution of the values

of sF in large circles, i. e.

lim
N→∞

1

πN
#
{
z ∈ Z[i]; |z|2 < N, sF (z) ∈ B

}
= λA(B)

for all B ⊆ A with λA(∂B) = 0.

In Section 5 we use an approach based on ergodic Z[i]-actions and skew

products to extend the distribution results for group valued sF to well uni-

form distribution with respect to Følner sequences (Qn)n∈N, i. e.

lim
n→∞

1

#Qn

# {z ∈ Qn; sF (z + y) ∈ B} = λA(B)

uniformly in y ∈ Z[i]. This generalises the results on uniform distribution

of (sF (z))z∈Z[i] obtained in Section 4. On the other hand methods from

ergodic theory do not allow to obtain error terms, which come as a natural

by-product of the method used in Section 4.

3. A measure theoretic method

In the following we use ideas developed in [13, 14]. The measure theoretic

approach to asymptotic questions about digital functions gives a smooth

proof for a real version of the asymptotic representation (2.4) for SN(x).

In order to formulate our results we have to introduce some notations.

For every block B = (η0, η1, . . . , ηL) ∈ N L+1 we set B′ = (η1, . . . , ηL) ∈
N L, that is, the block without the first digit, and η(B) = η0, the first digit

of the block B. Furthermore, set

gF (B) =

L∑

i=0

(F (0, . . . , 0, η0, η1, . . . , ηi)− F (0, . . . , 0, 0, η1, . . . , ηi)) .

Note that gF (B) = 0 if η0 = 0.

By the definition of block additive function we directly get the following

property.
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Lemma 2. For z ∈ Z[i] let B = B(z) = (ε0(z), . . . , εL(z)) the block of the

first L+ 1 digits of the q-ary digital expansion of z. Then

sF (z) = gF (B) + sF (v),

where z = ε0(z) + qv.

Now define a matrix A(x) = (AB,C(x))B,C∈NL+1 by

(3.1) AB,C(x) =

{
xgF (B) if C = (B′, ℓ) for some ℓ ∈ N ,

0 otherwise.

Finally, let λ(x) be the dominant eigenvalue of the matrix A(x) that surely

exists if x is close to the positive real axis, in particular, if x is close to 1,

compare with Lemma 4. Note that λ(1) = |q|2.

Theorem 1. The following asymptotic relation holds uniformly for x in

some interval I containing 1

(3.2)
∑

|z|2<N

xsF (z) = Φ(x, log|q|2 N)N log|q|2 λ(x) ·
(
1 +O

(
N−κ

))

with some κ > 0, where Φ(x, t) is a periodic (with period 1) and Hölder

continuous function in t and continuous in x.

Proof. Before we present the proof of Theorem 1 we derive some direct

corollaries.

Corollary 1. Set

µ =
λ′(1)

λ(1)
and σ2 =

λ′′(1)

λ(1)
+ µ− µ2.

If σ2 > 0 then we have uniformly for real y

1

πN
#
{

|z|2 < N : sF (z) ≤ µ log|q|2 N + y
√

σ2 log|q|2 N
}

=
1√
2π

∫ y

−∞
e−

1
2
u2

du+ o(1).(3.3)

and for every L ≥ 0

(3.4)
1

πN

∑

|z|2<N

(
sF (z)− µ log|q|2 N

)L
=

1√
2π

∫ ∞

−∞
uLe−

1
2
u2

du+ o(1).

Furthermore, we have exponential tail estimates of the form

(3.5)
1

πN
#
{

|z|2 < N :
∣
∣sF (z)− µ log|q|2 N

∣
∣ ≥ η

√

log|q|2 N
}

≪ min
(

e−cη, e−cη2+O(η3/
√
logN)

)

for some constant c > 0.
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Remark 1. The above result suggests that the distribution of sF (z), |z|2 <
N , can be approximated by a sum of (weakly dependent) random variables.

This is in fact a possible approach to this problem. Observe that the con-

stant µ can be explicitly calculated by

µ =
λ′(1)

λ(1)
=

1

|q|L+1

∑

B∈NL+1

sF (B).

Of course, this mean value corresponds to the contribution of one block of

length L + 1 in the digital expansion of z that has approximately log|q|2 N

digits. In a similar way it is also possible to represent σ2 but this is much

more involved.

Proof of Corollary 1. Let YN denote the random variable that is induced

by the distribution of sF (z) for |z|2 < N given by (2.2). Then the moment

generating function of YN is given by (using (2.3))

E etYN =
1

SN(1)
SN(e

t)

=
1

π
Φ(et, log|q|2 N)N log|q|2 λ(et)−1 · (1 +O

(
N−η

)
).

Hence, by using the local expansion (recall that λ(1) = |q|2)

log λ(et) = log |q|2 + µt+
σ2

2
t2 +O

(
t3
)

we directly obtain that the moment generating function of the normalised

random variable

ZN =
YN − µ log|q|2 N
√

σ2 log|q|2 N

is given by

E etZN = e
−t(µ/σ)

√
log|q|2 N

E e(t/
√

σ2 log|q|2 N)YN

= e
1
2
t2+O(t3/

√
logN).

Of course, this directly translates to (3.3).

Furthermore, convergence of the moment generating function also implies

convergence of all moments, that is, we get (3.4). Finally, the tail estimates

(3.5) are a direct consequence of Chernov type inequalities. �

The proof of Theorem 1 runs along the lines of [14, Sections 4 and 5] and

is organised in four steps.

Step 1 defines a sequence of discrete measures, which are obtained by

suitably rescaling point masses xsF (z). Let δz denote the Dirac measure

supported at {z}. Then we define a family of measures (depending on n
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and x) by setting

(3.6) µn,x =

∑

z∈Bn
xsF (z)δ z

qn
∑

z∈Bn
xsF (z)

,

where

Bn = {z ∈ Z[i] | length(z) ≤ n} .
Using the matrix A(x) introduced in (3.1), we can write the denominator

in (3.6) as

(xgF (B))B ·A(x)n · (δ0,C)TC ,
δ0,C denoting the Kronecker symbol, and T the transposition.

Step 2 uses characteristic functions to show that the sequence µn,x has

a weak limit. The fact that the values xsF (z) are formed from the digital

expansion of z can be used to express the Fourier transforms µ̂n,x of the

measures µn,x

(3.7) µ̂n,x(t) =

∑

z∈Bn
xsF (z)e

(

ℜ
(

tz
qn

))

∑

z∈Bn
xsF (z)

.

in terms of matrix products. Here t ∈ C and as usual e(·) = e2πi(·). We

define the matrix H(x, t) by setting

HB,C(x, t) = AB,C(x)e (ℜ (tB0)) .

This allows us to write

(3.8) µ̂n,x(t) =
v1(x, tq

−n) ·H(x, t
qn−1 ) · · ·H(x, t

q
) · v2

v1(x, 0) ·A(x)n · v2

with

v1(x, t) =
(
xsF (B)e (ℜ (tB0))

)

B
and v2 = (δ0,C)

T
C .

The matrices 1
λ(x)

H(x, t) satisfy the conditions of [14, Lemma 5] (mutatis

mutandis) and therefore, the sequence of matrices

Pn(x, t) = λ(x)−nH(x,
t

qn−1
) · · ·H(x,

t

q
)

converges to a limit P(x, t) and

(3.9)
‖Pn(x, t)−Pn(x, 0)‖ ≪ |t| for |t| ≤ 1

‖Pn(x, t)−P(x, t)‖ ≪ (1 + |t|)η(x)|q|−η(x)n for all t,

where

η(x) =
log λ(x)− log |λ1(x)|

log |q|+ log λ(x)− log |λ1(x)|
,

where λ1(x) denotes the second largest eigenvalue of A(x). These relations

hold uniformly for x in compact subsets of (0,∞).

For |t| ≥ 1 (3.9) together with (3.8) implies

(3.10) |µ̂n,x(t)− µ̂x(t)| ≪ |t|η(x)q−nη(x).
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For |t| ≤ 1 and L > K > ℓ we estimate using (3.8)

|µ̂K,x(t)− µ̂L,x(t)|

=

∣
∣
∣
∣
∣
λ(x)K

v1(x, tq
−K) ·PK−ℓ(q

−ℓt)Pℓ(t)v2

v1(x, 0) ·A(x)K · v2

− λ(x)L
v1(x, tq

−L) ·PL−ℓ(q
−ℓt)Pℓ(t)v2

v1(x, 0) ·A(x)L · v2

∣
∣
∣
∣
∣

≪
∣
∣
∣
∣
∣
λ(x)K

v1(x, tq
−K) ·PK−ℓ(0)Pℓ(t)v2

v1(x, 0) ·A(x)K · v2

− λ(x)L
v1(x, tq

−L) ·PL−ℓ(0)Pℓ(t)v2

v1(x, 0) ·A(x)L · v2

∣
∣
∣
∣
∣
+ |q|−ℓ|t|

=

∣
∣
∣
∣
∣
λ(x)K

v1(x, tq
−K) ·PK−ℓ(0)(Pℓ(t)−Pℓ(0))v2

v1(x, 0) ·A(x)K · v2

− λ(x)L
v1(x, tq

−L) ·PL−ℓ(0)(Pℓ(t)−Pℓ(0))v2

v1(x, 0) ·A(x)L · v2

∣
∣
∣
∣
∣
+ |q|−ℓ|t|

≪ |t|
((

λ1(x)

λ(x)

)K−ℓ

+ |q|−ℓ

)

≪ |t||q|−η(x)K ,

where we have chosen ℓ = ⌈ηK⌉. Passing L to infinity yields

(3.11) |µ̂n,x(t)− µ̂x(t)| ≪ |t|q−nη(x)

for |t| ≤ 1. Especially, (3.10) and (3.11) establish the existence of a (weak)

limiting measure µx.

Remark 2. What we have proved up to now is enough to have the asymptotic

relation (3.2) without error term for all x > 0.

Step 3 establishes estimates for the measure dimension of µx, which will

be needed in Step 4. We define the matrices Iε by setting

(Iε)B,C =

{

δB,C if the block B starts with the digit ε

0 otherwise.

Clearly I0 + I1 + · · ·+ Ia2 is the identity matrix. Furthermore, we have

µx

(
ε1
q
+

ε2
q2

+ · · ·+ εk
qk

+ q−kF
)

= lim
n→∞

(v1(x, 0) · Iε1A(x)Iε2A(x) · · · IεkA(x)A(x)n−k · v2

v1(x, 0) ·A(x)n · v2
.

The limit can be computed by the Perron-Frobenius theorem and equals

λ(x)−kv1(x, 0) · Iε1A(x)Iε2A(x) · · · Iεkv(x),
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where v(x) denotes the (Perron-Frobenius) eigenvector of A(x) associated

to the eigenvalue λ(x) normalised so that

v1(x, 0) · v(x) = 1.

Now we define

ξ(x) = max
ε

max
B

(A(x)Iεv)B
(v(x))B

(this is always finite, since all coordinates of v(x) are strictly positive).

Clearly, ξ(x) < λ(x) and ξ(1) = 1. By definition of ξ(x) we have the

component-wise inequality

A(x)Iεv(x) ≤ ξ(x)v(x),

from which we conclude

v1(x, 0) · Iε1A(x)Iε2A(x) · · · Iεkv(x) ≤ ξ(x)kv1(x, 0) · v(x) = ξ(x)k

and

(3.12) µx

(
ε1
q
+

ε2
q2

+ · · ·+ εk
qk

+ q−kF
)

≪
(
ξ(x)

λ(x)

)k

.

Since (q, {0, . . . , a2}) is a canonical number system, every ball B(z, r) can

be covered by an absolutely bounded number of sets of the form
ε1
q
+

ε2
q2

+ · · ·+ εk
qk

+ q−kF

for k = ⌊− log|q| r⌋ and r < 1. This together with (3.12) implies

(3.13) µx(B(z, r)) ≪ rβ(x)

with

β(x) =
log λ(x)− log ξ(x)

log |q| .

Notice that β(1) = 2, which is no surprise, since µ1 is Lebesgue measure

restricted to F .

Furthermore, we need at most O(|q|2n) times the area of the annulus

B(0, r + ε + |q|−n) \ B(0, r − |q|−n) copies of q−nF to cover the annulus

B(0, r + ε) \B(0, r). This together with (3.12) implies

µx (B(0, r + ε) \B(0, r)) ≪ |q|−nβ(x)|q|2n(2r + ε)(ε+ |q|−n)

for all n. Setting n = −⌈log|q| ε⌉ gives

(3.14) µx (B(0, r + ε) \B(0, r)) ≪ (r + ε)εβ(x)−1.

This gives a sensible estimate, if β(x) > 1 or equivalently log ξ(x) <

log λ(x) − log |q|. Since this inequality is satisfied for x = 1 and β(x)

depends continuously on x, there exists an interval I around x = 1, such

that β(x) ≥ β0 > 1 for some β0 < 2.

Step 4 uses the estimates for the measure dimension of µx and a suitable

version of the Berry-Esseen inequality to provide bounds for |µn,x(B(0, r))−
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µx(B(0, r))|. Since µn,x(B(0, r)) can be easily related to the sum occurring

in (3.2), this gives the error term in (3.2).

We recall the following result obtained in [14]. The statement uses the

notation c(φ) = (cosφ, sinφ)T .

Proposition 1 ([14, Proposition 1]). Let ν1 and ν2 be two probability mea-

sures in R2 with their Fourier transforms defined by

ν̂k(t) =

∫

R2

e (〈x, t〉) dνk(x).

Suppose that ν2 satisfies

(3.15) ν2 (B(0, r + ε) \B(0, r)) ≪ εθ

for some 0 < θ < 1 and all r ≥ 0. Then the following inequality holds for

all r ≥ 0 and T > 0

(3.16) |ν1(B(0, r))− ν2(B(0, r))|

≪
∫ T

0

∫ 2π

0

Kr(t, T ) |ν̂1(tc(φ))− ν̂2(tc(φ))| t dφ dt+ T− 2θ
θ+2 ,

where the kernel function Kr(t, T ) satisfies

Kr(t, T ) ≪
1

T 2
+min

(

r2,
r

1
2

t
3
2

)

.

The implied constant in (3.16) depends only on the implied constant in

(3.15).

Inserting (3.10) and (3.11) into (3.16) with θ = β(x)− 1 yields

(3.17)
|µn,x(B(0, r))− µx(B(0, r))|

≪
∫ 1

0

Kr(t, T )t|q|−η(x)nt dt+

∫ T

1

Kr(t, T )t
η(x)|q|−η(x)nt dt+ T−2

β(x)−1
β(x)+1 .

Using the bounds for Kr(t, T ) and setting

log T =
η(x)

η(x) + 1
2
+ 2β(x)−1

β(x)+1

n log |q|

yields

|µn,x(B(0, r))− µx(B(0, r))| ≪ |q|−2κ(x)n

uniformly in r with

κ(x) =
η(x)(β(x)− 1)

(η(x) + 1
2
)(β(x) + 1) + 2β(x)− 2

.

Choosing κ to be the minimum attained by κ(x) on a compact interval I,

where β(x) ≥ β0 > 1 for some β0 < 2, gives

(3.18) |µn,x(B(0, r))− µx(B(0, r))| ≪ |q|−2κn
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for all x ∈ I.

Now, by definition of µk,x, we have
∑

|z|2<N

xsF (z) = v1(x, 0) ·A(x)k · v2 · µk,x(B(0, |q|−k
√
N))

for k = ⌊log|q|2 N⌋ +M and some integer constant M > 0, which is chosen

so that B(0, |q|1−M) ⊂ F . Inserting (3.18) and v1(x, 0) · A(x)k · v2 =

C(x)λ(x)k +O(λ1(x)
k) yields

∑

|z|2<N

xsF (z) = C(x)λ(x)kµx(B(0, |q|−k
√
N))+O(λ1(x)

k)+O(λ(x)k|q|−2κk)

= N log|q|2 λ(x)C(x)λ(x){log|q|2 N}+Mµx(B(0, q{log|q|2 N}−M))(1 +O(N−κ)).

We observe that the measure µx satisfies the self-similarity relation

µx(B(0, |q|r)) = λ(x)µx(B(0, r))

for r sufficiently small. Setting

Φ(x, t) = C(x)λ(x)t+Mµx(B(0, qt−M))for t < 1

and noting that (3.13) implies the Hölder continuity of Φ as a function of t

completes the proof. �

Remark 3. For complex values of x this method breaks down, because the

weak limits µx have infinite total variation and are therefore not complex

measures.

4. A Dirichlet series method

The goal of this section is to generalise Theorem 1 to complex x. The

proof relies on Dirichlet series and Mellin-Perron techniques.

Theorem 2. There exists a complex neighbourhood of x = 1 (that is, |x−
1| ≤ δ for some δ > 0) such that uniformly

(4.1)
∑

|z|2<N

xsF (z) = Φ(x, log|q|2 N)N log|q|2 λ(x) ·
(
1 +O

(
N−κ

))

with some κ > 0, where Φ(x, t) is a function that is analytic in x and

periodic (with period 1) and Hölder continuous in t.

Furthermore, if F is integer valued with the property that

(4.2) d = gcd{gF (B) : B ∈ N L+1} = 1.

Then we have uniformly for |x− 1| ≥ δ and |ℜ(x)− 1| ≤ δ2

(4.3)
∑

|z|2<N

xsF (z) ≪ N log|q|2 λ(|x|)−κ

with some κ > 0 and some δ2 with 0 < δ2 < δ.
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Remark 4. In what follows we will also show that Φ(x, t) has an explicit

representation (see (4.21)). For example, for the sum-of-digits function sq(z)

we have

Φ(x, t) =
X−t

1−X−1

a2∑

ℓ=1

xℓX⌊t−log|q|2 ℓ2⌋

+
X−t

1−X−1

a2∑

ℓ=1

xℓ
∑

z 6=0

xsq(z)
(

X⌊t−log|q|2 |qz+ℓ|2⌋ −X⌊t−log|q|2 |qz|2⌋) ,

where X abbreviates

X =
x|q|2 − 1

x− 1
.

The asymptotic representations (4.1) and (4.3) can be used in various

ways (compare also with [7] and [8]). We directly derive asymptotic ex-

pansions for moments (Corollary 2) and a refinement of the central limit

theorem stated in Corollary 1, further a local limit theorem (Corollary 3),

uniform distribution in residue classes (Corollary 4) and uniform distribu-

tion modulo 1 (Corollary 5).

Corollary 2. For every integer r ≥ 1 we have

(4.4)

1

πN

∑

|z|2<N

sF (z)
r = µr(log|q|2 N)r+

r−1∑

ℓ=0

Gr,ℓ(log|q|2 N)·(log|q|2 N)ℓ+O
(
N−κ

)
,

where the functions Gr,ℓ(t) (0 ≤ ℓ < r) are continuous and periodic (with

period 1).

Proof. Since (4.1) is uniform in a neighbourhood of 1 and Φ(x, t) is analytic

in x one can take derivatives at x = 1 at arbitrary order by using the formula

G(r)(1) =
r!

2πi

∫

|x−1|=δ/2

G(x)

(x− 1)r+1
dx.

Furthermore, note that Φ(1, t) = π. Hence, the asymptotic leading term is

given by (λ′(1)/λ(1))r (log|q|2 N)r and has no periodic fluctuations. �

Note that if we combine Corollaries 1 and 2 then we also get error terms

for the central moments of the form

1

πN

∑

|z|2<N

(
sF (z)− µ log|q|2 N

)L
=

1√
2π

∫ ∞

−∞
uLe−

1
2
u2

du+O
(
N−κ

)
,

for every integer L ≥ 0. Furthermore, if we use the characteristic function

E itYN = SN(e
it)/SN(1) instead of the moment generating function E etYN ,

that is, we set x = eit in Theorem 2, combined with Berry-Esseen techniques
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we get a central limit theorem with error terms, too:

1

πN
#
{

|z|2 < N : sF (z) ≤ µ log|q|2 N + y
√

σ2 log|q|2 N
}

=
1√
2π

∫ y

−∞
e−

1
2
u2

du+O
(

(logN)−
1
2

)

.

Corollary 3. Suppose that F is integer valued and that (4.2) holds. Set

µ(x) =
xλ′(x)

λ(x)
and σ2(x) =

x2λ′′(x)

λ(x)
+ µ(x)− µ(x)2.

Furthermore, for k ∈ K(N) = Z∩
[
µ(1− δ2) · log|q|2 N, µ(1 + δ2) · log|q|2 N

]

we define xk,N by µ(xk,N) = k/ log|q|2 N , where δ and δ2 are from Theorem 2.

Then we have uniformly for k ∈ K(N)

#{z ∈ Z[i] : |z|2 < N, sF (z) = k}

=
Φ(xk,N , log|q|2 N)

√

2πσ2(xk,N) log|q|2 N
N log|q|2 λ(xk,N ) x−k

k,N

(

1 +O
(

1

logN

))

(4.5)

Furthermore, if |k − µ log|q|2 N | ≤ C
√
log|q|2 N (for some C > 0) we also

have

#{z ∈ Z[i] : |z|2 < N, sF (z) = k}

=
πN

√

2πσ2 log|q|2 N
exp

(

−
(k − µ log|q|2 N)2

2σ2 log|q|2 N

)(

1 +O
(

1√
logN

))

.

(4.6)

Note that µ = µ(1) and σ2 = σ2(1).

Proof. We apply (4.1) and (4.3) and use Cauchy’s formula:

#{z ∈ Z[i] : |z|2 < N, sF (z) = k} =
1

2πi

∫

|x|=xk,N




∑

|z|2<N

xsF (z)



 x−k−1 dx,

where xk,N is the saddle point of the asymptotic leading term of the inte-

grand:

N log|q|2 λ(x)x−k = elog λ(x)·log|q|2 N−k log x.

We do not work out the details of standard saddle point techniques. We just

refer to [8], where problems of almost the same kind have been discussed. �

Corollary 4. Suppose that F is integer valued and that (4.2) holds. Then

for every integer M ≥ 1 and all m ∈ {0, 1, . . . ,M − 1} we have

1

πN
#
{
|z|2 < N : sF (z) ≡ m mod M

}
=

1

M
+O

(
N−η

)

for some η > 0.



14 M. DRMOTA, P. J. GRABNER, AND P. LIARDET

Remark 5. Alternatively to condition (4.2) we can assume that sF attains a

value that is relatively prime to M . Then the same assertion holds, compare

with Corollary 8.

Proof. We use (4.3) for allM-th roots of unity x = e2πim/M and apply simple

discrete Fourier techniques. �

Corollary 5. Let sF be a block-additive function which attains one irra-

tional value. Then the sequence (sF (z))z∈Z[i] is uniformly distributed modulo

1.

Remark 6. Note that Corollary 5 in particularly applies to sequences of the

kind (αsF (z))z∈Z[i] if sF is integer valued and if α is irrational.

Proof. We only have to prove that there exists a block B of length L + 1

such that gF (B) is irrational. For this purpose we find a z0 ∈ Z[i] with

sF (z0) irrational and with base q representation of minimal length. Then

by Lemma 2 we write z0 = ε0 + qv and gF (B) = sF (z0)− sF (v). Since the

base q representation of v has one digit less than the representation of z0,

sF (v) is rational, and therefore gF (B) is irrational.

Choosing xgF (B) = e(hgF (B)) for h ∈ Z \ {0} gives a matrix A(x) with

eigenvalues strictly less than |q|2. By Weyl’s criterion this implies the as-

sertion. �

We now turn to the proof of Theorem 2. For this purpose we will consider

the Dirichlet series

GB(x, s) =
∑

z∈Z[i]\{0}, (ε0(z),...,εL(z))=B

xsF (z)

|z|2s

for B ∈ N L+1. It is easy to see that these series are well defined in a certain

range. Set A1 = maxB∈NL+1 F (B) and A2 = minB∈NL+1 F (B). Then we

have A2 log|q|2 |z| − O (1) ≤ sF (z) ≤ A2 log|q|2 |z| +O (1). Hence, if |x| ≥ 1

then GB(x, s) is surely absolutely convergent for ℜ(s) > 1 + 1
2
A1 log|q|2 |x|.

Similarly, if |x| ≤ 1 then GB(x, s) is absolutely convergent for ℜ(s) >

1− 1
2
A2 log|q|2(1/|x|).

Next we provide a representation for GB(x, s) that can be used for ana-

lytic continuation.
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Lemma 3. Define the vectors G(x, s) = (GB(x, s))B∈NL+1 and H(x, s) =

(HB(x, s))B∈NL+1, where

HB(x, s) =







0, if η(B) = 0,

xsF (η0)

|η0|2s
+

xgF (B)

|q|2s
∑

v∈Z[i]\{0}
(ε0(v),...,εL−1(v))=(0,...,0)

xsF (v)

(
1

|v + η0/q|2s
− 1

|v|2s
)

,

if η0 = η(B) 6= 0 and B′ = (0, . . . , 0),

xgF (B)

|q|2s
∑

v∈Z[i]\{0}
(ε0(v),...,εL−1(v))=B′

xsF (v)

(
1

|v + η0/q|2s
− 1

|v|2s
)

,

if η0 = η(B) 6= 0 and B′ 6= (0, . . . , 0).

Then HB(x, s) is absolutely convergent for ℜ(s) > 1
2
+ 1

2
A1 log|q|2 |x| (if

|x| ≥ 1) and for ℜ(s) > 1
2
− 1

2
A2 log|q|2(1/|x|) (if |x| ≤ 1). More precisely,

we have in that range

(4.7) H(x, σ + it) ≪
{

(1 + |t|)2(1−σ)+A1 log|q|2 |x| if |x| ≥ 1,

(1 + |t|)2(1−σ)−A2 log|q|2 (1/|x|) if |x| ≤ 1,

and a meromorphic continuation of G(x, s) = (GB(x, s))B∈NL+1 given by

(4.8) G(x, s) =

(

I− 1

|q|2sA(x)

)−1

H(x, s),

where A(x) is defined in (3.1).

Proof. We use the substitution z = η0 + qv. If ε0(z) = η0 = 0 we have

sF (z) = sF (q) and consequently

GB(x, s) =
1

|q|2s
∑

v∈Z[i]\{0}, (ε0(v),...,εL(v))=B′

xsF (v)

|v|2s

=
1

|q|2s
a2∑

ℓ=0

G(B′,ℓ)(x, s).

Similarly, if η0 > 0 and B′ = (0, . . . , 0) we get

GB(x, s) =
xsF (η0)

|η0|2s
+

xgF (B)

|q|2s
∑

v∈Z[i]\{0}, (ε0(v),...,εL−1(v))=(0,...,0)

xsF (v)

|v + η0/q|2s

=
xgF (B)

|q|2s
∑

v∈Z[i]\{0}, (ε0(v),...,εL−1(v))=(0,...,0)

xsF (v)

|v|2s +HB(x, s)

=
xgF (B)

|q|2s
a2∑

ℓ=0

G(0,...,0,ℓ)(x, s) +HB(x, s).
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Finally, if η0 > 0 and B′ 6= (0, . . . , 0) then the case v = 0 cannot appear

and we also get

GB(x, s) =
xgF (B)

|q|2s
∑

v∈Z[i]\{0}, (ε0(v),...,εL−1(v))=B′

xsF (v)

|v + η0/q|2s

=
xgF (B)

|q|2s
a2∑

ℓ=0

G(B′,ℓ)(x, s) +HB(x, s).

Now with A(x) = (AB,C(x))B,C∈NL+1 this directly translates to

G(x, s) =
1

|q|2sA(x)G(x, s) +H(x, s)

which implies (4.8).

Set s = σ + it. Since

∣
∣|v + ℓ/η0|2s − |v|2s

∣
∣≪ |v|2σ min

(

1,
1 + |t|
|v|

)

it easily follows that HB(x, s) is absolutely convergent for ℜ(s) > 1
2
+

1
2
A1 log|q|2 |x| (if |x| ≥ 1) and for ℜ(s) > 1

2
− 1

2
A2 log|q|2(1/|x|) (if |x| ≤ 1)

and that H(x, s) is bounded by (4.7). �

If we set an =
∑

|z|2=n x
sF (z) then G(s, x) =

∑

n≥1 ann
−s and Mellin-

Perron’s formula gives (for non-integral N)

(4.9)
∑

n<N

an =
∑

06=|z|2<N

xsq(z) =
1

2πi
lim
T→∞

∫ c+iT

c−iT

G(x, s)
N s

s
ds

for any sufficiently large c such that the line ℜ(s) = c is contained in the

half-plane of convergence of G(x, s).

We will first use this representation to get upper bounds for the sum
∑

06=|z|2<N xsq(z). For this purpose we have to know something on the dom-

inant eigenvalue λ(x) of A(x).

Lemma 4. If x is sufficiently close to the positive real axis then λ(x) is a

simple eigenvalue of A(x) and all other eigenvalues have smaller modulus.

Furthermore, if F is integer valued such that (4.2) holds and if x 6= 0 is

not a positive real number then all eigenvalues β of A(x) are bounded by

(4.10) |β| < λ(|x|).

Proof. Suppose first that x is a positive real number. Then it easily follows

that A(x) is a primitive irreducible nonnegative matrix. We just have to

observe that for every pair of blocks B,C ∈ NL+1 there exists a Gaussian

integer z such that both, B and C, occur in the q-ary digital expansion

of z. Hence, all elements of A(x)L+1 are positive and consequently by [24,

Theorem 2.1, p. 49] A(x) is primitive and irreducible. Thus, λ(x) > 0 is
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simple and all other eigenvalues have smaller modulus. By continuity, this

property remains true if x is sufficiently close to the positive real axis.

Next, suppose that x = |x|eiϕ with 0 < ϕ < 2π is not a positive real

number. Since |xgF (B)| = |x|gF (B) [24, Theorem 2.1, p. 36] implies that all

eigenvalues β of A(x) are bounded by |β| ≤ λ(|x|). Furthermore, equality

|β| = λ(|x|) holds if and only if there exists a complex number µ with |µ| = 1

and a diagonal matrix D = diag(µB)B∈NL+1
with complex numbers µB of

modulus |µB| = 1 such that

A(x) = λDA(|x|)D−1.

Without loss of generality we may assume that µ00···0 = 1.

We now show that in this case µ = 1 and µB = 1 for all B ∈ NL+1,

resp. A(x) = A(|x|). First observe that A00···0, 00···0(x) = 1 (for all x).

Thus, µ = 1. Furthermore, observe that AB,C(x) = AB,C(|x|) 6= 0 implies

µB = µC. Obviously, we have AB,C(x) = AB,C(|x|) 6= 0 if C = (B′, ℓ) (for

some ℓ) and ηB = 0. Thus, if B = (η1, . . . , ηL) is any block in NL+1 then

we can consider the sequence of blocks

B0 = (0, 0, . . . , 0), B1 = (0, . . . , 0, η1), B2 = (0, . . . , 0, η1, η2), . . . , BL = B

and can conclude inductively that

1 = µB0 = µB1 = · · · = µB.

However, if (4.2) holds then for every ϕ, 0 < ϕ < 2π, there exists B ∈
NL+1 with eiϕgF (B) 6= 1 and, thus, xgF (B) 6= |x|gF (B). Consequently, all

eigenvalues β of A(|x|eiϕ) are strictly bounded by |β| < λ(|x|). �

Next note that the inverse matrix ((I− uA(x))−1 can be written as

(I− uA(x))−1 =
1

det (I− uA(x))
(PBC(u, x))B,C∈NL+1

with polynomials PBC(u, x) having degree in u smaller than D := |N L+1| =
|q|2L+2. As above let λ(x) be the dominating eigenvalue of A(x) and

λ2(x), . . . , λD(x) the remaining ones (where we assume that x is sufficiently

close to the real axis and that all roots are simple.) Then by the partial

fraction decomposition we have

(4.11)
PBC(u, x)

det (I− uA(x))
=

CBC(x)

1− uλ(x)
+

D∑

j=2

Cj,BC(x)

1− uλj(x)

for certain (analytic) function CBC(x) and Cj,BC(x). This also shows that

G(x, s) can be represented as

(4.12) G(x, s) =
K(x, s)

1− 1
|q|2sλ(x)

+
D∑

j=2

Kj(x, s)

1− 1
|q|2sλj(x)

,
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whereK(x, s) resp.Kj(x, s) are linear combination of the functionsHB(x, s)

with coefficients that are analytic in x, compare also with (4.20).

This shows that (4.8) provides an analytic continuation of G(s, x) to the

the range ℜ(s) > log|q|2 |λ(x)| if x is sufficiently close to 1, say |x− 1| ≤ δ.

Furthermore, if |x − 1| ≥ δ and |ℜ(x)− 1| ≤ δ2 then Lemma 4 shows that

all eigenvalues β of A(x) satisfy |β| ≤ λ(|x|)−η′ for some η′. Consequently,

for all x in that range the function G(x, s) is analytic in the half plane

ℜ(s) > log|q|2(λ(|x|)− η′).

With help of this knowledge we are now ready to prove the second part

of Theorem 2. The proof method is close to that of [16].

Lemma 5. Suppose that F is integer valued and that (4.2) holds. Then

there exists δ > 0 and κ > 0 such that

(4.13)
∑

|z|2<N

xsF (z) ≪ N log|q|2 λ(|x|)−κ

uniformly for |x− 1| ≥ δ and |ℜ(x)− 1| ≤ δ2

Proof. Our starting point is formula (4.9). Observe that the integral is

not absolutely convergent. However, a slight variation of the Mellin-Perron

formula gives

(4.14)

S
(2)
N (x) =

∑

06=|z|2<N

xsq(z)

(

1− |z|2
N

)

=
1

2πi

∫ c+i∞

c−i∞
G(x, s)

N s

s(s+ 1)
ds

with an integral that will be absolutely convergent in the range of interest.

Suppose now that |x − 1| ≥ δ and |ℜ(x) − 1| ≤ δ2. Then we already

know that G(x, s) is analytic for ℜ(s) > log|q|2(λ(|x|)− η′) and that it can

be estimated by

|G(x, s)| ≪ (1 + |t|)2(1−σ)+η′′

if σ = ℜ(s) ≥ log|q|2(λ(|x|) − η′/2) > log|q|2 λ(|x|) − η′′′. Thus, it follows

that

S
(2)
N (x) ≪ N log|q|2 λ(|x|)−η′′′ .

It is now easy to derive proper upper bounds for

SN (x) =
∑

06=|z|2<N

xsq(z)

Observe that for every factor ρ > 1 we have

SN (x) =
ρS

(2)
ρN (x)− S

(2)
N (x)

ρ− 1
+

1

ρ− 1

∑

N≤|z|2<ρN

xsF (z)

(

1− |z|2
N

)

.

Set c = log|q|2 λ(|x|) − η′′′. By adjusting δ2 we can assume that c < 1.

Finally with

ρ = 1 +N−(1−c)/2
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it follows that

SN (x) ≪ N (1+c)/2Nmax(A1 log|q|2 (1+δ2),A2 log|q|2(1−δ2)).

Since δ2 can be chosen arbitrarily small it finally follows that

SN(x) ≪ N log|q|2 λ(|x|)−η,

where η > 0. �

In order to prove the asymptotic expansion (4.1) for complex x (close to

1) we will use the following properties (see also [3, p. 243]).

Lemma 6. Suppose that a and c are positive real numbers. Then

∣
∣
∣
∣

1

2πi

∫ c+iT

c−iT

as
ds

s
− 1

∣
∣
∣
∣
≤ ac

πT log a
(a > 1),(4.15)

∣
∣
∣
∣

1

2πi

∫ c+iT

c−iT

as
ds

s

∣
∣
∣
∣
≤ ac

πT log(1/a)
(0 < a < 1),(4.16)

∣
∣
∣
∣

1

2πi

∫ c+iT

c−iT

as
ds

s
− 1

2

∣
∣
∣
∣
≤ C

T
(a = 1).(4.17)

Proof. Suppose first that a > 1. By considering the contour integral of the

function F (s) = as/s around the rectangle with vertices −A− iT, c− iT, c+

iT,−A + iT and passing A to infinity one directly gets the representation

1

2πi

∫ c+iT

c−iT

as
ds

s
= Res(as/s; s = 0)

+
1

2πi

∫ c

−∞

ax+iT

x+ iT
dx

+
1

2πi

∫ c

−∞

ax−iT

x− iT
dx.

Since
∣
∣
∣
∣

1

2πi

∫ c

−∞

ax±iT

x± iT
dx

∣
∣
∣
∣
≤ ac

πT log a

we directly obtain the bound in the case a > 1.

The case 0 < a < 1 can be handled in the same way. And finally, in the

case a = 1 the integral can be explicitly calculated (and estimated). �

For the formulation of the next lemma we use Iverson’s notation [[p]] which

is 1 if p is a true proposition and 0 else.

Lemma 7. Suppose that ℓ is a positive real number, λ a non-zero complex

number c a real number with c > log|q|2 |λ|. Then we have for all real
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numbers N > ℓ2

1

2πi
lim
T→∞

∫ c+iT

c−iT

1
ℓ2s

1− 1
|q|2sλ

N s

s
ds =

λ⌊log|q|2 (N/ℓ2)⌋+1 − 1

λ− 1

(4.18)

− 1

2
λ⌊log|q|2(N/ℓ2)⌋[[log|q|2(N/ℓ2) ∈ Z]]

Furthermore, if c > max{1, log|q|2 |λ|} and x is sufficiently close to 1 then

we have for every set of S of Gaussian integers with 0 6∈ S and all irrational

numbers N > 1

1

2πi
lim
T→∞

∫ c+iT

c−iT

∑

z∈S
xsF (z)

(
1

|qz+ℓ|2s − 1
|qz|2s

)

1− 1
|q|2sλ

N s

s
ds

=
1

1− λ−1

∑

z∈S
xsF (z)

(

λ⌊log|q|2 (N/|qz+ℓ|2)⌋ − λ⌊log|q|2 (N/|qz|2)⌋)(4.19)

− 1

2

∑

z∈S
xsF (z)λ⌊log|q|2(N/|qz+ℓ|2)⌋[[log|q|2(N/|qz + ℓ|2) ∈ Z]]

+
1

2

∑

z∈S
xsF (z)λ⌊log|q|2 (N/|qz|2)⌋[[log|q|2(N/|qz|2) ∈ Z]] +O (1) .

Proof. By assumption we have |λ/|q|2s| < 1. Thus, by using a geometric

series expansion and Lemma 6 we get for all N > 1 such that log|q|2(N/ℓ2)

is not an integer

1

2πi

∫ c+iT

c−iT

1
ℓ2s

1− 1
|q|2sλ

N s

s
ds =

∑

k≥0

λk 1

2πi

∫ c+iT

c−iT

(
N

|q|2kℓ2
)s

ds

s

=
∑

k≤log|q|2 (N/ℓ2)

λk +O




1

T

∑

k≥0

|λ|k
(

N
|q|2kℓ2

)c

∣
∣
∣log

(
N

|q|2kℓ2
)∣
∣
∣





=
λ⌊log|q|2 (N/ℓ2)⌋+1 − 1

λ− 1
+O

(

1

T

(N/ℓ2)c

1− 1
|q|2c |λ|

)

.

Similarly we can proceed if log|q|2(N/ℓ2) is an integer. Of course, this implies

(4.18).

Next assume that neither log|q|2(N/|qz + ℓ|2) nor log|q|2(N/|qz|2) are in-

tegers for all z ∈ S. Hence, if N > |qz + ℓ|2 then we have

1

2πi

∫ c+iT

c−iT

1
|qz+ℓ|2s

1− 1
|q|2sλ

N s

s
ds =

λ⌊log|q|2 (N/|qz+ℓ|2)⌋+1 − 1

λ− 1

+O




1

T

∑

k≥0

|λ|k
(

N
|q|2k|qz+ℓ|2

)c

∣
∣
∣log

(
N

|q|2k|qz+ℓ|2
)∣
∣
∣
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and if N < |qz + ℓ|2 then we just have

1

2πi

∫ c+iT

c−iT

1
|qz+ℓ|2s

1− 1
|q|2sλ

N s

s
ds = O




1

T

∑

k≥0

|λ|k
(

N
|q|2k|qz+ℓ|2

)c

∣
∣
∣log

(
N

|q|2k|qz+ℓ|2
)∣
∣
∣



 .

Furthermore, for given N there are only finitely many pairs (k, z) with
∣
∣
∣
∣

N

|q|2k|qz + ℓ|2 − 1

∣
∣
∣
∣
<

1

2
.

Hence, the series

∑

z∈S

∑

k≥0

|λ|k
(

N
|q|2k|qz+ℓ|2

)c

∣
∣
∣log

(
N

|q|2k|qz+ℓ|2
)∣
∣
∣

is convergent if x is sufficiently close to 1. Consequently we get

1

2πi
lim
T→∞

∫ c+iT

c−iT

∑

z∈S
xsF (z)

(
1

|qz+ℓ|2s − 1
|qz|2s

)

1− 1
|q|2sλ

N s

s
ds

=
1

1− λ−1

∑

z∈S,|z|2<N

xsF (z)
(

λ⌊log|q|2 (N/|qz+ℓ|2)⌋ − λ⌊log|q|2(N/|qz|2)⌋)+O (1) .

Finally, since |qz+ ℓ|2 = |qz|2(1+O (1/|z|)) it follows that for x sufficiently

close to 1 we have

∑

z∈S,|z|2≥N

xsF (z)
(

λ⌊log|q|2(N/|qz+ℓ|2)⌋ − λ⌊log|q|2 (N/|qz|2)⌋) = O (1) .

This proves (4.19) if neither log|q|2(N/|qz + ℓ|2) nor log|q|2(N/|qz|2) are in-

tegers. It is, however, easy to adapt the above calculation in the general

case. �

We now come back to the representation (4.12) for G(s, x). We already

mentioned thatK(s, x) andKj(s, x) are linear combinations of the functions

HB(x, y) with coefficients that are analytic in x. We make this explicit for

K(s, x) in the following form:

K(s, x) =

a2∑

ℓ=1

c′ℓ(x)

ℓ2s

(4.20)

+
a2∑

ℓ=1

∑

B′∈LL

c′′ℓ,B′(x)
∑

z∈Z[i]\{0}
(ε0(z),...,εL−1(z))=B′

xsF (z)

(
1

|qz + ℓ|2s −
1

|qz|2s
)
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Hence, we obtain for N > 1

1

2πi
lim
T→∞

∫ c+iT

c−iT

K(x, s)

1− 1
|q|2sλ(x)

N s

s
ds =

1

1− λ(x)−1

a2∑

ℓ=1

c′ℓ(x)λ(x)
⌊log|q|2 N

ℓ2
⌋

+

a2∑

ℓ=1

∑

B′∈LL

c′′ℓ,B′(x)

1− λ(x)−1

∑

z 6=0

xsF (z)

(

λ(x)

⌊

log|q|2
N

|qz+ℓ|2

⌋

− λ(x)

⌊

log|q|2
N

|qz|2

⌋

)

− 1

2

a2∑

ℓ=1

c′ℓ(x)λ(x)
⌊log|q|2 N

ℓ2
⌋[[log|q|2

N

ℓ2
∈ Z]]

− 1

2

a2∑

ℓ=1

∑

B′∈LL

c′′ℓ,B′(x)
∑

z 6=0

xsF (z)λ(x)

⌊

log|q|2
N

|qz+ℓ|2

⌋

[[log|q|2
N

|qz + ℓ|2 ∈ Z]]

+
1

2

a2∑

ℓ=1

∑

B′∈LL

c′′ℓ,B′(x)
∑

z 6=0

xsF (z)λ(x)

⌊

log|q|2
N

|qz|2

⌋

[[log|q|2
N

|qz|2 ∈ Z]] +O (1) ,

where theO (1)-term is uniform forN > 1 and for x in a complex neighbour-

hood of x = 1. Note that the correction terms vanish if N is, for example,

irrational. Actually we will prove in Lemma 8 that these correction terms

can be always neglected since they sum up to zero in all cases.

Furthermore, note that the right hand side of this representation is of

order O
(

N log|q|2 ℜ(λ(x))
)

. Thus, if we do corresponding calculations for

Kj(x, s) and λj(x) also get

1

2πi
lim
T→∞

∫ c+iT

c−iT

Kj(x, s)

1− 1
|q|2sλj(x)

N s

s
ds = O

(

N log|q|2 ℜ(λj(x)
)

.

Hence, setting

(4.21) Φ(x, t) =
λ(x)−t

1− λ(x)−1

a2∑

ℓ=1

c′ℓ(x)λ(x)
⌊t−log|q|2 ℓ2⌋

+
a2∑

ℓ=1

∑

B′∈LL

λ(x)−tc′′ℓ,B′(x)

1− λ(x)−1

∑

z 6=0

xsF (z)
(

λ(x)t−⌊log|q|2 |qz+ℓ|2⌋−λ(x)⌊t−log|q|2 |qz|2⌋)

and

(4.22) Φ(x, t) = −λ(x)−t

2

a2∑

ℓ=1

c′ℓ(x)λ(x)
⌊t−log|q|2 ℓ2⌋[[t− log|q|2 ℓ

2 ∈ Z]]

−λ(x)−t

2

a2∑

ℓ=1

∑

B′∈LL

c′′ℓ,B′(x)
∑

z 6=0

xsF (z)λ(x)⌊t−log|q|2 |qz+ℓ|2⌋[[t−log|q|2 |qz+ℓ|2 ∈ Z]]

+
λ(x)−t

2

a2∑

ℓ=1

∑

B′∈LL

c′′ℓ,B′(x)
∑

z 6=0

xsF (z)λ(x)⌊t−log|q|2 |qz|2⌋[[t− log|q|2 |qz|2 ∈ Z]]
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we end up with the representation

(4.23)

SN(x) =
(

Φ(x, log|q|2 N) + Φ(x, log|q|2 N)
)

N log|q|2 λ(x) ·
(
1 +O

(
N−κ

))
,

where κ > 0 is just the minimal difference between ℜ(λ(x)) and ℜ(λj(x))

(j ≥ 2) when x varies in a sufficiently small neighbourhood of x = 1. By

definition it is clear that Φ(x, t) = Φ(x, t+1), Φ(x, t) = Φ(x, t+1) and that

Φ(x, t) and Φ(x, t) represent analytic functions in x if t is fixed. However,

Φ(x, log|q|2 N) = 0 if N is irrational. Thus, it is natural to expect that

Φ(x, t) = 0 for all t which is in fact true. The next lemma provides this

fact and also the continuity of Φ(x, t). The proof of Theorem 2 is then

completed.

Lemma 8. The function Φ(x, t) is Hölder continuous in t and analytic for

x in a complex neighbourhood of x = 1. Furthermore, Φ(x, t) = 0 for all t.

Remark 7. In particular this shows that Φ(x, t) from Theorem 1 equals

Φ(x, t) for real x.

Proof. First assume that x is real. By considering N = |q|2(n+t) for n =

0, 1, 2 . . . it follows from Theorem 1 and (4.23) that Φ(x, t) = Φ(x, t) +

Φ(x, t). Furthermore, we have Φ(x, t) = 0 if t is not of the form t =

log|q|2 m− k for some positive integers m and k. (This occurs, for example,

if t = log|q|2 T for some irrational number T .) Since t with this property are

dense in [0, 1) it follows that Φ(x, t) is continuous in t if and only if Φ(x, t) =

0 for all t. This observation can be also deduced from the subsequent

inequality (4.24) which is also true for complex x. Hence, continuity of the

mapping t 7→ Φ(x, t) follows from Φ(x, t) = 0 even if x is a complex number.

We now suppose that t ∈ [0, 1) is of the form t = log|q|2 m − k for some

positive integers m and k where we assume that k is chosen to be minimal.

If s 6= t is also of that form, that is s = log|q|2 n − j ∈ [0, 1) for positive

integers n and j, then we have (for a properly chosen constant c > 0)

|s− t| ≥ c ·
∣
∣|q|2s − |q|2t

∣
∣ ≥ 1

|q|2(k+j)
.

In particular we obtain

|q|2j ≥ c
1

|q|2k|s− t| .

Observe that only terms of the form λ(x)−j contribute to Φ(x, s); here

n = |qz + ℓ|2 resp. n = |qz|2 for some z ∈ Z[i]. Thus, if we fix some ε > 0

there exists δ > 0 such that
∣
∣
∣Φ(x, s)

∣
∣
∣ < ε
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for all s with |s− t| < δ.

Next observe that if t = log|q|2 m− k then for 0 < θ < 1

λ(x)⌊(t+θ)−log|q|2 ℓ2⌋ − λ(x)⌊(t−θ)−log|q|2 ℓ2⌋
1− 1/λ(x)

=
λ−k − λ−k−1

1− 1/λ(x)

= λ−k = λ(x)⌊t−log|q|2 ℓ2⌋.
Thus, by a similar reasoning as above we also get

(4.24)

∣
∣
∣
∣
Φ(x, t + θ)− Φ(x, t− θ) +

1

2
Φ(x, t)

∣
∣
∣
∣
< ε

if 0 < θ < δ. Furthermore, by continuity of Φ(x, t) = Φ(x, t) + Φ(x, t) we

have

|Φ(x, t + θ)− Φ(x, t− θ)|
=
∣
∣
∣Φ(x, t + θ) + Φ(x, t+ θ)− Φ(x, t− θ) + Φ(x, t− θ)

∣
∣
∣ < ε

in that range. Consequently
∣
∣
∣Φ(x, t)

∣
∣
∣ ≤ 2

∣
∣Φ(x, t+ θ)− Φ(x, t− θ)

∣
∣+ 2ε

≤ 2 |Φ(x, t + θ)− Φ(x, t− θ)|+ 6ε

< 7ε.

Since ε > 0 can be chosen arbitrarily small it follows that Φ(x, t) = 0.

Thus, we have shown that Φ(x, t) = 0 for all t if x is a real number close

to 1. Since Φ(x, t) is an analytic function in x we obtain Φ(x, t) = 0 for

complex x close to 1, too. As mentioned above this implies that Φ(x, t) is

continuous in t even if x is a complex number close to 1.

Similarly we can argue to show that Φ(x, t) is Hölder continuous in t.

Here we just have to use a quantified version of (4.24). We leave the details

to the reader. �

5. A method based on ergodic Z[i]-actions and skew products

In this section we will consider block additive functions sF taking values in

an abelian group A, hence one has F : AL+1 → A. The neutral element will

be denoted by 0A. We assume that A is compact metrisable, equipped with

its Haar measure λA and introduce the metrisable compact space Ω := AZ[i].

The shift Z[i]-action Σ : ζ 7→ Σζ on Ω is defined by setting for all ω : z 7→ ωz

and all ζ ∈ Z[i]:

(Σζ(ω))z := ωζ+z .

For any ω ∈ Ω, let consider its orbit closure Kω which is the topological

closure of its orbit

Oω := {Σζ(ω); ζ ∈ Z[i]}
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under the shift. Readily Kω is a compact subspace of Ω and Σζ(Kω) = Kω

for all ζ ∈ Z[i]. The restriction of Σζ on Kω, still denoted by Σζ , is a

homeomorphism of Kω, defining the shift Z[i]-action Σ : ζ 7→ Σζ on Kω. By

definition, the couple Kω := (Σ, Kω) is the flow associated to ω.

The function sF can be viewed as an element of the compact space Ω :=

AZ[i]. For short we set K(F ) (resp. K(F )) in place of KsF (resp. KsF ) and

we set I(F ) := {sF (z); z ∈ Z[i]}.

Lemma 9. Assume that A is a compact metrisable group, then the closure

A(F ) of the set I(F ) is a subgroup of A.

Proof. It is clear that the neutral element 0A of A belong to I(F ) so that,

due to compactness, it is enough to prove that for any a and a′ in A(F ) one

has a+ a′ in A(F ). Let U be any neighbourhood of the neutral element 0A

of A and let V be another neighbourhood of 0A such that V + V ⊂ U . By

assumption there exists Gaussian integers z and z′ such that sF (z)− a ∈ V

and sF (z
′)−a′ ∈ V . Taking z′′ = z+ qlengthq(z)+L+1z′ one gets sF (z′′)− (a+

a′) = sF (z)− a+ sF (z
′)− a′ ∈ V + V . Hence sF (z

′′)− (a+ a′) ∈ U proving

that a+ a′ belongs to A[F ]. �

In the next theorem we make use of the following simple result:

Lemma 10. For any neighbourhood V of 0A in A there exists a finite set

B = B(V ) of Z[i] such that for all r ∈ Z[i] there exists b ∈ B such that

sF (r + b) ∈ V .

Proof. We may assume that V = −V otherwise replace V by V ∩ (−V ).

Since I(F ) is dense in A(F ) and A(F ) is compact there exists an integer

N = N(V ) such that

A(F ) ⊆
⋃

z,lengthq(z)≤N

sF (z) + V.

Giving any Gaussian integer r we use the q-adic expansion of r to write the

decomposition r = r′ + qN+L+1t with lengthq(r
′) ≤ N + L + 1 and choose

r′′ with lengthq(r
′′) ≤ N such that −sF (t) ∈ V + sF (r

′′). With b = −r′+ r′′

we get

sF (r + b) = sF (r
′′ + qN+L+1t) = sF (r

′′) + sF (t) ∈ V.

In addition, from Lemma 1,

length(b) ≤ c+
log(|r′|+ |r′′|

log |q|

≤ c+
log 2 + log |q|(c+N + L+ 1)

log |q|
≤ c′ +N + L+ 1 .

The proof ends by taking B := {z ∈ Z[i] ; lengthq(z) ≤ c′+N +L+1}. �
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We are ready to prove the main result on the topological structure of

K(F ).

Theorem 3. The flow K(F ) is minimal, that is to say if M is any nonempty

compact subspace of K(F ) such that Σζ(M) ⊂ M for all ζ ∈ Z[i] then

M = K(F ).

Proof. Since K(F ) is the orbit closure of sF , it is enough to prove that sF

is uniformly recurrent (see [9, Section 4]). To this aim we have to show

that for any neighbourhood W of 0Ω, the neutral element of Ω, the set

S(W ) := {u ∈ Z[i]; Σu(sF ) − sF ∈ W} is syndetic, that is to say there is

a finite set E such that Z[i] = S(W ) + E. We may restrict to fundamental

neighbourhoods that are of the form

W (M,U) =
⋂

lengthq(z)≤M

{ω ∈ Ω ; ωz ∈ U}

where U is any neighbourhood of 0A. For the sequel, we introduce a neigh-

bourhood V of 0A such that V + V ⊂ U , a finite set B = B(V ) of Z[i]

given by Lemma 10 and let h = max{lengthq(b) ; b ∈ B}. Let us start with
any Gaussian integer z and write the decomposition z = z′ + qM+L+1r with

lengthq(z
′) ≤ M+L+1. By Lemma 1, length(−z′) ≤ 2c+M+L+1 and there

exists r′ ∈ B such that sF (r + r′) ∈ V . Now chose ζ = −z′ + qM+L+1r′. By

construction z+ ζ = qM+L+1(r+ r′) which implies sF (z+ ζ+ t)− sF (t) ∈ V

for all Gaussian integers t of length at most M . This means that z + ζ

belongs to S(W ) with

lengthq(ζ) ≤ c+
log(|z′|+ |r′||q|M+L+1)

log |q| ≤ c′′ +M + L+ 1 + h

were c′′ is an absolute constant. Therefore ζ belongs to a finite subset of

Z[i] and consequently S(W ) is syndetic. �

Now we introduce tools from ergodic theory to prove rather general dis-

tribution results on block-additive functions. We will use ideas discussed in

more details in [16] and refer to this paper for a detailed exposition of the

method.

The general idea of an approach motivated by ergodic theory is to build

a dynamical system (X, T, µ) from the underlying digital expansion. The

space X is then a suitably chosen compactification of Z[i], the action T :

Z[i] → Aut(X) is simply addition by elements of Z[i]. Since the compacti-

fication X carries a natural group structure in our case, µ is chosen as the

Haar measure on this group. Since no non-trivial block additive function

can be extended to a continuous or even measurable function on X (see

Remark 9 below), we use a trick developed by T. Kamae [17], which over-

comes this problem by constructing a suitable cocycle (we will introduce
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this notion below). The fact that the additive function has no extension to

X is then reflected by the non-triviality of the cocycle.

Consider the infinite product space

Kq = {0, 1, . . . , a2}N0

and embed Z[i] by q-adic digital expansion

ι : Z[i] → Kq

z 7→ (ε0(z), ε1(z), . . . , εL(z), 0, 0 . . .).

Then it was proved in [16] that addition in Z[i] can be extended continuously

to Kq. By this construction Kq inherits a group structure by

Kq = proj lim
n→∞

Z[i]/qnZ[i].

The corresponding Haar measure µ is the infinite product measure of uni-

form distribution on the digits. The cylinder set of base (x0, . . . , xn) ∈
{0, . . . , a2}n+1 is given by

[x0, . . . , xn] := x0 + x1q + · · ·+ xnq
n + qn+1Kq

= {z ∈ Kq; ε0(z) = x0, . . . , εn(z) = xn} .
The Haar measure of such sets is given by µ([x0, . . . , xn]) = |q|−n−1. The

Gaussian integers Z[i] act on Kq by addition

T : Z[i] → Aut(Kq)

z 7→ (x 7→ x+ z).

This continuous action is uniquely ergodic.

Definition 1. A sequence (Qn)n∈N of finite subsets of Z[i] is called a Følner

sequence, if it has the following properties

(1) ∀n : Qn ⊂ Qn+1

(2) There exists a constant K such that ∀n : #(Qn −Qn) ≤ K#Qn

(3) ∀g ∈ Z[i] : lim
n→∞

#(Qn △ (g +Qn))

#Qn

= 0

(△ denotes the symmetric difference).

Classical examples of such sequences, are the sequence of balls of radius√
n, Qn = {z ∈ Z[i]; |z|2 < n}, or the squares Qn = {z ∈ Z[i]; |ℜ(z)| <

n, |ℑ(z)| < n}. Another example more connected to digital expansions are

the “discrete q-adic dragons” Qn = {z ∈ Z[i]; lengthq(z) ≤ n}.
We recall that a point x ∈ X is called (T, µ)-generic (or simply generic,

if the underlying action is clear), if

(5.1) ∀f ∈ C(X) : lim
n→∞

1

#Qn

∑

z∈Qn

f ◦ Tz(x) =

∫

X

f dµ
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for a Følner sequence (Qn)n∈N. By Tempel’man’s ergodic theorem (cf.[21,

Chapter 6, Theorem 4.4]) µ-almost all points are generic. Clearly, for a

uniquely ergodic continuous action every point is generic and even more,

the convergence in (5.1) is uniform in x.

For uniquely ergodic non-continuous actions we need additional condi-

tions, which will be developed below, to have the same conclusion. To this

aim we introduce the following definition.

Definition 2. Let X be a compact metrisable space and T : Z[i]×X → X

a Borel-measurable Z[i]-action. A subset A ⊂ X is called uniformly T -

negligible, if

∀ε > 0, ∃g ∈ C(X), g ≥ 1A : lim sup
n→∞

∥
∥
∥
∥
∥

1

#Qn

∑

z∈Qn

g ◦ Tz

∥
∥
∥
∥
∥
∞

< ε

for a Følner sequence (Qn)n∈N.

Definition 3. Let X be a compact metrisable space and T : Z[i]×X → X

a Borel-measurable Z[i]-action. The action T is called uniformly quasi-

continuous, if for every z ∈ Z[i] the set of discontinuity points of Tz is

uniformly T -negligible.

Remark 8. If T is uniformly quasi-continuous and µ is a T -invariant Borel

probability measure on X , then T is µ-continuous.

The following theorem is an adapted version of [23, Annexe, Théorème].

The proof is slightly simplified by the fact that the action is invertible.

Theorem 4. Let T be a uniformly quasi-continuous Z[i]-action on the com-

pact metric space X and assume that T is uniquely ergodic with invariant

measure λ. Then for any λ-continuous function f we have

(5.2) lim
n→∞

1

#Qn

∑

z∈Qn

f ◦ Tz(x) =

∫

X

f dλ

uniformly in x.

Proof. Let Rλ denote the Banach space of real valued λ-continuous func-

tions on X equipped with the uniform norm and let

E = 〈{g − g ◦ Tz; g ∈ Rλ, z ∈ Z[i]}〉.
Then λ defines a linear form on Rλ with ker(λ) ⊆ E. We will show that we

have equality in fact.

Let L : Rλ → R be a continuous linear form with E ⊆ ker(L) and

L(1) = 1. Define for f ≥ 0

|L|(f) = sup {L(g); g ∈ Rλ, |g| ≤ f} .
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Then |L| can be extended to a continuous positive linear form on Rλ. Thus

|L| determines a measure ℓ on X .

We will now prove that |L| and therefore ℓ is T -invariant. By definition

we have for f ≥ 0

|L|(f ◦ Tz) = sup {L(g); g ∈ Rλ, |g| ≤ f ◦ Tz}
≥ sup {L(g ◦ Tz); g ◦ Tz ∈ Rλ, |g ◦ Tz| ≤ f ◦ Tz} ≥ |L|(f),

where we have used L(g) = L(g ◦ Tz) by E ⊆ ker(L). Applying the same

inequality to f ◦ T−z shows the T invariance.

By unique ergodicity we have ℓ = λ. On the other hand |L| − L is also

a T -invariant positive linear form. Thus we have |L| − L = aλ with a ≥ 0.

Hence L = (1− a)λ and by L(1) = 1 we get a = 0 and we have E = ker(L)

by the Hahn-Banach theorem.

Summing up, for every f ∈ Rλ and every ε > 0 there exists a k ∈ N,

g1, . . . , gk ∈ Rλ, and z1, . . . , zk ∈ Z[i] such that
∥
∥
∥
∥
∥
f − λ(f)−

k∑

m=1

(gm − gm ◦ Tzm)

∥
∥
∥
∥
∥
∞

< ε.

Applying the ergodic means to this inequality and using (3) in Definition 1

finishes the proof. �

We recall the definition of a cocycle:

Definition 4. Let (X, T, µ) be a Z[i]-action on X and A an abelian group.

A T -cocycle (or simply a cocycle, if the underlying action T is fixed) is a

Borel map

a : Z[i]×X → A

such that

(i) a(g + h, x) = a(g, Thx) + a(h, x) µ− a.e.,

(ii) µ




⋃

g∈Z[i]
({x | Tgx = x} ∩ {x | a(g, x) 6= 0A})



 = 0.

If we assume that T is aperiodic, i.e. µ({x | ∃g 6= 0, Tgx = x}) = 0, then

condition (ii) is always satisfied.

A cocycle a is called a coboundary, if there exists a Borel map f : X → A,

such that

∀x ∈ X, g ∈ Z[i] : a(g, x) = f(Tgx)− f(x).

The skew product (X × A, T a, µ⊗ λA) corresponding to the cocycle a is

given by

(5.3)
T a : Z[i] → Aut(X ×A)

z 7→ ((x, b) 7→ (x+ z, b + a(z, x))).
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Definition 5. An element α ∈ A is said to be an essential value of the

cocycle a if for every neighbourhood N(α) of α in A and for every B ∈ B(X)

(Borel sets) with µ(B) > 0,

(5.4) µ




⋃

g∈Z[i]

(
B ∩ T−1

g (B) ∩ {x | a(g, x) ∈ N(α)}
)



 > 0.

Let

E(a) = {α ∈ A | α is an essential value of a}.

This definition does not require ergodicity of T . We have the following

proposition.

Proposition 2 (cf. [25]). Let a : Z[i] × X → A be a cocycle, then the

following properties hold:

(1) If b : Z[i]×X → A is a coboundary then E(a+ b) = E(a).

(2) E(a) is a closed subgroup of A.

(3) a is a coboundary ⇔ E(a) = {0A}.

Let I be the set of T a-invariant elements in B⊗BA and put

I(a) = {β ∈ A | µ⊗ hA(τβB △ B) = 0 for every B ∈ I}
where τβ : X × A → X ×A is given by

τβ(x, α) = (x, α + β).

The set of essential values is directly related to the ergodicity of the skew

product action T a by the following theorem of K. Schmidt.

Theorem 5 ([25, Theorem 5.2]). Let T be an ergodic action on (X,B, µ)

which is assumed to be non-atomic. Then for any cocycle a : G×X → A:

E(a) = I(a).

Corollary 6. If T is ergodic, then

T a is ergodic ⇔ E(a) = A.

The cocycle suitable for our purposes is defined as

(5.5) aF (z, x) =







lim
w→x
w∈Z[i]

(sF (w + z)− sF (w)) if the limit exists

0 otherwise.

The limit exists, if the carry propagation in the addition x + z terminates

after finitely many steps. It was proved in [16] that for almost all x ∈ Kq the

addition x+ z produces only finitely many carries. Thus aF (z, x) is defined

for µ-almost all x. Furthermore, since aF (z, ·) is constant on cylinder sets

defined by the different possible carries in the addition x+ z (cf. [16]), aF is

also µ-continuous. Furthermore, notice that the set of discontinuity points
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of aF (z, ·) is closed, hence it is also uniformly T -negligible by the unique

ergodicity of the continuous action T . Thus we have proved

Lemma 11. The skew product action T aF given by (5.3) is uniformly quasi-

continuous.

We naturally define

V (aF ) = {aF (z, x) | x ∈ Kq, z ∈ Z[i]},
the closed subgroup V (aF ) of the values of aF . Recalling the definition of

the group A(F ) = {sF (z) ; z ∈ Z[i]}, we have readily

Proposition 3. The groups generated by the values of sF and aF are equal

V (aF ) = A(F ) = {sF (z) ; z ∈ Z[i]} .

Proposition 4. Let sF be a block-additive function on Z[i] and aF be the

corresponding cocycle on Kq. Then the set of essential values of aF equals

the closed subgroup A(F ) of A generated by the values of sF

E(aF ) = A(F ).

Proof. We need the following lemma which is the analog of [5, Lemma 12]

but in the case of cocycles for Z[i]-action.

Lemma 12. Let α ∈ A and assume that for any neighbourhood V = V (α)

of α in A there exists a constant κ > 0 such that for all non empty cylinder

set C of Kq there exists ζ ∈ Z[i] such that the inequality

µ(C ∩ Tζ(C) ∩ {x ∈ Kq ; aF (ζ, x) ∈ V }) ≥ κµ(C).

holds. Then α ∈ E(aF ).

Proof of Lemma 12. Set for short W (V, ζ) := {x ∈ Kq ; aF (ζ, x) ∈ V }. If

B is a Borel subset of Kq due to the regularity of the Haar measure, for

any ε > 0 (and ε < 1), there exists a non empty cylinder set C such that

µ(B ∩ C) ≥ (1− ε)µ(C), hence µ(C \ (B ∩ C)) ≤ εµ(C) leading to

µ(B ∩ Tζ(B) ∩W (V, ζ)) ≥ µ(B ∩ C) ∩ (Tζ(B ∩ C)) ∩W (V, ζ))

≥ µ(C ∩ Tζ(C) ∩W (V, ζ))− 2εµ(C) .

Choose ζ such that µ(C ∩ Tζ(C)∩W (V, ζ)) ≥ κµ(C) and ε < κ/2, then we

get µ(B ∩ Tζ(B) ∩W (V, ζ)) > 0. Hence ζ ∈ E(aF ) as expected. �

Going back to the proof of Proposition 4, it is enough to prove that

aF (y, z0) ∈ E(aF ) for every y, z0 ∈ Z[i], y = (y0, y1, . . . , yt)q. Let C be any

non empty cylinder set, say

C = [ε0, ε1, . . . , εk].
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Take ζ = qk+L+3z0 and consider

C0 = [ε0, ε1, . . . , εk, 0, . . . , 0
︸ ︷︷ ︸

L+2

, y0, y1, . . . , yt, 0, . . . , 0
︸ ︷︷ ︸

M

]

with M = 4 + max(0, lengthq(z0) − t). One has µ(C0) = κµ(C) with κ =
1

|q|M+t+L+2 TheM digits 0 in the end ensure that there is no carry propagation

beyond the k+L+ t+M +4 fixed digits. This means that for any x ∈ C0,

we have

aF (ζ, x) = aF (z0, y) and C0 ⊂ C ∩ T−1
ζ (C) .

This implies that for any neighbourhood V of aF (z0, y) one has

µ(C ∩ T−1
ζ (C) ∩W (V, ζ)) ≥ κµ(C)

and Lemma 12 gives aF (z0, y) ∈ E(aF ). �

Remark 9. By considering both Proposition 3 and (3) in Proposition 2 one

sees that if sF can be extended to a measurable map on Kq, then the cocycle

aF is a coboundary, hence sF is trivial i.e., sF (z) = 0A for all z ∈ Z[i].

Putting together Proposition 4, Corollary 6, and Lemma 11 we obtain

Proposition 5. Let sF be a block-additive function taking its values in

the compact abelian metrisable group A and let aF be the corresponding

cocycle defined by (5.5), and assume that A(F ) = A. Then the skew product

T aF is uniquely ergodic and more precisely, for all µ⊗ λA-continuous maps

f : X × A → C

lim
n→∞

1

#Qn

∑

z∈Qn

f ◦ T aF
z (x, g) =

∫

X×A

f d(µ⊗ λA)

uniformly in (x, g) ∈ Kq.

Corollary 7. Let sF be a real valued block additive function, which attains

an irrational value. Then (sF (z))z∈Z[i] is well uniformly distributed modulo

1 with respect to any Følner sequence (Qn)n∈N, i.e.

lim
n→∞

1

#Qn
#{z ∈ Qn : {sF (z + y)} ∈ I} = λ(I)

for every interval I ⊂ [0, 1] ({·} denotes the fractional part) uniformly in

y ∈ Z[i].

Proof. The assumption that sF attains an irrational value, clearly implies

that V (aF (mod 1)) = R/Z. Using Weyl’s criterion (cf. [22]) the assertion

is equivalent to

∀k ∈ Z \ {0} : lim
n→∞

1

#Qn

∑

z∈Qn

e(ksF (z + y)) = 0
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uniformly in y ∈ Z[i]. The points (y, 0) are uniformly generic for T aF by

Proposition 5. Now, by definition of T aF we have

T aF
z (y, 0) = (y + z, aF (z, y))

= (y + z, sF (y + z)− sF (y) (mod 1)).

Genericity of (y, 0) implies

lim
n→∞

1

#Qn

∣
∣
∣
∣
∣

∑

z∈Qn

χ0 ⊗ ek(T
aF
z (y, 0))

∣
∣
∣
∣
∣
= lim

n→∞
1

#Qn

∣
∣
∣
∣
∣

∑

z∈Qn

e(ksF (y + z))

∣
∣
∣
∣
∣
= 0,

where χ0 denotes the trivial character of Kq and ek(·) = e(k·). The conver-

gence is uniform in y ∈ Z[i] �

Corollary 8. Let sF be an integer valued block additive function. Then for

any integer M ≥ 2 for which there exists a value sF (z) that is coprime to

M the sequence (sF (z))z∈Z[i] is well uniformly distributed in residue classes

modulo M with respect to any Følner sequence (Qn)n∈N, i.e.

lim
n→∞

1

#Qn

#{z ∈ Qn : sF (z + y) ≡ m mod M} =
1

M

for m ∈ {0, 1, . . . ,M − 1}, uniformly in y ∈ Z[i].

Proof. After observing that V (aF (mod M)) = Z/MZ, the proof runs along

the same lines as the proof of Corollary 7. �
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