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Abstract. We use known recursive expressions for the moments of the Cantor dis-

tribution to derive asymptotic expansions for these moments. This is done by a

combination of a method based on Mellin transform and the saddle point method.

The Cantor distribution with parameter ϑ, 0 < ϑ < 1 can be described by a
random series

ϑ̄

ϑ

∑

i≥1

Xiϑ
i,

where the Xi are independent with the distribution

P{Xi = 0} = P{Xi = 1} =
1

2
,

and ϑ̄ = 1 − ϑ. The essential result of the paper [7] is the following recursion for
the moments E(XN ):

E(XN ) =
1

2(1− ϑN )

N−1
∑

i=0

(

N

i

)

ϑiϑ̄N−i
E(X i), N ≥ 1, E(X0) = 1. (1)

The aim of the present note is to solve the recursion (1). We abbreviate aN =
E(XN ) and rewrite the recursion as

2aN − ϑNaN =
N
∑

i=0

(

N

i

)

ϑiϑ̄N−iai N ≥ 1, a0 = 1. (2)
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Now we introduce the exponential generating function

A(z) =
∑

N≥0

aN
zN

N !
.

Recursion (2) translates into

2A(z)− 2−A(ϑz) + 1 = eϑ̄zA(ϑz)− 1,

or

A(z) =
1 + eϑ̄z

2
A(ϑz). (3)

We can solve this equation by iteration, and we obtain (note that A(0) = 1)

A(z) =
∏

k≥0

1 + eϑ̄ϑ
kz

2
. (4)

For ϑ = 1
2
, the product collapses to

A(z) =
ez − 1

z
,

so that an = 1
n+1 , which of course can be seen directly, since the Cantor distribu-

tion is then just the uniform distribution over the interval [0, 1]. Since aN is the
coefficient of zN/N !, we have solved the recursion (1). More useful, however, is the
asymptotic equivalent for aN , which we are going to derive in the sequel. For that,
we need also the Poisson generating function

B(z) = e−zA(z) =
∑

N≥0

bN
zN

N !
.

Equation (3) translates then into

B(z) =
1 + e−ϑ̄z

2
B(ϑz), (5)

yielding

B(z) =
∏

k≥0

1 + e−ϑkϑ̄z

2
.

We note here that the result obtained above could be deduced easily by inter-
preting the Cantor distribution as the distribution function of a 2-additive function
given by

f

( L
∑

ℓ=0

εℓ2
ℓ

)

= ϑ̄

L
∑

ℓ=0

εℓϑ
ℓ.

The notion of q-additive functions was introduced in [1], where a necessary and suffi-
cient condition for the existence of a distribution function is given. The formula (4)
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is an immediate consequence of Delange’s formula for the Fourier transform of this
distribution function. Furthermore notice that for ϑ < 1

2
the moment generating

function A(z) can be written as the integral

A(z) =

∫

C

eztdH(t),

where C denotes the Cantor set given by the closure of the image f(N) and H de-
notes the normalized Hausdorff-measure of dimension log 1

ϑ
2. The function h(x) =

∫

[0,x]∩C
dH(t) is a singular function, i.e. it is monotonically increasing, thus differ-

entiable almost everywhere and the derivative vanishes almost everywhere despite
of the fact that h(0) = 0 and h(1) = 1.

Let us now start the asymptotic analysis of aN . For this purpose we compute
the Mellin transform (cf. [2,3]) of the logarithm of B(z)

(logB)
∗
(s) =

∫ ∞

0

logB(x)xs−1dx =
ϑ̄−s

1− ϑ−s

∫ ∞

0

log
(1 + e−x

2

)

xs−1dx (6)

for −1 < ℜs < 0. The remaining integral is easily computed as

∫ ∞

0

log
(1 + e−x

2

)

xs−1dx = Γ(s)ζ(s+ 1)
(

1− 2−s
)

,

again for −1 < ℜs < 0. Thus by Mellin’s inversion formula we have

logB(z) =
1

2πi

− 1
2
+i∞
∫

− 1
2
−i∞

Γ(s)ζ(s+ 1)
(

1− 2−s
) ϑ̄−s

1− ϑ−s
z−sds.

This formula holds for every z with | arg z| < π
2 . By shifting the line of integration

to the right and taking the residues at s = 0 (double pole!) and s = χk := 2kπi
log 1

ϑ

for

k ∈ Z \ {0} (simple poles) into account we obtain

logB(z) = − logΘ 2 · log ϑ̄z −
log 2

2
−

log 2 · logΘ 2

2

+
1

logΘ

∑

k∈Z\{0}

Γ (χk) ζ (1 + χk)
(

1− 2−χk
)

e−χk log ϑ̄e2kπi logΘ z

+
1

2πi

M+i∞
∫

M−i∞

Γ(s)ζ(s+ 1)
(

1− 2−s
) ϑ̄−s

1− ϑ−s
z−sds,

(7)

where Θ = 1
ϑ
and M is any positive real number. Since the remaining integral is

convergent by the well-known asymptotic behaviour of the Γ-function, the remain-
der term is a O(z−M ) for any M > 0. From this we derive

B(z) = F (logΘ z)z− logΘ 2
(

1 +O(z−M )
)

with an infinitely differentiable 1-periodic function F (x).
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The “de-Poissonization” technique (cf. [4,8]) suggests the approximation aN ∼
B(N). Applying it to every term of the Fourier-expansion of F (x) separately (the
Fourier series is uniformly convergent), we obtain

aN = F (logΘ N)N− logΘ 2 ·

(

1 +O

(

1

N

))

. (8)

In order to derive an explicit expression for the Fourier coefficients of F (x) we take
the Mellin transform of (5)

B∗(s) =
1

2
ΘsB∗(s) +

1

2

∫ ∞

0

B(ϑx)e−ϑ̄xxs−1dx.

By the above computations we know that this transform exists for 0 < ℜs < logΘ 2.
The last equation yields

B∗(s) =
1

2−Θs

∫ ∞

0

B(ϑx)e−ϑ̄xxs−1dx,

where the integral converges for every s with ℜs > 0. By Mellin’s inversion formula
the Fourier coefficients of F (x) are equal to the negative residues of B∗(s) at s =
logΘ 2 + χk, k ∈ Z. These are given by

F̂ (k) = −ResB∗(s)
∣

∣

∣

s=logΘ 2+χk

=
1

2 logΘ

∫ ∞

0

B(ϑx)e−ϑ̄xxlogΘ 2−1+χkdx.

These integrals can be easily computed numerically, because they are rapidly con-
vergent for x → ∞ and the behaviour for x → 0 is regular.

The value

F̂ (0) =
1

2 logΘ

∫ ∞

0

B(ϑx)e−ϑ̄xxlogΘ 2−1dx

is of special interest, as it is the mean value around which the periodic function
F (x) fluctuates. Since the amplitudes of these fluctuations are usually quite small,
we can write

aN ≃ F̂ (0) ·N− logΘ 2,

which is suggestive, but not quite correct, as it ignores the fluctuations.

Remark. Notice that F̂ (0) can be viewed as the following limit

F̂ (0) = lim
N→∞

1

logN

N
∑

n=1

ann
logΘ 2−1.

This is due to the fact that
∑

n<N n−1+it = O(1) for t 6= 0.

To illustrate the results, we give a table of F̂ (0), for several values of ϑ, and
compare them with the values of the recursion, for N = 50, N = 100 and N = 200.

Furthermore we present a plot of aNN log10 2 versus log10 N for ϑ = 0.1 to illus-
trate the fluctuating behaviour of this function.

For the reader’s convenience we summarize our findings.



ASYMPTOTIC ANALYSIS OF THE MOMENTS OF THE CANTOR DISTRIBUTION 5

Theorem. The moments E(XN ) of the Cantor distribution with parameter ϑ are

given as the coefficient of zN

N ! in

∏

k≥0

1 + e(1−ϑ)ϑkz

2
.

Asymptotically, we have

E(XN ) = F (log1/ϑ N)N− log1/ϑ 2 ·

(

1 +O
( 1

N

)

)

,

where F (x) is a periodic function of period 1 and known Fourier coefficients. The

mean of F (x) is given by

−
1

2 logϑ

∫ ∞

0

∏

k≥1

1 + e−(1−ϑ)ϑkx

2
e−(1−ϑ)xxlog1/ϑ 2−1dx.

We note here that in the case ϑ = 2−1/m for a positive integer m the function F
is constant, because all Fourier-coeffients in (7) vanish (except the one for k = 0).
This corresponds to the fact that A(z) can be given explicitly by

A(z) = ϑ̄−m2−
m+1

2 z−m
m−1
∏

r=0

(

e2ϑ̄ϑ
rz − 1

)

∼ ϑ̄−m2−
m+1

2 z−mez,

which yields

aN ∼ ϑ̄−m2−
m+1

2 N−m

for this case.
Furthermore, we note that in the context of the order statistics of the Cantor

distribution a recursion occurred in [5] which was solved in [6]. In this case, a some-
what more direct approach could be used, since explicit formulæ for the quantities
of interest were available, whereas here we have only the generating function A(z),
from which we have to extract the necessary information.
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