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Contents

8 Analysis of digital functions and applications page 4

8.1 Introduction: digital functions 4

8.2 Asymptotic analysis of digital functions 8

8.2.1 Completely additive functions 8

8.2.2 Multiplicative functions 12

8.2.3 Divide and conquer recursions and Mellin-Perron

techniques 17

8.2.4 Generalisations 21

8.3 Statistics on digital functions 32

8.3.1 General distributional results for additive functions 33

8.3.2 A central limit theorem for subsequences 40

8.3.3 A generating function approach to completely

q-additive functions 44

8.3.4 Uniform distribution of q-additive functions 48

8.4 Further results 51

8.4.1 Gelfond Problems 51

8.4.2 Odometers and systems of numeration 52

8.4.3 Distributional results for general numeration

systems 54

References 57

Notation Index 63

General Index 64

3



8

Analysis of digital functions and applications

8.1 Introduction: digital functions

Digital functions in a rather informal and general sense are functions de-

fined in a way depending on the digits in some digital representation of

the integers. In the simplest case the digital representation is the q-adic

representation and the dependence of the function on the digits is additive

as for the sum-of-digits function given by

sq

(
K∑

k=0

εkq
k

)
=

K∑

k=0

εk,

which also serves as the most prominent example for such functions.

As a very general reference for results on digital functions, we refer to

(Allouche and Shallit 2003). We remark that depending on the point of

view such maps f : N → A can be seen as (arithmetic) functions or se-

quences. The aim of this chapter is to study various asymptotic and limiting

properties of such functions.

For the convenience of the reader we collect the basic definitions as given

in (Allouche and Shallit 2003).

Automatic sequences

Definition 8.1.1 A sequence (v(n))n∈N is called q-automatic, if the collec-

tion of sequences

Kq(v) =
{(
v
(
qkn+ ℓ

))
n∈N

| k ∈ N, 0 ≤ ℓ < qk
}
, ”the q-kernel”, (8.1)

is finite.

This definition is equivalent to saying that the value v(n) can be determined

by a deterministic finite automaton on the q-adic digits of n. Furthermore,

this definition is equivalent to saying that the sequence (v(n))n∈N is the

4



8.1 Introduction: digital functions 5

image of a fixed point of a morphism of constant length q on a finite alphabet

(see the discussion in Chapters˜5 and˜6 of (Allouche and Shallit 2003) and

Sections˜?? and˜??).

We remark that for this definition the set of values A of v is simply a

finite set without any further structure.

Regular sequences

If the set A is a ring (in most of the examples this is Z, Fq, R, or C),

then the structure of the ring A can be used for the following definition

(cf.˜Chapter˜16 of (Allouche and Shallit 2003)).

Definition 8.1.2 Let A be a ring. Then an A-valued sequence (f(n))n∈N

is called q-regular, if the A-module generated by the q-kernel (8.1) is finitely

generated.

This is equivalent to saying that there is a positive integer r, sequences

(f1(n))n∈N = (f(n))n∈N, . . . , (fr(n))n∈N and map M : {0, . . . , q − 1} →
Ar×r, such that for all n ∈ N and all b ∈ {0, . . . , q − 1}




f1(qn+ b)

f2(qn+ b)
...

fr(qn+ b)


 = M(b)




f1(n)

f2(n)
...

fr(n)


 . (8.2)

q-Additive functions

For the following definition it is more convenient to view the sequence of

values (v(n))n∈N as a function on the positive integers taking its values in an

abelian group. The most important examples use the groups R, T = R/Z,

or Z/mZ. The group law will be written additively.

Definition 8.1.3 Let A be an abelian group. A function f : N → A is

called q-additive, if for all n ∈ N, all k ∈ N, and all 0 ≤ ℓ < qk

f
(
qkn+ ℓ

)
= f(qkn) + f(ℓ) (8.3)

holds. If there is no dependence on k on the right-hand-side, i.e.

f
(
qkn+ ℓ

)
= f(n) + f(ℓ), (8.4)

then f is called completely q-additive.
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From (8.3) it follows by induction that

f

(
K∑

k=0

εkq
k

)
=

K∑

k=0

f(εkq
k),

which shows that a q-additive function f is determined by the values f(εqk),

ε ∈ {1, . . . , q − 1}, k ∈ N, and f(0) = 0. A completely q-additive function

is determined by the values f(1), . . . , f(q − 1).

The values εqk can be viewed as the (additive) “building blocks” of

the positive integers with respect to q-adic numeration. This is a direct

analogy to classical additive functions as studied in analytic number the-

ory (cf.˜(Tenenbaum 1995, Elliott 1979, Elliott 1980, Elliott 1985)). In this

case the (multiplicative) “building blocks” of the positive integers, namely

the prime powers are used to define

f(pe11 p
e2
2 · · · pekk ) = f(pe11 ) + f(pe22 ) + · · ·+ f(pekk ).

These functions and their properties of their value distribution are usu-

ally studied by probabilistic methods (“Kubilius models”). In Section˜8.3

analogous models will be presented for q-additive functions.

Remark 8.1.4 A completely q-additive function f taking its values in a

ring A is q-regular, since the A-module generated by f and the constant

function 1 equals the A-module generated by the q-kernel.

q-Multiplicative functions

Multiplicative functions are defined analogous to additive functions using a

multiplicative structure (usually the multiplicative group of the field R or

C or the multiplicative semigroup of the ring Z).

Definition 8.1.5 Let A be a monoid (written multiplicatively). A function

f : N → A is called q-multiplicative, if for all n ∈ N, all k ∈ N, and all

0 ≤ ℓ < qk

f
(
qkn+ ℓ

)
= f(qkn)f(ℓ) (8.5)

holds. If there is no dependence on k on the right-hand-side, i.e.

f
(
qkn+ ℓ

)
= f(n)f(ℓ), (8.6)

then f is called completely q-multiplicative.
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From (8.5) it follows by induction that

f

(
K∑

k=0

εkq
k

)
=

K∏

k=0

f(εkq
k), (8.7)

which shows that a q-additive function f is determined by the values f(εqk),

ε ∈ {1, . . . , q − 1}, k ∈ N, and f(0) = 1. A completely q-multiplicative

function is determined by the values f(1), . . . , f(q − 1).

Remark 8.1.6 A completely q-multiplicative function f taking its values

in a ring A is q-regular, since the A-module generated by f equals the

A-module generated by the q-kernel.

Remark 8.1.7 If f(n) is a q-automatic sequence taking its values in the

finite set A, the indicator function 1{a}(f(n)) (for a ∈ A) can be expressed

in terms a matrix product involving the transition matrices of the underly-

ing finite automaton: let A = (Q, {0, . . . , q − 1}, δ, {i0}, A, τ) be the DFAO

defining f . For a ∈ {0, . . . , q − 1} define the Q×Q-matrix Mδ(a) by

(mδ(a))ij =

{
1 if δ(i, a) = j

0 otherwise

and the vectors v = (1, 0, . . . , 0) with the entry 1 in position i0 and w

wℓ =

{
1 if τ(ℓ) = a

0 otherwise.

Then 1{a}(f(n)) = v

J∏

j=0

Mδ(εj(n))w (8.8)

gives this representation.

Since the underlying DFA (Q, {0, . . . , q − 1}, δ, {i0}) recognises all q-adic
representations, the matrix

Mδ = Mδ(0) +Mδ(1) + · · ·+Mδ(q − 1) (8.9)

has the eigenvalue q and all eigenvalues are of modulus ≤ q. Further-

more, the eigenvalue q has the same geometric and algebraic multiplicity

(cf.˜Section˜??).
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8.2 Asymptotic analysis of digital functions

In this section we study the asymptotic behaviour of summatory functions

of various digital functions. We develop several techniques and discuss their

strengths and weaknesses. As a general theme, we can say that the values

(f(n))n∈N for digital functions usually vary very irregularly. Nevertheless,

the summatory function

F (N) =
∑

n<N

f(n) (8.10)

shows a rather “smooth” asymptotic behaviour, in many cases there even

exists an exact formula for F (N). Usually, this formula involves a periodic

continuous function of logq N .

8.2.1 Completely additive functions

Completely additive functions, such as the sum-of-digits function have been

the first and simplest type of digital functions that has been studied. The

study of the sum (8.10) is especially easy in this case and will be used to

develop several techniques. Furthermore, this will be a preparation for the

development in Section˜8.3, where we consider f as a random variables on

the finite probability space

ΩN = {0, . . . , N − 1}, PN(A) =
#A

N
.

In this interpretation, F (N)/N is simply the mean of the function f on

the space ΩN .

Theorem 8.2.1 Let f : N → R be a completely q-additive function given

by the values f(0) = 0, f(1), . . . , f(q − 1). Then there exists a continuous

periodic function Φf of period 1, such that
∑

n<N

f(n) = CfN logq N +NΦf (logq N) (8.11)

with Cf = 1
q (f(1) + · · ·+ f(q − 1))

Remark 8.2.2 Notice that the fractional parts of logqN are dense in the

interval [0, 1]. This allows to interpret continuity of Φ in the sense that the

discrete set of points
{
({logq N}, F (N)/N − Cf logqN) | N ∈ N

}

can be fit by one (and only one!) graph of a continuous function.
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Remark 8.2.3 The function Φf is continuous and nowhere differentiable

(except for trivial cases). This fact has been observed in (Tenenbaum 1997)

for rather general periodic functions occurring in the context of digital func-

tions.

0.2 0.4 0.6 0.8 1

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

Fig. 8.1. Plot of the function Φf for the sum-of-digits function in base 3

Proof [(Delange 1975)] We will present Delange’s method for general com-

pletely q-additive functions f . As a first step we rewrite F (N) as

∑

n<N

f(n) =

K∑

k=0

∑

n<N

f(εk(n)).

The k-th digit εk(x) of a real number x is a periodic function of period qk+1,

which is constant on intervals [nqk, (n+1)qk). Using εk(x) = ε0(xq
−k), the

inner sum can be rewritten as an integral

∑

n<N

f(εk(x)) =

∫ N

0

f(εk(x)) dx = NCf + qk
∫ Nq−k

0

(f(ε0(x)) − Cf ) dx.

Thus we have by inverting the order of summation

∑

n<N

f(n) = CfKN + qK
K∑

k=0

q−k

∫ qkNq−K

0

(f(ε0(x))− Cf ) dx.
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Since Cf = 1
q

∫ q

0 f(ε0(x)) dx, the last integral vanishes for k > K. Thus the

sum can be extended to an infinite sum, and we get

∑

n<N

f(n) = CfN logqN

+N

(
q−{logq N}

∞∑

k=0

q−kg(q{logq N}+k)− Cf{logq N}
)
,

where g(t) =
∫ t

0 f(ε0(x) − Cf ) dx is a piecewise linear periodic function of

period q. Taking

Φf (x) = q−x
∞∑

k=0

q−kg(qk+x)− Cfx x ∈ [0, 1]

gives the desired result.

Remark 8.2.4 Delange’s method is applicable in cases of systems of

numeration, which allow to give a closed expression for the sin-

gle digits. This is the case for instance for canonical number

systems (see Section˜1.3), where this method has been applied by

(Grabner, Kirschenhofer, and Prodinger 1998) to prove an asymptotic for-

mula for the sum of digits on the Gaussian integers.

We compute the Fourier-coefficients of Φf

Φ̂f (m) =

∫ 1

0

Φf (x)e
−2πimx dx

=
∞∑

k=0

∫ 1

0

q−k−xg(qk+x)e−2πimx dx− Cf

∫ 1

0

xe−2πimx dx.

We substitute u = qk+x in the integral and observe that the ranges of

integration for u add then up to [1,∞)

Φ̂f (m) =
1

log q

∫ ∞

1

g(u)u−
2πim
log q

−2 du+
Cf

2πim
.

This integral is easily recognised as a Mellin transform and can be computed

by partial integration using the fact that the integrand is periodic with

period q.

We write

Mg(s) =

∫ ∞

1

g(u)us−1 du, (8.12)
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and using the notation χm = 2πm
log q

Φ̂f (m) =
1

log q
Mg(−1− χm) +

Cf

2πim
.

Since g is bounded, the integral (8.12) converges for ℜs < 0. By partial

integration we get

Mg(s) = g(u)
us

s

∣∣∣∣
∞

u=1

− 1

s

∫ ∞

1

(f(ε0(u))− Cf )u
s du

=
Cf

s
− 1

s

∫ ∞

1

(f(ε0(u))− Cf )u
s du.

The function f(ε0(u)) is periodic with period q and constant on intervals

between consecutive integers, which allows to compute the last integral

Cf

s
− 1

s

∫ ∞

1

(f(ε0(u))− Cf )u
s du

=
Cf

s
− 1

s(s+ 1)

q−1∑

k=1

f(k)

∞∑

n=0

(
(qn+ k + 1)s+1−(qn+ k)s+1

)
− Cf

s(s+ 1)

=
Cf

s+ 1
− qs+1

s(s+ 1)

q−1∑

k=1

f(k)

(
ζ

(
−s− 1,

k + 1

q

)
− ζ

(
−s− 1,

k

q

))
,

(8.13)

where

ζ(s, α) =

∞∑

n=0

1

(n+ α)s

denotes the Hurwitz zeta function; the Riemann zeta function is given by

ζ(s) = ζ(s, 1). The poles of the Hurwitz zeta functions in (8.13) at s = −2

cancel; furthermore, the poles at s = −1 in (8.13) cancel by the fact that

ζ(0, α) = 1
2 − α.

Putting everything together gives (for m 6= 0)

Φ̂f (m) = − 1

χm(χm + 1)

q−1∑

k=1

f(k)

(
ζ

(
χm,

k + 1

q

)
− ζ

(
χm,

k

q

))

and

Φ̂f (0) =
1

log q

∫ ∞

1

g(u)u−2 du− Cf

2

= Cf

(
1

log q
− 1

2

)
− 1

log q

q−1∑

k=1

f(k) log
Γ((k + 1)/q)

Γ(k/q)
.
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Here we have used

ζ′(0, α) = −1

2
log(2π) + log Γ(α).

If f = sq is the sum of digits function, these formulæ for the Fourier-

coefficients can be simplified further. Since sq(k) = k for k = 0, . . . , q − 1,

Abelian summation yields

Φ̂sq (m) = − (q − 1)

χm(χm + 1)
ζ (χm) for m 6= 0

and

Φ̂sq (0) =
q − 1

2

(
1

log q
− log 2π

log q
− 1

2

)
+

1

2
,

which is the result of (Delange 1975).

Remark 8.2.5 Finding the maxima and minima of the periodic function

Φf is a tricky task. For the sum-of-digits function that has been done in

(Foster 1987), (Foster 1991), and (Foster 1992). For the counting functions

of q-adic digits ≥ d, the minimum of the corresponding periodic function

has been determined in (Grabner 2004).

Remark 8.2.6 There is an elementary method for proving (8.11)

which runs along the same lines as the proof of Theorem˜8.2.7 be-

low. This method can be generalised to recurrence based sys-

tems of numeration and other generalisations of base q numera-

tion systems (cf. (Grabner and Tichy 1990), (Grabner and Tichy 1991),

(Kirschenhofer and Tichy 1984), (Grabner and Rigo 2003)). Working out

this proof of Theorem˜8.2.1 is left as an exercise.

8.2.2 Multiplicative functions

Multiplicative functions with respect to numeration have been introduced

to study statistical properties of additive functions via exponential sums

(cf.˜(Delange 1972)). This is used in Section˜8.3 to derive limit theorems

of various kinds for additive functions.

In this section we study the summatory functions of completely q-

multiplicative functions by elementary means. The following theorem was

proved in (Grabner 1993).

Theorem 8.2.7 Let f be a complex valued completely q-multiplicative func-

tion satisfying

|1 + f(1) + . . .+ f(q − 1)| > max
0≤a<q

|f(a)|. (8.14)
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Then there exists a continuous periodic function ψ of period 1, such that

F (N) =
∑

n<N

f(n) = Nρeiα logq Nψ(logq N), (8.15)

where ρ = logq |F (q)| and α = arg(F (q)).

Proof We write

N =

K∑

k=0

εk(N)qk

and set

Nℓ =
K∑

k=ℓ

εk(N)qk.

Then we split the sum for F (N)

F (N) =
K∑

ℓ=0

∑

n<εℓ(N)qℓ

f(Nℓ+1 + n) =
K∑

ℓ=0

f(Nℓ+1)F (εℓ(N)qℓ). (8.16)

Thus we have reduced the problem to the computation of F (aqℓ) for a ∈
{0, . . . , q − 1}, which can be done using the independence of the digits

F (aqℓ) =

q−1∑

ε0=0

· · ·
q−1∑

εℓ−1=0

a−1∑

εℓ=0

f(ε0) · · · f(εℓ) = F (q)ℓF (a).

Inserting this into (8.16) gives

F (N) =

K∑

ℓ=0

F (q)ℓF (εℓ(N))f(εℓ+1(N)) · · · f(εK(N)). (8.17)

We define a function ϕ : [1, q] → C by

ϕ

( ∞∑

ℓ=0

εℓ
qℓ

)
=

∞∑

ℓ=0

F (εℓ)F (q)
−ℓ

ℓ−1∏

k=0

f(εk). (8.18)

Notice that this series is geometrically convergent by the assumption (8.14).
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The function is well defined and continuous, because

ϕ

(
L∑

ℓ=0

εℓ
qℓ

)
=

L∑

ℓ=0

F (εℓ)F (q)
−ℓ

ℓ−1∏

k=0

f(εk)

=
L−1∑

ℓ=0

F (εℓ)F (q)
−ℓ

ℓ−1∏

k=0

f(εk) + F (εL − 1)F (q)−L
L−1∏

k=0

f(εk)

+
L∏

k=0

f(εk)
∞∑

ℓ=L+1

F (q − 1)F (q)−ℓf(q − 1)ℓ−L−1

= ϕ

(
L−1∑

ℓ=0

εℓ
qℓ

+
εL − 1

qL
+

∞∑

ℓ=L+1

q − 1

qℓ

)
.

Furthermore, we have

ϕ(1) = 1 and ϕ(q) = F (q).

Using the function ϕ we can rewrite˜(8.17)

F (N) = F (q)Kϕ
(
Nq−K

)
= Nρeiα logq NF (q)−{logq N}ϕ

(
q{logq N}

)
.

Setting

ψ(logqN) = F (q)−{logq N}ϕ
(
q{logq N}

)

yields the desired result (notice that ψ(0) = ψ(1)).

Remark 8.2.8 Notice that condition (8.14) is trivially satisfied for f tak-

ing only positive values. In this case the function ψ is the quotient of a

monotonically increasing function and a differentiable function. It is there-

fore differentiable almost everywhere. Nevertheless, it is not the integral of

its derivative (except for trivial cases like f ≡ 1). An explanation for this

phenomenon is given by (Tenenbaum 1997).

The following corollary describes the behaviour of F (N), if (8.14) is not

satisfied.

Corollary 8.2.9 Let f be a completely q-multiplicative function satisfying

|F (q)| = |1 + f(1) + . . .+ f(q − 1)| = max
0≤a<q

|f(a)| =M, (8.19)

and Q = max1≤a<q |F (a)|. Then

|F (N)| ≤ Q(K + 1)MK ≤ QN logq M (logqN + 1).
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If

|F (q)| = |1 + f(1) + . . .+ f(q − 1)| < max
0≤a<q

|f(a)| =M, (8.20)

then

|F (N)| ≤ QMK+1

M − |F (q)| ≤
QM

M − |F (q)|N
logq M .

Proof Every summand on the right hand side of (8.17) can be estimated

by Q|F (q)|ℓMK−ℓ. Considering the two cases M = |F (q)| and M > |F (q)|
gives the two assertions.

Example 8.2.10 (Barbolosi and Grabner 1996) Let p be a prime and

write n and k in base p. Then Lucas’ congruence asserts that
(
n

k

)
≡
(
ε0(n)

ε0(k)

)(
ε1(n)

ε1(k)

)
· · ·
(
εL(n)

εL(k)

)
(mod p). (8.21)

From this congruence it follows immediately that (see also˜(Stein 1989))

#

{
0 ≤ k ≤ n |

(
n

k

)
6≡ 0 (mod p)

}
=

L∏

ℓ=0

(1 + εℓ(n)),

which is a completely p-multiplicative function. Furthermore, for any mul-

tiplicative character χ modulo p the function

fχ(n) =

n∑

k=0

χ

((
n

k

))
=

L∏

ℓ=0

fχ(εℓ(n)),

is completely p-multiplicative.

Using Fourier analysis on the finite group (Z/pZ)∗ we obtain for a 6≡ 0

(mod p)

#

{
0 ≤ k ≤ n < N |

(
n

k

)
≡ a (mod p)

}
=

1

p− 1

∑

χ

∑

n<N

χ(a)fχ(n).

Since for χ 6= χ0 (χ0 denotes the principal character) |Fχ(p)| < Fχ0
(p) =

p(p−1)
2 and max0≤a<p |fχ(a)| ≤ p−1, the term for χ = χ0 is the asymptotic

main term. This implies that the binomial coefficients not divisible by p

are uniformly distributed in the prime residue classes modulo p.

For p = 3 we have the simple formulæ (cf. also˜(Wolfram 1984))

#

{
0 ≤ k ≤ n |

(
n

k

)
≡ 1 (mod 3)

}
=

1

2
2c1(n)

(
3c2(n) + 1

)
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and

#

{
0 ≤ k ≤ n |

(
n

k

)
≡ 2 (mod 3)

}
=

1

2
2c1(n)

(
3c2(n) − 1

)
,

where cε(n) (ε = 1, 2) denotes the number of digits ε in the base 3 expansion

of n.

Example 8.2.11 (Larcher 1996) The number of odd binomial coeffi-

cients in the n-th row of Pascal’s triangle is given by 2s2(n), where s2(n)

denotes the binary sum-of-digits function. This is just the special case p = 2

of the last example. In this case the corresponding periodic function ψ has

been investigated further by (Harborth 1977). Since the function is singu-

lar, the minimum cannot be found by differential calculus (the maximum is

easily found to be 1 and to be attained at integer points). (Larcher 1996)

gives an algorithm, which finds arbitrarily good approximations to the min-

imum.

0.2 0.4 0.6 0.8 1

0.825

0.85

0.875

0.9

0.925

0.95

0.975

Fig. 8.2. Plot of the function ψ for the multiplicative function 2s2(n)

Remark 8.2.12 The two examples show that the number of binomial co-

efficients
(
n
k

)
not divisible by p in the region 0 ≤ k ≤ n < N is of order of

magnitude Nρp with ρp = logp
p(p+1)

2 < 2, which implies that “almost all”

(in the sense of density) binomial coefficients are divisible by p. This fact

and further results on the divisibility of binomial coefficients have been ob-

served in (Singmaster 1974a), (Singmaster 1974b), and (Singmaster 1974c).
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8.2.3 Divide and conquer recursions and Mellin-Perron

techniques

A divide and conquer recursions is a relation of the form

an = α a⌊n/2⌋ + β a⌈n/2⌉ + gn (8.22)

(with suitable initial conditions). Such kinds of recurrences appear in sev-

eral applications in the analysis of algorithms, for example in the analysis

of the number of comparisons in sorting networks (Bose and Nelson 1962),

(Hwang 1998), the Karatsuba multiplication (Knuth 1981), or the Eu-

clidean matching heuristic (Reingold and Tarjan 1981). The general

scheme of all these algorithms is that to perform an operation (for instance,

sorting) on a set of data of size n, at first the set is divided into parts of

respective sizes ⌈n
2 ⌉ and ⌊n

2 ⌋. Then the algorithm is applied recursively to

these smaller sets of data. The costs for merging the results for the original

set of data are measured by the term gn. A first approach to a unified

study of such recurrences was done in (Flajolet and Golin 1993). This was

extended further in (Hwang 1998).

Furthermore, several digital functions satisfy a relation of the form (8.22).

For example, if we consider the summatory function S(N) =
∑

n<N s(n),

where s(n) denotes the binary sum-of-digits function, then by using the

relations s(2k) = s(k) and s(2k + 1) = s(k) + 1 we directly get

S(N) =
∑

2k<N

s(2k) +
∑

2k+1<N

s(2k + 1)

=
∑

k<⌈N/2⌉
s(k) +

∑

k<⌊N/2⌋
(s(k) + 1)

= S(⌈N/2⌉) + S(⌊N/2⌋) + ⌊N/2⌋.

It is not difficult to guess the (correct) growth rate of an if one knows

the growth rate of gn. However, it is usually a non-trivial problem to get

precise asymptotic information on an. There is, however, a general method

based on Dirichlet series. This method has its origin in classical analytic

number theory (cf.˜(Tenenbaum 1995)). Set

A(s) =
∑

n≥1

an+1 − an
ns

and G(s) =
∑

n≥1

gn+1 − gn
ns

(8.23)
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Then, by distinguishing between odd and even numbers we get

A(s) = α
∑

n≥1

a⌊(n+1)/2⌋ − a⌊n/2⌋
ns

+ β
∑

n≥1

a⌈(n+1)/2⌉ − a⌈n/2⌉
ns

+G(s)

= α
∑

k≥0

ak+1 − ak
(2k + 1)s

+ β
∑

k≥1

ak+1 − ak
(2k)s

+G(s)

=
α+ β

2s
A(s)+α(a1−a0)+α

∑

k≥1

(ak+1−ak)
(

1

(2k + 1)s
− 1

(2k)s

)
+G(s)

which leads to the representation

A(s) =
α(a1 − a0) + F (s) +G(s)

1− (α+ β)2−s
, (8.24)

where

F (s) = α
∑

k≥1

(ak+1 − ak)

(
1

(2k + 1)s
− 1

(2k)s

)

usually has a smaller abscissa of convergence than A(s). Thus the expression

(8.24) provides us with the analytic continuation of A(s) to a larger domain

together with information about the poles of A(s).

Applying the Mellin-Perron summation formula (cf.˜(Tenenbaum 1995))

we obtain

an = a1 +

n−1∑

k=1

(ak+1 − ak) = a1 +
1

2πi

c+i∞∫

c−i∞

A(s)
ns

s
ds. (8.25)

Here c has to be chosen large enough to make the series A(s) absolutely (and

therefore uniformly) convergent on the line ℜ(s) = c. Usually, the integral

in (8.25) is only convergent in the sense of a Cauchy principal value, which

makes this analysis a bit delicate.

Using the analytic continuation of A(s) makes it possible to deform the

contour of integration to the left (in order to make the exponent of n occur-

ring in the integral smaller). This is again a standard technique in analytic

number theory. The problem when shifting the line of integration to the

left comes from the convergence of the integral in (8.25). As a general fact

about Dirichlet series, the growth along vertical lines becomes stronger for

smaller values of ℜ(s) (cf.˜(Hardy and Riesz 1964)). Thus additional infor-

mation on the growth of F (s) and G(s) along vertical lines is needed. This

is usually the technically most elaborate step of this method.

If the convergence of the integral is proved, then (8.25) can be rewritten
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as (for c′ < c)

an = a1 +
∑

poles of A(s)
with c′<ℜ(s)<c

Res
nsA(s)

s
+

1

2πi

c′+i∞∫

c′−i∞

A(s)
ns

s
ds. (8.26)

Usually, the poles mainly come from the zeroes of the denominator in (8.24),

which are given by

sk =
log(α+ β)

log 2
+

2kπi

log 2
, k ∈ Z.

The residues at these points take the form

Ress=sk

nsA(s)

s
= nρ e

2kπi log2 n

sk log 2
(α(a1 − a0) + F (sk) +G(sk)) (8.27)

with ρ = log2(α + β). The sum of these residues is then the main term in

the asymptotic expansion of an and can be written as

an = a1 + nρ
∑

k∈Z

e2kπi log2 n

sk log 2
(α(a1 − a0) + F (sk) +G(sk)) +O

(
nc′
)

= nρH(log2 n) +O
(
nc′
)
.

The series can be interpreted as the Fourier series of a periodic function

H in the dyadic logarithm of n. This is the same periodicity phenomenon

that we encountered in the study of additive and multiplicative functions

before. The Fourier series usually converges only very slowly, which reflects

the lack of smoothness of the function H . A collection of arguments, which

can be used to prove growth estimates for Dirichlet series in the context of

digital functions and divide-and-conquer recurrences as well as arguments

for the convergence of the Fourier series of the occurring periodic functions

is given in (Grabner and Hwang 2005). The fact that Dirichlet generat-

ing functions of q-regular functions have an analytic continuation to the

whole complex plane, as well as information on their poles, was derived in

(Allouche, Mendès France, and Peyrière 2000).

Example 8.2.13 For the binary sum-of-digits function s2(n), we have

(cf.˜(Flajolet, Grabner, Kirschenhofer, et˜al. 1994))

∞∑

n=1

s2(n)− s2(n− 1)

ns
=

2s − 2

2s − 1
ζ(s),

where ζ(s) is the Riemann ζ-function. Using the according version of the
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Mellin-Perron formula, we get

∑

n<N

s2(n) =
1

2πi

2+i∞∫

2−i∞

2s − 2

2s − 1
ζ(s)

Ns+1

s(s+ 1)
ds. (8.28)

Since the growth of ζ(σ+it) for fixed σ and |t| → ∞ is very well understood

(cf.˜(Titchmarsh 1986)), the line of integration can be shifted to ℜ(s) = − 1
4

(it is known that ζ(− 1
4 + it) = O(|t|3/4)). Collecting residues (there is a

double pole at s = 0, which corresponds to the N logN -term) gives

∑

n<N

s2(n)

=
1

2
N log2N− log2 π

2
− 1

2 log 2
− 1

4
−N

∑

k∈Z\{0}

ζ(sk)

sk(sk + 1) log 2
e2kπi log2 N .

(8.29)

In this case it can be shown that the remainder term vanishes. This is

exactly the Fourier series that we got by Delange’s method before.

Remark 8.2.14 The vanishing of the remainder term in (8.29) comes from

the fact that the integral

1

2πi

− 1
4
+i∞∫

− 1
4
−i∞

2s − 2

2s − 1
ζ(s)

Ns+1

s(s+ 1)
ds

vanishes for N ∈ N. There is a rather general theorem, which en-

sures the vanishing of of integrals occurring as remainder terms in this

context (cf.˜(Hwang 1998) and for a slightly more general formulation

(Grabner and Hwang 2005)).

In order to overcome the difficulties originating from the slow convergence

of the integral in (8.25), in (Grabner and Hwang 2005) double differences

and higher order Mellin-Perron formulæ were studied. Instead of the func-

tion A(s) in (8.23) the function

Ã(s) =

∞∑

n=1

an+1 − 2an + an−1

ns

was used, which allows to compute an by the formula

an = na1 +
1

2πi

c+i∞∫

c−i∞

Ã(s)
ns+1

s(s+ 1)
ds.
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This formula gives a gain in convergence. On the other hand this gain has

to be payed by more complicated expressions and the fact that the poles

of Ã(s) are one unit further to the left of the poles of A(s), which makes

the growth of Ã(s) worse on vertical lines. Nevertheless, in many cases the

double differencing technique gives easier proves for the convergence of the

Mellin-Perron integrals.

Even if the integral in (8.25) is only conditionally convergent, in

(Drmota, Grabner, and Liardet 2008) rather elaborate estimates could be

used to obtain an analogue to Theorem˜8.3.17 for the summatory function

of a block-multiplicative function on the Gaussian integers. In this case

the method was applied to the Gaussian integers, which made alternative

techniques still more difficult or even impossible to apply.

8.2.4 Generalisations

8.2.4.1 q-regular functions

The study of the summatory functions of q-regular functions follows the

same line of ideas as the study of completely multiplicative functions. The

only difference is that the products of scalars used there have to be replaced

by matrix products. By the lack of commutativity, this makes the order of

factors in all occurring products significant.

More precisely, let f : N → R be a real-valued q-regular function. Then by

Definition˜8.1.2 and the discussion after the definition there exist functions

f = f1, f2, . . . , fr and a map M : {0, . . . , q − 1} → Rr×r such that (8.2)

holds. We write f(n) = (f1(n), . . . , fr(n))
T and use (8.2) to obtain

f

(
L∑

ℓ=0

εℓq
ℓ

)
=

L∏

ℓ=0

M(εℓ)f(0), (8.30)

which allows to write

f(n) = v1

L∏

ℓ=0

M(εℓ(n))v2

with v1 = (1, 0, . . . , 0) and v2 = f(0).

Then by arguing along the same lines as in the proof of Theorem˜8.2.7

we get the following theorem.

Theorem 8.2.15 Let f : N → R be a q-regular function and let M be the

matrix function related to f by (8.2). Let F = M(0) + · · ·+M(q − 1) and

assume that F has a unique eigenvalue λ > 0 of maximal modulus and that
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this eigenvalue has algebraic multiplicity 1. Assume further that

λ > max
ε

‖M(ε)‖

for some matrix norm ‖ · ‖. Denote by λ2 the modulus of the second largest

eigenvalue. Then there exists a periodic continuous function Φ such that
∑

n<N

f(n) = N logq λΦ(logq N) +O
(
N logq λ2

)
+O(logN).

Remark 8.2.16 The asymptotic behaviour of
∑

n<N f(n) like a pure

power of N corresponds to the fact that the part of F corresponding to

λ is diagonalisable. If there are different Jordan-blocks occurring for λ,

then powers of the logarithm occur in the asymptotic main terms. This

happens, as can be seen from the result for q-additive functions.

Remark 8.2.17 The value f(n) of a q-regular function in terms of the q-

adic digits of n is given the matrix product (8.30). Since all possible finite

sequences of digits occur as digital expansions of the positive integers, the

question of finding the maximal growth order of f(n) is related to extremal

matrix products as studied in Chapter˜10.

8.2.4.2 q-automatic functions

Let f(n) be an A-valued q-automatic function and a ∈ A. By Remark˜8.1.7

the indicator function 1{a}(f(n)) can be expressed in terms of a matrix

valued completely q-multiplicative function by (8.8). This makes the ideas

developed before applicable for the computation of

F (N) =
∑

n<N

1{a}(f(n)). (8.31)

The question of existence of the limit limN→∞ F (N)/N , the density of

the set {n ∈ N | f(n) = a} is of special interest in this context

(cf.˜Remark˜8.2.20 below).

Applying the same reasoning as above we can prove

Theorem 8.2.18 Let f(n) be an A-valued q-automatic function and a ∈
A. Assume that q is the dominating eigenvalue of the matrix Mδ defined

by (8.9) (i.e. all other eigenvalues have modulus < q). Then there is a

continuous periodic function Ψ of period 1 such that

F (N) = NΨ(logqN) + o(N).
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Corollary 8.2.19 Under the assumptions of Theorem˜8.2.18 let A =

limk→∞ q−kMk
δ . Then the function Ψ is constant, if

AMδ(0) = AMδ(1) = . . . = AMδ(q − 1) = Q (8.32)

and

QMδ(a) = Q for a = 0, . . . , q − 1. (8.33)

Proof Using the notation of Remark˜8.1.7 we can write for K = ⌊logq N⌋

F (N) = qKvG(Nq−K)w + o(N),

where

G




∞∑

j=0

εj
qj


 = A (M(1) + · · ·+M(q − 1))

+

∞∑

j=1

q−jA (M(0) + · · ·+M(εj − 1))M(εj−1) · · ·M(ε0)

+
1

q − 1
A (M−M(0)) . (8.34)

Here and in the sequel we omit the subscript δ. This function is continuous

on the interval [1, q] and

G(1) =
1

q − 1
A(M −M(0)) and G(q) =

q

q − 1
A(M −M(0)).

This proves the theorem.

The function Ψ in the theorem is constant, ifG(x) is proportional to x for

x ∈ [1, q]. Inserting the integer values {1, . . . , q} for x gives the conditions

(8.32). Inserting 1 + a
q gives (8.33). Inserting these two conditions into

(8.34) gives that G(x) = xQ for x ∈ [1, q]. This proves the corollary.

Remark 8.2.20 Corollary˜8.2.19 gives a condition for the existence of the

density of the set

S = {n ∈ N | f(n) = a}

for a given q-automatic function f . It is known

(cf.˜(Allouche and Shallit 2003, Chapter˜8)) that the density does

not always exist. It is also known that the logarithmic density of S

lim
N→∞

1

logN

∑

n<N

1S(n)

n

always exists (cf.˜(Allouche and Shallit 2003, Theorem˜8.4.8)) and that the

two densities are equal, if the density exists.
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Remark 8.2.21 In the proof of (Allouche and Shallit 2003, Theo-

rem˜8.4.8) the logarithmic density is related to the residue of the Dirichlet

series

ϕS(s) =

∞∑

n=1

1S(n)

ns

at s = 1. The logarithmic averaging process has the effect that the (pos-

sible) other poles of ϕS(s) with ℜ(s) = 1 (that correspond to the Fourier

series of the periodic oscillation occurring in Theorem˜8.2.18 as was shown

in Section˜8.2.3) can be disregarded. This corresponds to the fact that

∑

n<N

1

n1+it
=

{
logN +O(1) if t = 0

O(1) if t 6= 0,

which means that the logarithmic averaging singles out the Fourier coeffi-

cient of index zero (the mean of the periodic function).

8.2.4.3 Block-additive and block-multiplicative functions

Block-additive functions have been introduced in (Cateland 1992) as a more

flexible generalisation of q-additive functions. Given a map f : {0, . . . , q −
1}L → R with f(0, . . . , 0) = 0 the corresponding block-additive function is

given by

sf (n) =
∞∑

k=0

f(εk(n), . . . , εk+L−1(n)). (8.35)

Examples for such functions are block-counting functions. Block-additive

functions are q-regular by the observation that the R-module generated

by the kernel is generated by the functions f and the functions n →
f(b1, b2, br, ε0(n), . . . , εL−r−1(n)), 1 ≤ r ≤ L− 2, b1, . . . , br ∈ {0, . . . , q− 1}.
As for q-additive functions, we can expect that the dominating eigenvalue

occurring in the matrix F in Theorem˜8.2.15 has different algebraic and

geometric multiplicity, which makes this theorem inapplicable.

A means to study block-additive functions, and also an object of study

in their own right, are block-multiplicative functions given by a map g :

{0, . . . , q − 1}L → R with g(0, . . . , 0) = 1 and

mg(n) =

∞∏

k=0

g(εk(n), . . . , εk+L−1(n)). (8.36)

Such functions are again q-regular.
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A block-multiplicative function defines a qL × qL-matrix U given by

uB,C =

{
mg(BC)
mg(C) for mg(C) 6= 0

0 otherwise
for B,C ∈ {0, . . . , q − 1}L.

Here we have used the convention that mg evaluated at a block of digits

is the same as mg evaluated at the number represented by that block. As

usual BC denotes the concatenation of the blocks B and C. As for the

(less explicit) matrix F in Theorem˜8.2.15, this matrix U allows to express∑
n<N f(n) in terms of sums of matrix products involving U. The asymp-

totic behaviour of
∑

n<N f(n) then depends on the dominating eigenvalue

λ of U and its algebraic and geometric multiplicities. For a more detailed

discussion we refer to (Barat and Grabner 2001).

Given a block additive function sf , exp(tsf (n)) clearly defines a block-

multiplicative function. A simple idea to study the moments of a block-

additive function is to use

∑

n<N

sf (n)
k =

(
d

dt

)k
(∑

n<N

exp(tsf (n))

)∣∣∣∣∣
t=0

.

The most general theorem that was obtained in (Barat and Grabner 2001)

gives an asymptotic formula for the summatory function of a product of

several block-additive functions with a multiplicative function.

Proposition 8.2.22 Let θ be a positive-valued block-multiplicative func-

tion and f1, . . . , fm arbitrary real-valued block-additive functions. Then the

summatory function F of θ(n)f1(n) · · · fm(n) satisfies

F (N) =
∑

n<N

θ(n)f1(n) · · · fm(n)

= N logq λ
m∑

j=0

(logqN)jψj(logq N) + o(N logq λ2),

where the functions ψj are continuous and periodic with period 1. λ and λ2
are the eigenvalues of the matrix U corresponding to θ of largest and second

largest modulus.

Remark 8.2.23 This result includes, for instance, moments of q-additive

functions such as the sum-of-digits function (cf.˜(Coquet 1986)), digital

functions occurring in the study of binomial coefficients with given divisi-

bility by a prime power (cf.˜(Carlitz 1967) and Example˜8.2.25 below).

Remark 8.2.24 Since θ only attains positive values, the matrix U is fully
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populated with positive entries, which by the Perron-Frobenius theorem

ensures the existence of a dominating eigenvalue λ of multiplicity 1.

Example 8.2.25 (Barat and Grabner 2001) As an application of

block-multiplicative functions, further distribution properties of binomial

coefficients can be obtained. These use an extension of Lucas’ congru-

ence˜(8.21) to prime powers by (Granville 1997). This congruence involves

digital blocks of length L for a congruence (mod pL). Results of the

following kind could then be proved by applying summation formulæ for

block-additive and block-multiplicative functions. For (a, p) = 1 and vp(n)

denoting the p-adic valuation (i.e. the highest power of p dividing n)

#

{
(k, n) | 0 ≤ k ≤ n < N, vp

((
n

k

))
= j, and p−j

(
n

k

)
≡ a mod pℓ

}
=

1

ϕ(pℓ)
#

{
(k, n) : 0 ≤ k ≤ n < N and vp

((
n

k

))
= j

}
+O

(
Nβ
)
=

(8.37)

1

ϕ(pℓ)
Nα

j∑

r=0

ψ(j)
r (logpN)(logpN)r +O

(
Nβ
)
,

where ψ
(j)
r are continuous periodic functions of period 1 and β < α =

logp
p(p+1)

2 .

8.2.4.4 A measure-theoretic method for the analysis of digital functions

Looking back at the derivation of asymptotic formulas for the summatory

functions of regular, multiplicative, or block-multiplicative functions, we

observe that the expression for

F (qk) =
∑

n<qk

f(n)

is usually much simpler and much simpler to obtain than the

formula for general N . In (Grabner and Heuberger 2006) and

(Grabner, Heuberger, and Prodinger 2005) a rather general technique has

been developed, which can even be applied in multidimensional settings.

This technique is based on the simple observation that the sequence of

measures

µk =
1

F (qk)

∑

n<qk

f(n)δnq−k (8.38)
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converges weakly to a limiting measure µ. (Here δx as usual denotes a unit

point mass at x) Then the sum of f(n) can be rewritten in terms of µk

∑

n<N

f(n) = F (qk)µk

(
[0, Nq−k)

)
,

where k has to be chosen such that qk > N . If estimates for the error

|µ([0, x))− µk([0, x))| are known, the right hand side can be rewritten as
∑

n<N

f(n) = F (qk)µ
(
[0, Nq−k)

)
+ o(F (qk)).

Estimates for the difference of measures of intervals can be obtained

by (versions of) the Berry-Esseen inequality, which estimates |µ([0, x)) −
µk([0, x))| in terms of the difference of the Fourier transforms of the mea-

sures. By the product structure of the functions f and F (qk), the Fourier

transform of µk can be expressed as a product (of scalar or matricial func-

tions).

We explain the technique by an example that is motivated by applications

of digital expansions in cryptography. For a more detailed explanation of

the background and for all the details left out in the exposition we refer to

(Grabner and Heuberger 2006).

Every positive integer n can be represented in the form

n =

K∑

k=0

εk2
k with εk ∈ {−1, 0, 1}.

Adding the extra digit −1 introduces some freedom, which is used to min-

imise the number of non-zero digits (the “weight” of the representation).

The weight corresponds to the number of additions needed for multipli-

cation by n in an abelian group using Horner’s scheme. In cryptographic

applications, especially in elliptic curve cryptography, the number of op-

erations needed for the computation of multiples is an important parame-

ter (see for instance the discussion of optimal multiplication algorithms in

(Cohen, Frey, Avanzi, et˜al. 2006)).

In (Heuberger and Prodinger 2006) it was shown that the automaton in

Figure˜8.3 recognises all representations of minimal weight. We define f(n)

as the number of representations of n recognised by this automaton. By a

careful investigation of the transitions in the automaton it can be proved

that

f(n) = O(nρ) with ρ = log4

(
1 +

√
5

2

)
. (8.39)

Remark 8.2.26 As was pointed out earlier, the question of determining
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1 24 35

0

1

−1 0

10

−1 0

0

Fig. 8.3. Automaton recognising signed binary expansions of minimal weight from
right to left. All states are terminal.

the maximal growth order of such functions is related to extremal matrix

products as studied in Chapter˜10 and therefore is rather hard in general.

Let fn(k) denote the number of representations of an integer k of min-

imal weight and length at most n. Since any representation of mini-

mal weight is at most 1 digit longer than the usual binary expansion,

fn(k) = f⌊log2 |k|⌋+2(k) = f(k) for n ≥ ⌊log2 |k|⌋+ 2. We define a sequence

of measures by

µn =
1

Mn

∑

k∈Z

fn(k)δk2−n , (8.40)

where δx denotes the unit point mass concentrated in x and

Mn =
∑

k∈Z

fn(k).

We notice that all points k2−n with fn(k) > 0 lie in the interval [−1, 1].

In order to compute the characteristic function of µn we consider the

weighted adjacency matrix of the automaton in Figure˜8.3 (using the no-

tation e(t) = e2πit):

A(t) =




1 e(t) 0 e(−t) 0

1 0 e(t) 0 0

0 1 0 0 0

1 0 0 0 e(−t)
0 0 0 1 0



.

In the matrix A(t) a transition with label ℓ is represented by an entry e(ℓt).

Then we have

µ̂n(t) =
1

Mn

∑

k∈Z

fn(k)e
(
k2−nt

)

=
1

Mn
v1A

(
t2−n

)
A
(
t2−n+1

)
· · ·A (t/2) v2 (8.41)

with v1 = (1, 0, 0, 0, 0) and v2 = (1, 1, 1, 1, 1)T .
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We notice that

Mn = (1, 0, 0, 0, 0)A(0)n(1, 1, 1, 1, 1)T = Cαn +O(|α2|n), (8.42)

where α and α2 are the largest and second largest roots of the characteristic

polynomial of A(0) given by

(x− 1)(x+ 1)(x3 − x2 − 3x+ 1),

and C = 1
37 (14α

2 + 5α− 22), numerically

α = 2.17009 . . . , α2 = −1.48119 . . . , C = 1.48055 . . . .

We will prove that (µn) weakly tends to a limit measure by showing that

µ̂n(t) tends to a limit µ̂(t).

Lemma 8.2.27 The sequence of measures µn defined by (8.40) converges

weakly to a probability measure µ. The characteristic functions satisfy the

inequality

|µ̂n(t)− µ̂(t)| =
{
O (|t|2−ηn) for |t| ≤ 1

O (|t|η2−ηn) for |t| ≥ 1
(8.43)

with

η =
logα− log |α2|

log 2 + logα− log |α2|
= 0.355251 . . . .

The constants implied by the O-symbol are absolute.

Proof Equation (8.41) allows to express µ̂n(t) in terms of matrix products.

Standard analysis of such products allows to give estimates for |µ̂m(t) −
µ̂n(t)| for n > m, which give the desired estimates by letting n tend to

infinity. The exponent η comes from a balancing argument used in an

intermediate estimate.

In the next lemma we prove continuity of the measure µ. Our study of

the Fourier expansion of the periodic main term as well as the remainder

term estimate in (8.10) will depend on the modulus of continuity given here.

Lemma 8.2.28 The measure µ satisfies

µ([x, y]) = O
(
(y − x)β

)
(8.44)

for β = log2 α− log4 ϕ = 0.770632 . . . > 1
2 .
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Proof Every interval [x, y] can be approximated by dyadic intervals

[2−n⌊x2n⌋, 2−n⌈y2n⌉]. The measure µ of such intervals can be computed as

the limit of the measures µk of these intervals. The estimate (8.39) is used

as a trivial bound for the measure.

In order to give an error bound for the rate of convergence of the measures

µn to the measure µ, we will use the following version of the Berry-Esseen

inequality, which was proved in (Grabner 1997).

Proposition 8.2.29 Let µ1 and µ2 be two probability measures with their

Fourier transforms defined by

µ̂k(t) =

∫ ∞

−∞
e2πitx dµk(x), k = 1, 2.

Suppose that (µ̂1(t)− µ̂2(t))t
−1 is integrable on a neighbourhood of zero and

µ2 satisfies

µ((x, y)) ≤ c|x− y|β

for some 0 < β < 1. Then the following inequality holds for all real x and

all T > 0

|µ1((−∞, x))− µ2((−∞, x))|

≤

∣∣∣∣∣∣

T∫

−T

Ĵ(T−1t)(2πit)−1 (µ̂1(t)− µ̂2(t)) e
−2πixt dt

∣∣∣∣∣∣

+

(
c+

1

π2

)
T− 2β

2+β +

∣∣∣∣∣∣
1

2T

T∫

−T

(
1− |t|

T

)
(µ̂1(t)− µ̂2(t)) e

−2πixt dt

∣∣∣∣∣∣
,

where

Ĵ(t) = πt(1− |t|) cotπt+ |t|.

Lemma 8.2.30 The measures µn satisfy

|µn((x, y))− µ((x, y))| = O
(
2−θn

)
(8.45)

uniformly for all x, y ∈ R with θ = 2βη
η(β+2)+2β = 0.2168 . . ..

Proof We apply Proposition˜8.2.29 to the measures µn and µ. For this
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purpose we use the inequalities (8.43) to obtain

|µn((−∞, x))− µ((−∞, x))| ≪ 2−ηn

1∫

−1

dt+ 2−ηn

∫

1≤|t|≤T

|t|η−1 dt

+ T− 2β
2+β + 2−ηn 1

T

1∫

−1

|t| dt+ 2−ηn 1

T

∫

1≤|t|≤T

|t|η dt≪ 2−θn

by choosing T = 2θ
2+β
2β

n.

Putting everything together, we have found
∑

n<N

f(n) =Mkµk([0, n2
−k)) = Cαkµ([0, n2−k)) +O(|α2|k) +O(αk2−θk)

(8.46)

with k = ⌊log2N⌋+2. We set Φ(x) = Cα−x+2µ([0, 2x−2]) for 0 ≤ x ≤ 1 and

observe that Φ(0) = Φ(1) by the fact that we can also choose = ⌊log2N⌋+3

by the discussion in the beginning. Thus we can write
∑

n<N

f(n) = N log2 αΦ({log2N}) +O(N log2 α−θ). (8.47)

Remark 8.2.31 The main ingredients for the method to work are the fol-

lowing

(i) a good understanding of the Fourier-transforms of µ̂k and µ̂, for

instance in terms of products of scalar or matricial functions, which

come from the underlying q-regular or block-multiplicative structure

of the function f

(ii) an estimate for the difference |µ̂k(t)− µ̂(t)| (Lemma˜8.2.27)

(iii) an estimate for the measure-dimension of µ (Lemma˜8.2.28) is

needed in the Berry-Esseen-type inequality (Proposition˜8.2.29).

This estimate can be obtained by a priori estimates for f(n) (like

(8.39)), which can be tricky (cf.˜Chapter˜10).

(iv) in higher dimensional applications different versions of the Berry-

Esseen inequality, for instance for balls in Euclidian space, are needed

(cf.˜Proposition˜1 in (Grabner, Heuberger, and Prodinger 2005))

The method usually produces rather weak error terms, since the estimate

for |µ̂k(t) − µ̂(t)| may not be best possible, and this estimate is pulled

through the Berry-Esseen inequality, which needs one further balancing.

Nevertheless, the method avoids the somehow intricate computations with

the complicated explicit expressions for f needed for other approaches.
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Remark 8.2.32 In (Okada, Sekiguchi, and Shiota 1995) suitably defined

measures on [0, 1] were used to give exact formulæ for the moments of

the binary sum-of-digits function. Their construction uses the measure µ

related to the function ets2(n). Since in this case µk([0, a2
−k]) = µ([0, a2−k])

the approximating measures µk are not needed, as well as the application

of the Berry-Esseen argument.

Remark 8.2.33 The measures µ occurring in this context in many cases

can be interpreted as distributions of infinite series of dependent random

variables. The dependence is coded by the underlying matrix structure

and is therefore of a Markov type. This relates the measures to Bernoulli

convolutions (i.e. infinite series if independent random variables) such as

studied by (Erdős 1939) and (Erdős 1940). For a survey on this subject we

refer to (Peres, Schlag, and Solomyak 2000). Furthermore, we remark that

all these measures are of pure type (either purely absolutely continuous,

purely singular continuous, or consists only of point masses) by the Jessen-

Wintner theorem (cf.˜(Elliott 1979, Lemma˜1.22)).

8.3 Statistics on digital functions

Let f be a q-additive function and define the shorthand-notation fj(n) =

f(εj(n)q
j). Then f(n) =

∑K
k=0 fj(n) with K = ⌊logq n⌋.

We will make now extensive use of the probabilistic interpretation of f

as a random variable. As above the underlying probability space is ΩN =

{0, 1, . . . , N − 1} with the uniform distribution, that is, every n ∈ ΩN is

equally likely.

The digits εj(n) and also fj(n) are then random variables, too. How-

ever, the essential observation is that the digits εj(n), j ≤ K, are almost

independent (in what follows, we will make this more precise). Thus, we

can consider f(n) as a sum of K almost independent random variables. It

is therefore not unexpected that several results from sums of independent

random variables transfer to asymptotic and distributional properties of q-

additive functions. Note that for N = qL for some positive integer L the

digits (ε0(n), . . . , εL−1(n)) are actually independent.

We will first survey on general distributional results on (general) q-

additive functions. In Section˜8.3.3 we focus on completely q-additive func-

tions where we can get much more precise results by using a generating

function approach. Note that completely q-additive functions correspond

to sums of almost independent and identically distributed random variables.

More precise results are thus not unexpected.
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There are several different types of distribution results known for q-

additive functions that can be unified to some extent:

(i) existence of an asymptotic distribution of the values of f on R

(Erdős-Wintner-type theorems): Section˜8.3.1.3,

(ii) existence of a normal limit distribution for suitably renormalised

values of f on R (central limit theorems): Section˜8.3.1.4,

(iii) some results of these kinds are also known for n ranging through

subsequences of the integers, such as the values of a polynomial or

the primes: Section˜8.3.2,

(iv) precise estimates for the number of n, where f(n) attains a fixed

value, for integer valued f (local limit theorems): Section˜8.3.3,

(v) uniform distribution of the values of f in a compact abelian group

(usually Z/mZ and T): Section˜8.3.4.

8.3.1 General distributional results for additive functions

8.3.1.1 Approximation of digits by independent random variables

Our first goal is to make the statement that a q-additive function is a

sum of almost independent random variables more precise. For this pur-

pose we introduce an analogue to the number theoretic Kubilius model (see

(Elliott 1979, Elliott 1980)) to the digital situation which was formulated

by (Manstavičius 1997).

We start by considering infinite subsets of the non-negative integers N =

{0, 1, 2, . . .} that are defined by digital restrictions. For 0 ≤ d < q and j ≥ 0

set

Ej(d) = {n ∈ N | εj(n) = d}.

Furthermore, for every non-negative integer k < qr+1 we consider the sets

Kr(k) =
⋂

j≤r

Ej(εj(k)) = {n ∈ N | n ≡ k mod qr+1}

that consist exactly those n ∈ N with εj(n) = εj(k) for all j ≤ r. Note

that the sets Kr(k), 0 ≤ k < qr+1, are disjoint arithmetic progressions. It

is clear that the algebra Fr of subsets of N generated by the sets Ej(d) for

0 ≤ d < q and j ≤ r are precisely sets of the form

A =
⋃

k∈I

Kr(k), (8.48)

where I is any subset of {k ∈ N | k < qr+1}. Furthermore the asymptotic
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density of the sets Kr(k) in N equals q−r−1. It is therefore natural to define

the probability of A ⊂ Fr by

P(A) = Pr(A) =
#I

qr+1
.

By this definition (N,Fr,Pr) is a finite probability space, where the events

E0(d0), E1(d1), . . . , Er(dr) are independent for any choice of numbers 0 ≤
dj < q, j ≤ r. Namely if we set k0 = d0 + d1q + · · ·+ drq

r then

Pr


 ⋂

0≤j≤r

Ej(dj)


 = Pr (Kk(k0)) = q−r−1 =

∏

0≤j≤r

Pr (Ej(dj)) .

Next observe that the function fj(n) = f(εj(n)q
j) just depends on the

j-digit εj(n) and is thus a Fr-measurable function fj : N → R (for j ≤
r). Hence, it can be considered as a random variable Yj . Due to the

independence property the sets Ej(dj) the random variables Y0, Y1, . . . , Yr
are independent, too.

The following Fundamental Lemma that is due to (Manstavičius 1997)

quantifies the difference between Pr and the counting measure.

Lemma 8.3.1 Let N ≥ 1 be given and set K = ⌊logq N⌋. Then we have

uniformly for all r < K and all sets A ∈ Fr

1

N
# {n < N | n ∈ A} = Pr(A) +O

(
qr

N

)
, (8.49)

where the constant implied by the error term is universal.

Proof Let A be a set of the form (8.48) for some r < K. Since

1

N
#{n < N | n ∈ Kr(k)} =

⌊
N − k

qr+1

⌋
+ θr,k,N

with θr,k,N ∈ {0, 1} we hence obtain

1

N
#{n < N | n ∈ A} =

1

N

∑

k∈I

(⌊
N − k

qr+1

⌋
+ θr,k,N

)

=
#I

qr+1
+O

(
qr+1

N

)

= Pr(A) +O

(
qr

N

)
.
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In particular, if A =
{
n ∈ N |∑j≤r fj(n) ∈ B

}
(for some Borel set B)

then we obtain

1

N
#



n < N |

∑

j≤r

fj(n) ∈ B



 = Pr



n ∈ N |

∑

j≤r

fj(n) ∈ B



+O

(
qr

N

)

= Pr




∑

j≤r

Yj ∈ B



+O

(
qr

N

)
(8.50)

Note that (8.50) gives very precise bounds for partial sums
∑

j≤r fj(n) but

not for f(n). However, it is easy to extend the above model.

Let εK(N) ≥ 1 denote the leading digit of N and let F be the algebra

generated by Ej(d) (0 ≤ d < q, j < K) and EK(d) (0 ≤ d ≤ εK(N)), where

we also set

P(EK(d)) =
1

εK(N)
, 0 ≤ d ≤ εK(N).

In this new probability space the K-th term fK(n) = f(εK(n)qK) is also a

random variable and f(n) can be considered, too. Note also that Pr(A) =

P(A) for all A ∈ Fr and r < K. In particular if follows easily that for all

A ∈ F (see (Manstavičius 1997))

1

N
# {n < N | n ∈ A} ≤ 2P(A).

Consequently

1

N
# {n < N | f(n) ∈ B} ≤ 2P {n ∈ N | f(n) ∈ B} .

8.3.1.2 A Turán-Kubilius inequality for additive functions

Let f(n) denote a q-additive function and set

mj,q := EYj =
1

q

q−1∑

d=1

f(dqj),

m2
2;j,q := EY 2

j =
1

q

q−1∑

d=1

f(dqj)2,

where Yj = fj is the random variable related to the probability space

(N,Fr,Pr) for some j ≤ r and

Mq(N) :=

⌊logq N⌋∑

j=0

mj,q, D2
q(N) =

⌊logq N⌋∑

j=0

(
m2

2;j,q −m2
j,q

)
.
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Then the following general property holds which can be seen as an analogue

of the celebrated Turán-Kubilius inequality (see (Kubilius 1964)) which has

many applications in number theory.

Theorem 8.3.2 Let f be a q-additive function. Then we have

1

N

∑

n<N

(f(n)−Mq(N))
2 ≤ 2D2

q(N). (8.51)

Proof We use the relation

EY 2 =

∫ ∞

0

P{|Y | ≥ u} 2u du.

Hence, if we the inequality

1

N
|{n < N | |f(n)−Mq(N)| ≥ u}|

≤ 2P {n ∈ N | |f(n)−Mq(N)| ≥ u}

with respect to 2u du and apply the Burkholder inequality we obtain the

proposed result (compare also with (Ruzsa 1984)).

A direct application of Theorem˜8.3.2 is a very general property for the

mean value of q-additive functions.

Corollary 8.3.3 Let f be a q-additive function. Then we have

1

N

∑

n<N

f(n) =Mq(N) +O(Dq(N)).

Note that this corollary is in accordance with Theorem˜8.2.1. If f is com-

pletely q-additive then

Mq(N) =
(
⌊logqN⌋+ 1

)
Cf ∼ Cf logq N

and

Dq(N)2 =

(
1

q

q−1∑

d=1

f(d)2 − C2
f

)
logq N.

8.3.1.3 An Erdős-Wintner theorem for additive functions

The above inequalities provide only a very rough idea of the overall be-

haviour of q-additive functions. We are now interested in conditions which

ensure that the values of f have an asymptotic limiting distribution. In

the context of classical additive functions Erdős and Wintner proved a nec-

essary and sufficient condition for the existence of a limiting distribution

(cf.˜(Elliott 1979)).
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For additive functions the situation is very similar. (Delange 1972) could

prove the following theorem, which is the analogue of Erdős’ and Wintner’s

theorem for q-additive functions.

Theorem 8.3.4 Let f(n) be a q-additive function. Then f(n) has a dis-

tribution function G(y), that is

lim
N→∞

1

N
# {n < N | f(n) < y} = G(y), (8.52)

if and only if the two series

∑

j≥0

q−1∑

d=1

f(dqj) and
∑

j≥0

q−1∑

d=1

f(dqj)2 (8.53)

converge.

Proof The idea of the original proof of (Delange 1972) is to discuss conver-

gence properties of q-multiplicative functions F (n) = e(tf(n)), in particular

by using the identity

∑

n<qL

F (n) =
∏

j<L

(
1 +

q−1∑

d=1

F (dqj)

)
.

Since e(u) = 1 + 2πiu+O(u2) for real u we have

log

(
1 +

∑q−1
d=1 F (dq

j)

q

)
= log

(
1 + 2πitmj,q +O

(
t2m2

2;j,q

))

= 2πitmj,q +O
(
t2m2

2;j,q

)
.

Hence the limit

lim
L→∞

1

qL

∏

j<L

(
1 +

q−1∑

d=1

F (dqj)

)
=

∞∏

j=0

1

q

(
1 +

q−1∑

d=1

e(tf(dqj))

)
(8.54)

exists if the two series (8.53) converge. The converse statement is also true.

Finally this easily extends to the convergence of

1

N

∑

n→N

F (n) =
1

N

∑

n→N

e(tf(n)), (8.55)

by comparing the sums with partial products of (8.54). By Lévy’s criterion

this is equivalent to the existence of a distribution function.

Remark 8.3.5 The expression (8.54) for the characteristic function of the

limiting distribution G(y) shows that this distribution can be interpreted
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as an infinite Bernoulli convolution. The Theorem of Jessen and Wintner

asserts that such distribution measure given by G(y) is either purely ab-

solutely continuous, purely singular continuous, or consists only of point

masses. A theorem of Lévy applied to the present setting asserts that the

last alternative can only occur, if there exists a J such that f(dqj) = 0

for j > J . In this case the distribution consists only of finitely many

point masses. The two theorems cited are the contents of Lemma˜1.22 in

(Elliott 1979).

Remark 8.3.6 A totally different proof of Theorem˜8.3.4 was given in

(Barat and Grabner 2008). There the addition-by-one map τ is studied

on the compact space Zq = proj limj Z/q
jZ, which can be viewed as the

compactification of N associated to the q-adic expansion. By Kolmogorov’s

three series theorem the conditions (8.53) are necessary and sufficient that

the random series
∞∑

j=0

f(Xjq
j)

converges almost surely for Xj ∈ {0, . . . , q− 1} independent and identically

uniformly distributed random variables (the convergence of the third series

in the three series theorem is trivial in this case). In the setting of the

dynamical system (Zq, τ) this simply means that f can be extended to

an almost everywhere defined measurable function on Zq. Since (Zq, τ)

is ergodic with respect to the Haar measure µ on Zq Birkhoff’s ergodic

theorem (Theorem˜REF-BIRKHOFF) asserts that

lim
N→∞

1

N
#{n < N | f(τn(x)) < t} = µ ({y ∈ Zq | f(y) < t}) = G(t).

for µ-almost all x ∈ Zq. It remains to prove that 0 is one of the points for

which this is valid (i.e. 0 is a generic point).

This point of view allows to generalise Delange’s theorem to other types of

digital expansions, such as expansions with linear recurrent base sequences,

which involve dependent digits.

Finally we want to remark that there is also an alternative proof by

(Manstavičius 1997) that uses the approximation properties of the form

stated in Lemma˜8.3.1 and applies for Cantor expansions.

Remark 8.3.7 Theorem˜8.3.4 was generalised by (Kátai 1992) who

proved that there exists a a distribution function G(y) such that,

lim
N→∞

1

N
# {n < N | f(n)−Mq(N) < y} = G(y)
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if and only if the series
∑

j≥0

∑q−1
d=1 f(dq

j)2 converges.

Example 8.3.8 The q-additive function

v(n) =

∞∑

j=0

εj(n)

qj+1

defines the van˜der˜Corput sequence (cf.˜(Kuipers and Niederreiter 1974)

and (Drmota and Tichy 1997)). It is easy to see that the distribution of this

sequence is the uniform distribution on [0, 1]. This sequence and related con-

structions are used in numerical integration to define sequences of low dis-

crepancy, which give a small error in integration (cf.˜(Niederreiter 1992)).

8.3.1.4 A general central limit theorem for additive functions

Theorem˜8.3.4 and its variant by Kátai do not apply for completely q-

additive function f(n) or for functions where fj does not converge to 0. In

these cases we expect a central limit theorem which is ubiquitous in the

context of sums of independent random variables.

The most general central limit theorem for q-additive functions is due to

(Manstavičius 1997).

Theorem 8.3.9 Suppose that, as N → ∞,

max
j≤logq N

max
0≤d<q

|f(dqj)| = o(Dq(N)) (8.56)

and Dq(N) → ∞. Then,

lim
N→∞

1

N
#

{
n < N | f(n)−Mq(N)

Dq(N)
< y

}
= Φ(y),

where Φ is the normal distribution function.

Proof For N ≥ 1 let (N,F ,P) be the probability space constructed after

the proof of Lemma˜8.3.1 for which the random variables Yj = fj, 0 ≤ j ≤
K = ⌊logqN⌋, are independent. For r ≤ K let

FN,r(y) =
1

N

{
n < N |

∑
j≤r fj(n)−Mq(N)

Dq(N)
≤ y

}
,

VN,r(y) = P

{
n ∈ N |

∑
j≤r fj(n)−Mq(N)

Dq(N)
≤ y

}

denote the distribution functions of the normalised and truncated functions

and

FN (y) = FN,K(y) and VN (y) = VN,K(y)
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the distribution function of (normalised) f(n) according to the counting

measure and to the measure P, respectively.

By the central limit theorem for sums of independent random variables

(Billingsley 1968, Theorem 7.2) it is obvious that VN (y) → Φ(y), where

Φ(y) denotes the distribution of the standard normal distribution, since the

assumption (8.56) implies the Lindeberg condition.

Thus, is remains to show that VN (y) and FN (y) are close. For this

purpose one can use the Lévy metric

L(F,G) = inf{ε > 0 | ∀y ∈ R : F (y − ε)− ε ≤ G(y) ≤ F (y + ε) + ε}.

between two distribution function F and G which quantifies and charac-

terised weak convergence.

By the triangle inequality we have

L(FN , VN ) ≤ L(FN , FN,K−r) + L(FN,K−r, VN,K−r) + L(Vn,K−r, VN ).

First by Lemma˜8.3.1 it follows for all r > 0

L(FN,K−r, VN,K−r) = O(q−r).

Furthermore, for every r > 0 we obtain for every ε > 0 by another applica-

tion of (8.56), as N → ∞,

L(Vn,K−r, VN ) ≤ ε+ P



n ∈ N |

∣∣∣∣∣∣
∑

K−r<j≤K

fj(n)

∣∣∣∣∣∣
≥ εDq(N)





= ε+ oε(1).

A similar estimate holds for the distance L(FN , FN,K−r). Hence, we obtain

L(FN , VN ) → 0 as N → ∞ and consequently L(FN ,Φ) → 0.

8.3.2 A central limit theorem for subsequences

The advantage of Theorem˜8.3.9 is its generality. However, it cannot be

applied if we are dealing with certain subsequences of the integers, that is,

the underlying probability space ΩN = {0, 1, . . . , N − 1} is replaced by a

certain subset of integers, for example by ΩN = {2, 3, 5, . . . , pN}, the first

N primes, or by ΩN = {02, 12, 22, . . . , (N − 1)2}, the first N squares.

In this section we describe a general method that is due to

(Bassily and Kátai 1995). In particular they could cover polynomial se-

quences and polynomial sequences of primes.
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Theorem 8.3.10 Let f be a q-additive function such that

sup
j≥0

max
0≤d<q

f(dqj) = O(1)

Assume that
Dq(N)
(logN)η → ∞ as N → ∞ for some η > 0 and let P (x) be

a polynomial with integer coefficients, degree r, and positive leading term.

Then,

lim
N→∞

1

N
#

{
n < N | f(P (n))−Mq(N

r)

Dq(N r)
< y

}
= Φ(y)

and

lim
N→∞

1

N
#

{
p < N | p prime,

f(P (p))−Mq(N
r)

Dq(N r)
< y

}
= Φ(y).

In what follows we present the framework of their method in a slightly

more general setting. We consider general subsets ΩN of the non-negative

integers of size N that satisfy the following property. It has a similar flavour

as Lemma˜8.3.1, it quantifies the difference between the counting measure

and and a measure with independent digits. However, it only needs prop-

erties of finitely many different digits.

Property 8.3.11 (BK-Property) Let ΩN be subsets of the non-negative

integers of size N . We assume that MN = maxΩN = O(Nk) for some

k ≥ 1 and that for every η > 0, λ > 0 and for every integer L ≥ 1 we have

1

N
#{n ∈ ΩN | εj1(n) = ℓ1, . . . , εjL(n) = ℓL} = q−L +O

(
(logN)−λ

)
,

uniformly for all j1, . . . , jL with

(logN)η ≤ j1 < j2 < · · · < jL ≤ logqMN − (logN)η

and for all ℓ1, . . . , ℓL ∈ {0, 1, . . . , q − 1}.

Note that the constant implied by the error term might depend on η, λ, and

L.

Example 8.3.12 Let ΩN = {0, 1, . . . , N − 1}. Then the BK-Property is

trivially satisfied. We actually have an error bound of the form

O

(
qjL

N

)
= O

(
q−(logN)η

)
= O

(
(logN)−λ

)
,

since jL ≤ logqN − (logN)η and η > 0.

The essential observation is that the BK-Property implies a central limit

theorem.
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Theorem 8.3.13 Suppose that f satisfies the same assumptions as in

Theorem˜8.3.10 and for every N ≥ 1 let ΩN be subset of the non-negative

integers of size N .

If the BK-Property, then we have

lim
N→∞

1

N
#

{
n ∈ ΩN | f(n)−Mq(MN )

Dq(MN )
< y

}
= Φ(y).

Proof The idea of the proof is to compare moments, however, one has to be

careful. We choose 0 < η′ < η/(2k) (where η > 0 satisfiesD(N)/(logN)η →
∞) and replace f by f̃ that is defined by

f̃(n) =
∑

(logN)η′≤j≤logMN−(logN)η′

f(εj(n)q
j),

that is, we cut off some of the first and of the last digits. Let T̃N denote

the random variable associated to f̃ and the counting measure on ΩN , that

is, the distribution function FT̃N
is given by

FT̃N
(u) =

1

N
#
{
n ∈ Ωn | f̃(n) ≤ u

}
.

Furthermore set

S̃MN
=

∑

(logN)η′≤j≤logMN−(logN)η′

Yj ,

where Yj = fj are the independent random variables from above. We also

set

M̃q(MN ) = E S̃MN
=

∑

(logN)η≤j≤logMN−(logN)η

mj;q

D̃q(MN )2 = V S̃MN
=

∑

(logN)η≤j≤logMN−(logN)η

(
m2

2,j;q −m2
j;q

)
.

Note that by assumption D̃q(MN) ∼ Dq(MN) as N → ∞.

Next we expand the difference

δL = E

(
T̃N − M̃q(MN )

)L
− E

(
S̃N − M̃q(MN )

)L

in terms of the probabilities

1

N
#{n ∈ ΩN | εj1(n) = ℓ1, . . . , εjL(n) = ℓL}

and compare them with help of the BK-Property. In fact, we have to take

into account ≤ (q logqMN )L terms and, thus, we get

|δL| = O
(
(q logqMN)L(logN)−λ

)
= O

(
(logN)kL−λ

)
.
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By assumption it follows that

E

(
T̃N − M̃q(MN)

D̃q(MN )

)L

− E

(
S̃MN

− M̃q(MN )

D̃q(MN )

)L

→ 0.

By standard tools in probability (see (Billingsley 1968)) we know that

(S̃MN
− M̃q(MN ))/D̃q(MN ) converges to the Gaussian distribution N(0, 1)

and we have convergence of all moments. Hence, the same is true for

(T̃N − M̃q(MN ))/D̃q(MN ). Finally, since f(n) − f̃(n) = O((logN)η
′

),

Mq(N) − M̃q(N) = O((logN)η
′

) and D̃q(MN) ∼ Dq(MN ) ≥ (logN)2η
′

we also deduce a central limit theorem for f .

It remains to verify the BK-Property in several examples. Interestingly

enough, proper exponential sum estimates are sufficient to derive this prop-

erty.

Lemma 8.3.14 Suppose that for all η > 0 and λ > 0 the exponential sum

estimate
1

N

∑

n∈ΩN

e

(
a

qr
n

)
= O

(
(logN)−λ

)
(8.57)

holds uniformly for (logN)η ≤ r ≤ logqMN − (logN)η, for all integers a

with 1 ≤ a < (logN)λ and for all integers a with 1 ≤ a < qr which are not

divisible by q.

Then the BK-Property holds.

Proof We just sketch the idea of the proof. For a detailed analysis we refer

to (Bassily and Kátai 1995).

Since εj(n) = ℓ if and only if {nq−j−1} = ℓ/q we have

1

N
# {n ∈ ΩN | εj(n) = ℓ} =

1

N

∑

n∈ΩN

1[ℓ/q,(ℓ+1)/q)({nq−j−1}),

where 1S denotes the indicator function of the set S. Let1[ℓ/q,(ℓ+1)/q)(x) =
∑

h∈Z

ahe(hx)

denote the Fourier series; note that a0 = 1/q. Then it also follows that

1

N
# {n ∈ ΩN | εj(n) = ℓ} =

∑

h∈Z

ah
1

N

∑

n∈ΩN

e

(
hn

qj+1

)

=
1

q
+
∑

h 6=0

ah
1

N

∑

n∈ΩN

e

(
hn

qj+1

)
.
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Hence, exponential sum estimates provide asymptotic information for the

probabilities 1
N# {n ∈ ΩN | εj(n) = ℓ}.

However, one has to be more precise since the Fourier series of the charac-

teristic function is not absolutely convergent. In fact one can use smoothing

arguments so that only few exponential sums are sufficient. Furthermore,

this method extends to several digits (see (Bassily and Kátai 1995)).

Example 8.3.15 By using standard estimates for exponential sums for

polynomials and polynomials of primes (see (Iwaniec and Kowalski 2004))

it is clear that (8.57) is satisfied for the sets

ΩN = {P (n) | n < N}

and

ΩN = {P (p1), . . . , P (pN )},

where p1, . . . , pN are the first N primes.

Example 8.3.16 Let c > 1 be a real non-integral number. and set

ΩN = {⌊nc⌋ | n < N}.

In this case we first observe that the digits ε0, ε1, . . . coincide for ⌊nc⌋ and

nc in the q-ary digital expansion. Furthermore we have εj(n
c) = ℓ if and

only if {ncq−j−1} = ℓ/q. Thus, we can replace the exponential sums from

(8.57) by the sums

1

N

∑

n<N

e

(
a

qr
nc

)
.

For non-integral c these kinds of exponential sums can be easily estimated

by Van der Corputs theorem (Iwaniec and Kowalski 2004, Theorem 8.20)

and provide upper bounds which are of the same kind as those from (8.57).

Hence, the BK-Property holds, too.

An important feature of the method of Bassily and Kátai is its flexibility.

It also applies for so-called block additive functions as well as for other

digital expansions. We will comment on this in Section˜8.4.

8.3.3 A generating function approach to completely q-additive

functions

We have observed that due to the (almost) independence properties of the

digits, a central limit theorem appears in very general situations.
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We now concentrate on a very special situation, where we can obtain

much more precise results. We discuss properties of the generating function

S(N, x) =
∑

n<N

xf(n),

where x 6= 0 is a complex variable. If we assume that f is integer valued

then S(N, x) can be rewritten as

S(N, x) =
∑

k∈Z

#{n < N | f(n) = k} xk

which explains the notion generating function. In fact, we will use this

interpretation in the proof of Corollary˜8.3.21.

Obviously, the function n 7→ xf(n) is a completely q-multiplicative func-

tion. Thus, we can apply the method of Theorem˜8.2.7 and obtain the

following representation.

Theorem 8.3.17 Suppose that f is a completely q-additive function and

let G ⊆ C be defined by

G =

{
x ∈ C |

∣∣∣1 + xf(1) + · · ·+ xf(q−1)
∣∣∣ > max

0≤d<q
|xf(d)|

}
.

Then there exists a function Ψ(x, t) (x ∈ G, t ∈ R) that is analytic for

x ∈ G and Hölder continuous and periodic in t with period 1 such that

S(N, x) = Ψ(x, logq N) (1 + xf(1) + · · ·+ xf(q−1))logq N . (8.58)

Furthermore there exists a continuous function C(x) (x 6= 0) such that

|S(N, x)| ≤ C(x)
∑

k≤logq N

∣∣∣1 + xf(1) + · · ·+ xf(q−1)
∣∣∣
k

. (8.59)

Proof The proof of (8.58) is just a refinement of the proof of Theorem˜8.2.7.

The proof of (8.59) is similar but even easier, since we are only interested

in upper bounds, compare with Corollary˜8.2.9.

It is an important feature of this lemma that the function Ψ(x, t) rep-

resents an analytic function in x if x is sufficiently close to the real axis.

It is interesting that Theorem˜8.3.17 has several corollaries (compare with

(Drmota and Rivat 2005, Drmota, Grabner, and Liardet 2008)): We start

with a representation for moments.

Corollary 8.3.18 Suppose that f is a completely q-additive function. Then
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for every integer r ≥ 1 we have

1

N

∑

n<N

f(n)r = Cf (logq N)r +

r−1∑

ℓ=0

Ψr,ℓ(logqN) · (logqN)ℓ, (8.60)

where the functions Ψr,ℓ(t) (0 ≤ ℓ < r) are continuous and periodic (with

period 1).

Proof We just set x = et in (8.58) and evaluate the r-th derivative (compare

also with Proposition˜8.2.22). Furthermore, note that Ψ(1, t) = Cf . Hence,

the asymptotic leading term is given by Cf (logq N)r and has no periodic

fluctuations.

Remark 8.3.19 The idea of taking the derivative also applies if a formula

of the kind (8.58) is not exact but has an error term that is is uniform in a

neighbourhood of x = 1. Due to analyticity in x one can take derivatives

at x = 1 at arbitrary order by using the formula

G(r)(1) =
r!

2πi

∫

|x−1|=δ

G(x)

(x− 1)r+1
dx.

Next we derive a global and a local central limit theorem.

Corollary 8.3.20 Suppose that f is a completely q-additive function and

suppose that

D2
f =

1

q

q−1∑

d=1

f(d)2 − C2
f > 0.

Then,

lim
N→∞

1

N
#



n < N |

f(n)− Cf logq N√
D2

f logqN
< y



 = Φ(y). (8.61)

and for all r ≥ 1

1

N

∑

n<N


f(n)− Cf logq N√

D2
f logqN




r

=
1√
2π

∫ ∞

−∞
ure−

1
2
u2

du+ o(1). (8.62)

Furthermore, we have exponential tail estimates of the form

1

N
#
{
n < N |

∣∣f(n)− Cf logqN
∣∣ ≥ y

√
logq N

}
(8.63)

≪ min
(
e−cy, e−cy2+O(y3/

√
logN)

)

for some constant c > 0.
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Proof Let TN denote the random variable that is induced by the distribution

of f(n) on ΩN = {0, 1, . . . , N − 1}. Then the moment generating function

E etTN is given by

E etTN =
1

N

∑

n<N

etf(n) =
1

N
S(N, et)

= Φ(et, logqN)
(
1 + etf(1) + · · · etf(q−1)

)logq N

.

Hence, by using the local expansion

log
(
1 + etf(1) + · · · etf(q−1)

)
= log q + Cf t+

D2
f

2
t2 +O(t3)

we obtain that the moment generating function of the normalised random

variable

ZN =
TN − Cf logqN√

D2
f logqN

is given by

E etZN = et(Cf/Df )
√

logq N
E e(t/

√
D2

f
logq N)YN

= e
1
2
t2+O(t3/

√
logN).

Of course, this translates to (8.61).

Further, convergence of the moment generating function also implies con-

vergence of all moments, that is, we get (8.62). Finally, the tail estimates

(8.63) are a direct consequence of Chernov type inequalities.

Corollary 8.3.21 Suppose that f is an integer valued completely q-additive

function such that

d = gcd{f(c) | 0 ≤ c < q} = 1. (8.64)

Set

µ(x) =
xλ′(x)

λ(x)
and σ2(x) =

x2λ′′(x)

λ(x)
+ µ(x) − µ(x)2,

where λ(x) abbreviates λ(x) = 1 + xf(1) + · · · + xf(q−1). Furthermore, for

k ∈ K(N) = Z ∩
[
δ logqN, (1− δ) logqN

]
we define xk,N by µ(xk,N ) =

k/ logqN , where δ > 0 is arbitrary. Then we have uniformly for k ∈ K(N)

#{n < N, f(n) = k}

=
Φ(xk,N , logq N)√
2πσ2(xk,N ) logq N

N logq λ(xk,N ) x−k
k,N

(
1 +O

(
1

logN

))
(8.65)
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Furthermore, if |k−Cf logq N | ≤ C
√

logqN (for some C > 0) we also have

#{n < N, f(n) = k}

=
πN√

2πσ2 logqN
exp

(
−
(k − Cf logqN)2

2D2
f logq N

)(
1 +O

(
1√

logN

))
.

(8.66)

Note that Cf = µ(1) and D2
f = σ2(1).

Proof We apply (8.58) and (8.59) and use Cauchy’s formula:

#{n < N, f(n) = k} =
1

2πi

∫

|x|=xk,N

(∑

n<N

xf(n)

)
x−k−1 dx,

where xk,N is the saddle point of the asymptotic leading term of the inte-

grand:

λ(x)logq Nx−k = elog λ(x)·logq N−k log x.

We do not work out the details of standard saddle point techniques. We just

refer to (Mauduit and Sárközy 1997) and (Drmota and Rivat 2005), where

problems of almost the same kind have been discussed.

8.3.4 Uniform distribution of q-additive functions

A last type of distribution results for additive functions is the distribution of

values in a compact abelian group. Usually, the group under consideration

is T = R/Z or Z/mZ.

Definition 8.3.22 Let A be a compact abelian group equipped with its

Haar measure λ and f : N → A an A-valued arithmetic function. The

sequence (f(n))n∈N is called uniformly distributed, if for all measurable

subsets B ⊆ A with λ(∂B) = 0

lim
N→∞

1

N

∑

n<N

1B(f(n)) = λ(B).

By harmonic analysis on the group A this is equivalent to saying that for

all characters χ ∈ Â \ {χ0} (χ0 ≡ 1 denotes the trivial character) one has

lim
N→∞

1

N

∑

n<N

χ(f(n)) = 0 (8.67)

(Weyl’s criterion, cf.˜(Kuipers and Niederreiter 1974)).



8.3 Statistics on digital functions 49

For a q-additive function f the function χ ◦ f is a C-valued q-

multiplicative function, for which we can apply Theorems˜8.2.7 and˜8.3.17

or Corollary˜8.2.9 to obtain the following corollaries.

Corollary 8.3.23 Suppose that f is an integer valued completely q-additive

function and that (8.64) holds. Then for every integer M ≥ 1 and all

m ∈ {0, 1, . . . ,M − 1} we have

1

N
# {n < N | f(n) ≡ m modM} =

1

M
+O(N−η)

for some η > 0.

Remark 8.3.24 Alternatively to condition (8.64) we can assume that f

attains a value that is relatively prime to M . Then the same assertion

holds.

Proof We use (8.59) for allM -th roots of unity x = e2πim/M and apply sim-

ple discrete Fourier techniques. The exponent η comes from Corollary˜8.2.9

or Theorem˜8.2.7 as

η = 1− logq

(
max

1≤h<M

∣∣∣∣∣

q−1∑

ℓ=0

e

(
h

M
f(ℓ)

)∣∣∣∣∣

)
> 0.

Corollary 8.3.25 Let f be a real-valued completely q-additive function

which attains one irrational value. Then the sequence (f(n))n≥0 is uni-

formly distributed modulo 1.

Remark 8.3.26 Note that Corollary˜8.3.25 in particularly applies to se-

quences of the kind (αf(n))n≥0 if f is integer valued and if α is irrational.

Proof We just set x = e2πih for a non-zero integer h and use (8.59) to show

that

lim
N→∞

1

N

∑

n<N

e(hf(n)) = 0.

This is just Weyl’s criterion (8.67) for the group T.

Corollary 8.3.27 Let f be a real-valued completely additive function,

which attains one irrational value and β ∈ R \ Q. Then the sequence (nβ

(mod 1), f(n) (mod 1)) is uniformly distributed in T2.
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Proof Simply realise that n 7→ n is q-additive and study the exponential

sum

∑

n<N

e(h1βn+ h2f(n))

for (h1, h2) ∈ Z2 \ {(0, 0)} using the same ideas as in the proof of

Theorem˜8.3.4.

Remark 8.3.28 After the explanation of the probabilistic point of view in

Section˜8.3.1.1 such results can also be seen as limiting distribution results

for sums of independent random variables taking values in a compact group.

For this point of view we refer to (Bártfai 1966).

Remark 8.3.29 As it was explained in Remark˜8.3.6 distribution results

can also be seen from an ergodic point of view. Contrary to the situa-

tion explained there, the function f cannot be extended in a consistent

way to Zq. The following idea originating from (Kamae 1977, Kamae 1978,

Kamae 1987) defines a cocycle by

af (x, n) = lim
m→x
m∈N

f(m+ n)− f(n),

which is easily seen to exist almost everywhere in Zq. Then the dynamical

system (Zq ×A, Ta, µq ⊗ λ) (cf.˜Section˜??) with

Ta(x, α) = (x + 1, α+ af (x, 1))

is used to study the distribution properties of f . Such systems are called

skew-products. Then we have T n
a (0, 0) = (n, f(n)), which motivates the

definition of Ta. By arguments explained in (Grabner and Liardet 1999)

and (Drmota, Grabner, and Liardet 2008) a special property of the null-

set, where af is not defined (“uniform negligibility”, cf.˜(Liardet 1978)), is

used to prove that all points are generic for the dynamical system, i.e. the

ergodic theorem holds for all points, especially (0, 0).

This point of view has the advantage that it generalises to other situa-

tions, such as multidimensional settings. Furthermore, (Kamae 1987) used

this idea to prove spectral disjointness for such dynamical systems with

respect to multiplicatively independent bases. This was generalised to the

Gaussian integers in (Grabner, Liardet, and Tichy 2005).
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8.4 Further results

8.4.1 Gelfond Problems

In 1968 (Gelfond 1968) proved for the q-ary sum-of-digits function sq(n)

#{n < N | n ≡ ℓ mod r, sq(n) ≡ a mod m} =
N

mr
+O

(
Nλ
)

provided that gcd(m, q − 1) = 1, where

λ =
1

2 log q
log

q sin(π/2m)

sin(π/2mq)
.

This means that the sum-of-digits sq(n) is asymptotically uniformly dis-

tributed modulom if we restrict n to arithmetic subsequences n = ℓ+kr, k ≥
0. The proof is based on a subtle but elementary analysis of the expression
∑

n<qK

e (αn+ βsq(n)) =
∏

r<K

(
1 + e(α2k + β) + · · ·+ e((q − 1)(α2k + β))

)
.

(8.68)

In this paper Gelfond formulated three problems. He first conjectured

that a corresponding property is true if one uses two coprime bases q1, q2
at once, namely

#{n < N | sq1(n) ≡ a1 mod m1, sq2(n) ≡ a2 mod m2} =
N

m1m2
+O

(
Nλ
)

(8.69)

provided that gcd(m1, q1 − 1) = 1 and gcd(m2, q2 − 1) = 1. Few years

later (Bésineau 1972) proved this property, however, without an error term.

Eventually (Kim 1999) provided also the proposed error term (even for

a system of completely q-additive functions). It is interesting that these

methods can be extended to non-trivial exponential sum estimates for
∑

n<N

e
(
αnk + βsq(n)

)

which were used in (Thuswaldner and Tichy 2005) to discuss Waring’s

problem under digital congruence conditions.

Gelfond also asked on the number of primes p < N for which

sq(p) ≡ a mod m and on the number n < N for which sq(P (n)) ≡ a mod m,

where P (x) is an integer polynomial. These challenging problems were

unsolved for almost 40 years and only partial results have been ob-

tained (see (Fouvry and Mauduit 1996a), (Fouvry and Mauduit 1996b),

(Drmota and Rivat 2005), (Dartyge and Tenenbaum 2005),

(Dartyge and Tenenbaum 2006)). Finally the problem for the subse-

quence of primes was completely solved by (Mauduit and Rivat 2009b).

The problem for the subsequence of squares (more precisely on sq(n
2))
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was solved by (Mauduit and Rivat 2009a). Interestingly the approach of

Mauduit and Rivat again uses a subtle analysis of the product representa-

tion (8.68) combined with Fourier analytic tools and tricky but classical

exponential sum techniques. Basically they showed that

∑

p<N

e(αsq(p)) ≪ N1−η (8.70)

and
∑

n<N

e(αsq(n
2)) ≪ N1−η, (8.71)

where η = η(α) > 0 if α(q − 1) 6∈ Z. With the help of these estimates

one obtains asymptotic distributions in residue classes (as asked by Gel-

fond) and also uniform distribution modulo 1 for the sequences (αsq(p))

and (αsq(n
2)) for irrational α.

There are already some extensions of these results (see

(Drmota, Rivat, and Stoll 2008), (Drmota, Mauduit, and Rivat 2009)).

The main open problem in this context is to generalise (8.71) to polynomials

P (x) of degree ≥ 3.

8.4.2 Odometers and systems of numeration

The q-adic digital representation presented here is one special case of a

rather general definition of numeration system. Every strictly increasing

sequence of positive integers (Gk)k∈N with G0 = 0 gives rise to a represen-

tation all n ∈ N. Every n ∈ N can be written in the form

n =

K∑

k=0

εk(n)Gk with ∀k : 0 ≤ εk(n) <
Gk+1

Gk
.

The additional requirement

∀k : ε0(n)G0 + · · · εk(n)Gk < Gk+1 (8.72)

makes this representation unique. The representation satisfying (8.72) can

be determined by the greedy algorithm. The main difference between this

general notion of digital expansion and the q-adic case presented here is the

dependence between the digits given by (8.72).

One possible approach to extend distribution results of various kinds to
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this more general setting is to define an according compactification of N by

KG = {(ε0, ε1, . . .) | ∀k : ε0G0 + · · · εkGk < Gk+1}

⊆
∞∏

k=0

{
0, 1, . . . ,

⌈
Gk+1

Gk

⌉
− 1

}
.

This space is equipped with the product topology of the discrete spaces and

therefore compact. All representation of positive integers are then in KG

by (8.72). The addition-by-one map τ on N can then be extended to KG by

τ(x) = lim
n→x
n∈N

τ(n).

Under additional conditions on (Gk)k∈N there exists a unique τ -invariant

measure µG on KG (cf.˜(Barat, Downarowicz, and Liardet 2002)).

The properties of the dynamical system (KG, τ, µG) (the odome-

ter) have been studied from combinatorial, topological, and dy-

namical point of view by (Grabner, Liardet, and Tichy 1995),

(Barat, Downarowicz, Iwanik, et˜al. 2000), and

(Barat, Downarowicz, and Liardet 2002).

A different point of view was taken in (Lecomte and Rigo 2001), where

a regular language L on an ordered alphabet was used to define numera-

tion: the ordering on the alphabet induces the genealogical ordering (see

Definition˜??) on the language L, and the positive integer n is then repre-

sented by the n-th word in the language L. For a detailed description of

this numeration we refer to Chapter˜2

This generalises the numeration systems with linear recurrent base se-

quence. Again additive functions on such numeration systems can be de-

fined. In (Grabner and Rigo 2003) it was shown that theorems analogous

to Theorem˜8.2.1 do not hold in this very general setting, but only un-

der additional combinatorial assumptions on the language L. Furthermore,

in (Grabner and Rigo 2007) limiting distributions of additive functions on

regular languages were studied. Again these distributions exist only un-

der additional assumptions on the language L; there are cases, where the

limiting distribution is not Gaussian. In (Berthé and Rigo 2007) a com-

pactification of N is constructed from this type of number representations,

and the according odometer is studied.

Another different approach to numeration with respect to (certain) lin-

ear recurring sequences uses substitutions. Let σ be primitive substitution

on the alphabet A such that for some a ∈ A, a is a prefix of σ(a). A

sequence of words m1, . . . ,mk is called a-admissible, if there exist letters

a = a0, a1, . . . , ak such thatmiai is a prefix of σ(ai−1) for i = 1, . . . , k. Then
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every positive integer n can be represented by an a-admissible sequence of

words m1, . . . ,mk satisfying

n = |σk−1(mk)|+ · · ·+ |σ0(m1)|.
Notice that by definition the length of the occurring words mi is bounded.

The words m1, . . . ,mk are considered as the digits in this representation.

Additive functions are then defined as

sf (n) =

k∑

ℓ=1

f(mℓ).

In a series of papers J.-M.˜Dumont and A.˜Thomas (Dumont 1990),

(Dumont and Thomas 1991), (Dumont and Thomas 1993), and

(Dumont and Thomas 1997) derived analogues of the theorems in

Sections˜8.2 and 8.3.1 for this notion of additive functions.

The study of digital functions in the context of harmonic analy-

sis dates back to (Mahler 1927) and (Wiener 1927). They computed,

what one would call today the Fourier coefficients of the spectral

measure associated to a dynamical system given by the sum-of-

digits function. Their work was then continued by M.˜Mendès

France, J.˜Coquet, and P.˜Liardet who worked out the aspect of

dynamical systems and uniform distribution in a series of papers

(Mendès France 1967), (Mendès France 1971), (Mendès France 1973),

(Mendès France 1974), (Coquet and Mendès France 1977),

(Coquet, Kamae, and Mendès France 1977), (Liardet 1978), and

(Coquet 1979). As overviews over this aspect we refer to (Queffélec 1987)

and (Barat, Berthé, and Liardet 2006).

8.4.3 Distributional results for general numeration systems

Following A.˜O.˜Gelfond’s question (8.69) on the joint distribution of the

sum-of-digits functions sq1(n) and sq2(n) (for coprime bases q1, q2) it is

natural to aks on the joint distribution of a q1-additive function f(n) and

a q2-additive function g(n).

It turns out that Theorem˜8.3.4 directly extends to several pairwise co-

prime bases. For example one has

lim
N→∞

1

N
# {n < N | f(n) < y1, g(n) < y2} = G(y1)G(y2)

for certain distribution function G1(y), G2(y) if and only if the correspond-

ing series (8.53) for f(n) and g(n) converge. This was observed by Hilde-

brandt (personal communication), the only additional ingredient for the

proof is the Chinese remainder theorem.
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Interestingly the general central limit theorem (Theorem˜8.3.9) has no

direct analogue. The reason is that the Fundamental Lemma˜8.3.1 only

generalises (with the help of the Chinese remainder theorem) to a property

of the kind

1

N
# {n < N | n ∈ A} = Pr1,r2(A) +O

(
qr11 q

r2
2

N

)
, (8.73)

where A is a set depending on the first r1 q1-ary digits and on the first r2
q2-ary digits of n and Pr1,r2 is the natural measure for these sets. Thus

(8.73) just provides a proper approximation for half the range. Never-

theless, the BK-Property˜8.3.11 generalises to two (coprime) expansions,

see (Drmota 2001), (Drmota, Fuchs, and Manstavičius 2003). In particu-

lar, Theorem˜8.3.10 has a bivariate extension. In contrast to the Funda-

mental Lemma this method is based on exponential sum estimates of the

form of Lemma˜8.3.14, where one can apply Bakers’s theory on linear forms

of logarithms of algebraic numbers.

Another problem is to generalise distributional results (Theorems˜8.3.4,

8.3.9, 8.3.10) to numeration systems (Gk)k∈N that have been described in

Section˜8.4.2. One of the easiest extensions of the q-ary system is the Can-

tor system, where Gk = q1q2 · · · qk with integers qj ≥ 2. Here the digits

εj(n) can be independently chosen from the sets εj(n) ∈ {0, 1, . . . , qj − 1}.
This independence property gives also rise to a corresponding Kubilius

model (compare with Section˜8.3.1.1) so that Theorems˜8.3.4 and 8.3.9 di-

rectly extend to the Cantor case provided that the qj are uniformly bounded.

Numeration systems (Gk)k∈N, where the sequence Gk satisfies a linear

recurrence

Gk = a1Gk−1 + a2Gk−2 + · · ·+ adGk−d, k ≥ d, (8.74)

with constant coefficients a1, . . . , ad are also very well studied. The most

prominent one is the Zeckendorf system (d = 2, a1 = a2 = 1) that is based

on the Fibonacci numbers. By assuming that the coefficients satisfy the

relations

(aj , aj+1, . . . , ad) ≤ (a1, a2, . . . , ad−j+1), 2 ≤ j ≤ d,

where ≤ denotes the lexicographic order, then every non-negative integer n

has the unique (greedy) expansion n =
∑

j≥0 εj(n)Gj with digits εj(n) if

and only if

(εk(n), εk−1(n), . . .) < (a1, a2, . . . , ak), k ≥ 0.

This already shows that the digits are not independent. However, this sys-

tem is closely related to a digital representation associated to substitutions
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and is thus related to a Markov process (see (Dumont and Thomas 1997)).

In particular, this implies that a completely additive function (related to

such a numeration system) satisfies a central limit theorem. Theorems

similar to Theorem˜8.3.4 were proved in (Barat and Grabner 1996) and

(Barat and Grabner 2008).

However, if one additionally assumes that the characteristic poly-

nomial of the recurrence (8.74) is irreducible and that its dominant

root is a Pisot unit then there is an analogue of Theorem˜8.3.10 (see

(Drmota and Steiner 2002) (Steiner 2002)). For example, if a1 ≥ a2 ≥
· · · ≥ ad = 1 then these assumptions are satisfied. The essential point is

again a proper variant of the BK-Property˜8.3.11 which can be proved with

the help of exponential sum estimates. However, at this stage one has to use

an interesting relation to Rauzy fractals. In the q-ary case the q-ary digit

εj(n) can be determined by considering the fractional part of n/qj+1, that

is, εj(n) = d if and only if {n/qj+1} ∈ [d/q, (d + 1)/q). In the Pisot case

there is a tiling (Td)0≤d≤a1
of Rd that is deduced from the Rauzy fractal

related to the α-shift with the property that

dist
(
v(n, k), Tεk(n)

)
= O(α−k),

where

v(n, k) =
n

αk

α− 1

αd − 1

(
αd−1, . . . , α, 1

)
.

This means that the digits εk(n) can be almost determined by looking at

n/αk modulo the tiling. Thus a Fourier series approach similarly to that of

Lemma˜8.3.14 applies.
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q-additive functions on polynomial sequences. Acta Math. Hung. 68, (1995)
353–361.
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Notation Index

(a, b) (greatest common divisor),

251S (indicator function of the set

S), 7

δx (Dirac measure), 25

e(t) = e2πit, 27

EX (mean value of random vari-

able X), 34

Fq (finite field with q elements), 5

#A (cardinality of A), 8

Mf(s) (Mellin transform of f),

10

P (probability), 32

Φ(y) (normal distribution func-

tion), 37

T = R/Z (circle group), 5

vp(n) (p-adic valuation), 25

VX (variance of random variable

X), 41

ζ(s) (Riemann zeta function), 11

ζ(s, α) (Hurwitz zeta function),

11
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Berry-Esseen inequality, 28

BK-property, 39, 41

block-additive function, 23

block-multiplicative function, 23

central limit theorem, 37, 40, 44

Coquet, J., 24

Delange, H., 9

density, 21

logarithmic, 22

Dirichlet series, 17

ergodic theorem, 36

function

block-additive, 23

block-multiplicative, 23

completely q-additive, 5

completely q-multiplicative, 6

q-additive, 5

q-automatic, 4

q-multiplicative, 6

q-regular, 5

fundamental lemma, 32
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Haar measure, 36
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Kubilius model, 32

Lévy metric, 38

logarithmic density, 22
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odometer, 51

q-additive function, 5

completely, 5

q-automatic function/sequence, 4

q-kernel, 4

q-multiplicative function, 6

completely, 6

q-regular function/sequence, 5

sequence

q-automatic, 4

q-regular, 5

skew-product, 48

Tenenbaum, G., 8
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