
SOME IDENTITIES FOR CHEBYSHEV POLYNOMIALS

PETER J. GRABNER† AND HELMUT PRODINGER‡

Abstract. We prove a generalization of a conjectured formula of Melham
and provide some background about the involved (Chebyshev) polynomials.

1. Introduction

In [3] Melham considered the two sequences

Un = pUn−1 − Un−2, U0 = 0, U1 = 1,

Vn = pVn−1 − Vn−2, V0 = 2, V1 = p,

and conjectured the formula

U2k
n + U2k

n+1 =

k
∑

r=0

DrVk

r!
Uk−r
n Uk−r

n+1 ,

where D means differentiation with respect to p. We remark here that up to
simple changes of variable these polynomials are Chebyshev polynomials. More
precisely

Un(p) = Un−1(
p

2
),

Vn(p) = 2Tn(
p

2
),

where Tn and Un denote the classical Chebyshev polynomials of first and second
kind, respectively.

The aim of this paper is to prove a general identity that contains Melham’s
conjecture as a special case: Set Wn = aUn + bVn and Ω = a2 + 4b2 − b2p2, then

W 2k
n +W 2k

n+1 =
k

∑

r=0

Ωk−r λk,r W
r
nW

r
n+1, (1)
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with

λk,r =
∑

0≤2j≤r

(−1)j
k(k − 1− j)!

(k − r)!j!(r − 2j)!
pr−2j

and λ0,0 = 2.
From [1, 2] we know explicit expansions for Chebyshev polynomials:

Vk =
∑

0≤2j≤k

(−1)j
(

k − j

j

)

k

k − j
pk−2j

for k ≥ 1 and V0 = 2. Then we have

λk,r =
Dk−rVk

(k − r)!
,

which links Melham’s conjecture and (1).

2. Proof of the Formula

We will make use of the identity
∞
∑

t=0

yt
(a+ t)!

t!
(bt + c) = a!(1− y)−a−2

(

c + y(ab+ b− c)
)

, (2)

which follows from
∞
∑

t=0

(

a + t

t

)

yt = (1− y)−a. (3)

In order to prove (1) we form the generating function

g(z) =

∞
∑

k=0

zk
k

∑

r=0

Ωk−r λk,r σ
r

with σ = WnWn+1. We reorder this to obtain (setting k − r = t)

g(z) =
∑

r≥0

∑

k≥r

zkΩk−rσrλk,r =
∑

r≥0

∑

t≥0

zr+tΩtσrλr+t,r

=
∑

r≥1

∑

t≥0

zr+tΩtσrlar+t,r + 1 +
∑

t≥0

ztΩt (using λ0,0 = 2)

=
∑

r≥1

∑

t≥0

∑

0≤2j≤r

ztΩt(σz)r(−1)j
(r + t)(r + t− 1− j)!

t!j!(r − 2j)!
pr−2j + 1 +

∑

t≥0

ztΩt

=
∑

j≥1

∑

r≥2j

∑

t≥0

ztΩt(σz)r(−1)j
(r + t)(r + t− 1− j)!

t!j!(r − 2j)!
pr−2j

+ 1 +
∑

r≥0

∑

t≥0

ztΩt(σz)r
(r + t)!

t!r!
pr (terms for j = 0 plus the last sum)
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=
∑

j≥1

∑

r≥2j

(−1)jpr−2j(σz)r(1− Ωz)j−r−1
(r − j − 1)!

j!(r − 2j)!
(r − jΩz) by (2)

+
∑

r≥0

(pσz)r(1− Ωz)−r−1 + 1 by (3)

=
∑

j≥1

(−1)j(σz)2j

(1− Ωz)j+1

∑

s≥0

(

pσz

1− Ωz

)s
(j + s− 1)!

j!s!
(j(2− Ωz) + s) (r = 2j + s)

+
1

1− (Ω + pσ)z
+ 1

=
∑

j≥1

(−1)j(σz)2j

(1− (Ω + pσ)z)j+1

(

2− (Ω + pσ)z
)

by (2)

+
1

1− (Ω + pσ)z
+ 1

= −
(σz)2

(

2− (Ω + pσ)z
)

(

1− (Ω + pσ)z
)(

1− (Ω + pσ)z + σ2z2
) +

1

1− (Ω + pσ)z
+ 1

=
2− (Ω + pσ)z

1− (Ω + pσ)z + σ2z2
.

The generating function of the left hand side is

1

1−W 2
nz

+
1

1−W 2
n+1z

=
2− (W 2

n +W 2
n+1)z

1− (W 2
n +W 2

n+1)z +W 2
nW

2
n+1z

2

and the assertion follows from

W 2

n +W 2

n+1 = pWnWn+1 + Ω,

which is easily proved e. g. by using the explicit forms

Un =
αn − βn

α− β
, Vn = αn + βn,

with

α =
p+

√

p2 − 4

2
, β =

p−
√

p2 − 4

2
.

3. Further identities

Many other similar formulæ seem to exist; we just give one other example; set

ak,r =
∑

0≤λ≤r

(−1)λp2k−2λ
k(k − ⌊λ

2
⌋ − 1)!2⌈

λ

2
⌉

(k − r)!λ!(r − λ)!

⌊λ

2
⌋−1
∏

i=0

(

2k − 2
⌈λ

2

⌉

− 1− 2i
)

and a0,0 = 2, then
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W 2k
n +W 2k

n+2 =
k

∑

r=0

Ωk−r ak,r W
r
nW

r
n+2.

The proof is as before.

Acknowledgment. We used Mathematica to perform the hypergeometric
summations used in the proof and Maple to guess several formulæ.
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