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Abstract. The positivity of a special digital sum is proved and its fractal nature

is discussed. The result is interpreted in terms of running digital sums of a special
code.

1. Introduction

In the area of the average case analysis of algorithms digital sums often play
an important rôle. For instance, they can be used to analyze register allocation
strategies, or, equivalently, the order of random channel networks (cf. [5]). Another
application of digital sums appears in the analysis of Batcher’s odd-even merge (cf.
[4]). Further applications of digital sums are known in coding theory: the so-called
running digital sum and run length of codes (cf. [11]).

Of course, these sums are also of number-theoretic interest. A survey on the
asymptotic analysis of digital sums by means of the Mellin transform is given in
[3]. One classical problem in that area is the study of sums of the type

Sp(N) =
∑

n<N

(−1)ν(pn),

where ν(k) is the sum of the binary digits of k and p is a given odd number. We
note here that (−1)ν(n) is the classical Thue-Morse sequence. The first non-trivial
case p = 3 was investigated by Newman [10] and Coquet [1], where they prove
an old conjecture of Moser stating the positivity of S3(N). Furthermore, Coquet
proved:

S3(N) = N log4 3F (log4N) +
η(N)

3
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where F is a continuous, nowhere differentiable function of period 1 and η(N) only
attains the values 0,±1.

The case of arbitrary prime numbers p is studied in [6], where a similar fractal
summation formula is given for the general case. An extension of Moser’s problem
to p = 5 was studied in [8]. Furthermore this was extended to numbers p = 3r5s;
the methods used there were developed in [7]. Recently Drmota and Ska lba [2]
proved that if 2 is a primitive root modulo p, then p = 3 and p = 5 are the only
primes, such that Sp(N) is always positive. If 2 generates the squares modulo p
the only two primes, such that the asymptotic main term of Sp(N) may be positive
are 17 and 41. In Section 2 of the present paper we solve this problem in the case
p = 17 and prove that S17(N) > 0 for all N . Numerical experiments up to N = 220

show that S41(N) > 0 for N > 6903. We remark here that the proof for S41(N) > 0
for N > N0 along the same lines as the proof for S17(N) > 0 below would involve
a 220 × 41-matrix.

In Section 3 we analyze a special code, which is defined via digital expressions
of the above type.

2. Digital Sums

We want to investigate

T (N) = S17(N) =
∑

n<N

(−1)ν(17n)

and prove

Theorem 1. The function T (N) satisfies

(2.1) T (N) = NαΦ(log256N) +RN

with a continuous nowhere differentiable periodic function Φ of period 1, α =
log(17+4

√
17)

log 256 . The function Φ is always greater than 0.08 and |RN | < 1.97; T (N) is

always positive.

Proof. Let ζk = exp( 2kπi
17 ) for k = 0, . . . , 16. Then it is an immediate consequence

of 256n ≡ 1 mod 17 that

(2.2) gk(n) = ζnk (−1)ν(n)

satisfies
gk(256n+ b) = gk(n)gk(b) for 0 ≤ b ≤ 255.

This property is called “complete 256-multiplicativity”. Thus we obtain

(2.3) gk

(

L
∑

l=0

al · 256l

)

=

L
∏

l=0

gk(al).

The value of gk(n) only depends on the 256-ary expansion of n.
Setting Gk(M) =

∑

n<M gk(n) we have

(2.4) T (N) =
1

17
G0(17N) +

1

17

∑

k∈〈2〉
Gk(17N) +

1

17

∑

k∈3〈2〉
Gk(17N),
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where 〈2〉 denotes the subgroup of the multiplicative residue group generated by
2. We split up the summation as above, since the second term contributes the
asymptotic main term, the evaluation of the first is trivial (G0(N) = 0,±1) and
third one is O(1).

We will now investigate the asymptotic behaviour of Gk(M), k ∈ 〈2〉:
Let M =

∑L

l=0 al ·256l be the 256-adic expansion of M and set Mp =
∑L

l=p al ·256l.
Then we have
(2.5)

Gk(M) =
∑

n<ML

gk(n)+

L−1
∑

p=0

Mp−1
∑

n=Mp+1

gk(n) = Gk(aL·256L)+

L
∑

p=0

gk(Mp+1)Gk(ap·256p).

Thus we have reduced the problem to the computation of Gk(a · 256l):

Gk(a · 256l) =
∑

ε<a

gk(ε)Gk(256l) = Gk(a)Gk(256)l.

Notice that

(2.6) Gk(256) =

255
∑

n=0

ζnk (−1)ν(n) =

7
∏

l=0

(

1 − ζ2
l

k

)

=

{

17 + 4
√

17 for k ∈ 3〈2〉
17 − 4

√
17 for k ∈ 〈2〉.

This holds because 2 generates the squares mod 17 and 3 is a quadratic non-
residue.

We rewrite (2.5)

(2.7) Gk(M) = (17 + 4
√

17)L
L
∑

p=0

(17 + 4
√

17)p−LGk(ap)

L
∏

l=p+1

gk(al)

and set

(2.8) ϕk

( ∞
∑

l=0

al · 256−l

)

=

∞
∑

l=0

l−1
∏

p=0

gk(ap)Gk(al)(17 + 4
√

17)−l.

Notice that these functions are well-defined and continuous (this is proved in a more

general setting in [7]) and ϕk(1) = 1, ϕk(256) = 17 + 4
√

17.
Inserting the definition of ϕk into (2.7) yields

(2.9)
Gk(M) = (17 + 4

√
17)⌊log256 M⌋ϕk

(

M

256⌊log256 M⌋

)

= Mα(17 + 4
√

17)−{log256 M}ϕk

(

256{log256 M}
)

,

where ⌊x⌋ and {x} denote respectively the integer and the fractional part of x as
usual. We set now ψk(x) = ϕk(x)x−α for 1 ≤ x ≤ 256 and observe that

Ψ(x) =
1

17

∑

k∈3〈2〉
ψk(x)
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is a continuous function which can be continued periodically (with period 1). The
proof that Ψ and therefore Φ are nowhere differentiable would run along the same
lines as the proof in Coquet’s paper [1] and is omitted here. We do not make any
use of this fact. Then we have

T (N) =
1

17
G0(17N) + (17N)αΨ(17N) +

1

17

∑

k∈〈2〉
Gk(17N)

and
Φ(y) = (17 + 4

√
17)αΨ(17 · 256y).

In order to estimate Φ from below we derive an explicit formula for ϕ(x) =
1
17

∑

k∈3〈2〉 ϕk(x):

ϕ(x) =
1

17

∑

k∈3〈2〉

∞
∑

ℓ=0

ℓ−1
∏

p=0

gk(ap)Gk(aℓ)(17 + 4
√

17)−ℓ

=
1

17

∞
∑

ℓ=0

(17 + 4
√

17)−ℓ(−1)ν(a0)+···+ν(aℓ−1)
∑

k∈3〈2〉
ζ
a0+···+aℓ−1

k Gk(aℓ).

We introduce some notations:

β(r, s) =
1

17

∑

k∈3〈2〉
ζrkGk(s)

Aℓ(x) =
∑

p<ℓ

ap(x), Bℓ(x) =
∑

p<ℓ

ν(ap) for x =

∞
∑

p=0

ap
256p

, 0 ≤ ap ≤ 255.

Then we can rewrite

ϕ(x) =

∞
∑

ℓ=0

(−1)Bℓ(x)
β(Aℓ(x) mod 17, aℓ)

(17 + 4
√

17)ℓ
.

Clearly, the values of ϕ(x) are determined by the entries of the matrix β(r, s),
r = 0, . . . , 16, s = 0, . . . , 255. Numerical computations with MAPLE show that
the maximal entry of this matrix is β(0, 255) = 128 + 32

√
17. Furthermore the

minimal entry in the first column is β(0, 1) = 8. In order to give a lower bound for
ϕ(x) we compute the minimal value of

β(0, a0) + (−1)ν(a0)
β(a0 mod 17, a1)

17 + 4
√

17
− β(0, 255)

∞
∑

ℓ=2

(17 + 4
√

17)−ℓ,

which is attained for a0 = 1 and a1 = 11, (β(1, 11) = −1
2 + 3

2

√
17). This yields the

lower bounds

(2.10)

ϕ(x) ≥ 13

34
+

9

578

√
17,

Φ(x) ≥ 17α
(

13

34
+

9

578

)

1

17 + 4
√

17
> 0.08.
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Starting from (2.5) and performing the same calculations as above, we derive

RN = β̄(0, aL)(17 − 4
√

17)L

+
L
∑

p=0

(−1)ν(ap+1)+···+ν(aL)β̄(ap+1 + · · · + aL mod 17, ap)(17 − 4
√

17)p

for N =
∑L

p=0 ap · 256p, where β̄ is the conjugate of β in the field Q(
√

17). Again

numerical computations with MAPLE provide the entry of β̄ of maximal modulus:
β̄(10, 198) = 17 − 8

√
17. This yields an estimate for |RN |:

(2.11) |RN | ≤ 1

17

(

(

8
√

17 − 17
)

∞
∑

ℓ=0

(17 − 4
√

17)ℓ + 1

)

=
18

17
+

15

68

√
17 < 1.97.

Combining (2.10) and (2.11) implies the lower bound

T (N) ≥ 0.08 ·Nα − 1.97.

From this we obtain T (N) > 0 for N ≥ 158. Checking the remaining values
N = 1, . . . , 157 directly with MAPLE yields T (N) > 0 for all N . This completes
the proof of Theorem 1. �

Remark 1. The graph of the function Φ is of “fractal nature”. As the following
picture and numerical experiments show, the range of the function Φ is between
1.105 and 2.892, which means that our lower bound is quite weak. For more details
on functions of that type see [3] and [8].

The graph of Φ
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3. Encoding with Digital Sums

As an application, we can use the sum-of-digits function for generating a code.

As above, let ν(n) =
∑L

i=0 bi be the binary sum-of-digits function, where n =
∑L

i=0 bi2
i.

Let

A = A(L, k) = {a(p) = (ν(p), ν(2p), . . . , ν(k · p))|p ∈ 1, 3, 5, . . . , 2L − 1}

be the language of the code, where L, k ∈ N. We will show that if k is big enough,
then the code is uniquely decodable.

As usual, we define the running digital sum (RDS) and runlength (RL) for A.
For a codeword a = a(p) = (a1, a2, . . . , ak) its RDS at time t 1 ≤ t ≤ k is given

by St(a) =
∣

∣

∣

∑t

j=1(−1)aj

∣

∣

∣
. Furthermore define ρ(a) = max

1≤t≤k
St(a) and the RDS

ρ = max
a

ρ(a) . The maximum number of consecutive identical values in a is denoted

by κ(a). Then the RL is given by κ = max
a

κ(a) . For more details concerning RL

and RDS we refer to [9], [12] and [11] .

Remark 2. As it is proved in [1] for p = 3 or in [8] for p = 5, or in Section 1 for
p = 17, there exists some number p for which ρ(a(p)) > c ·kα, with some 0 < α < 1
and c > 0. Thus an upper bound ρ0 for the RDS implies an upper bound also for
the code length k.

Remark 3. If p =
∑l

i=0 2i and k ≤ 2l+1 , then κ(a(p)) = k . (It is easy to prove

that if 1 ≤ k ≤ 2l+1 then ν(p ·k) = l+1, and ν(p · (2l+1 +1)) = 2l+2.) This means
that κ = k if k ≤ 2l+1. One can also prove that if p ∈ N and l = ⌊log(p)⌋ , then
among any 2l+1 + 1 consecutive elements of a(p) there exist two different ones.

Proof. Let p ∈ N and let (a1, a2, . . . , ak) be its codeword a(p). Let furthermore
1 ≤ t ≤ k and let us consider the subword (at, at+1, . . . , at+2l+1) . By the Euler-
Fermat theorem there exists a number u such that p · u = 1 mod 2l+1 . Let
q = min{ i |t ≤ i ≤ t + 2l+1 and i = u · (−p − 1) mod 2l+1} . Then t ≤ q <
t + 2l+1 and thus q and q + 1 are also contained in the above subword. But then
ν((q + 1) · p) = ν(q · p) + ν(p) > ν(q · p), which proves the statement. �

Let p =
∑L

i=0 bi2
i , k ≥ 2L+1 + 1 and let a(p) = (ν(p), ν(2p), . . . , ν(k · p))

be the corresponding codeword. Suppose we know k and a(p). Define further
invj(b0, b1, . . . , bj) = (c0, c1, . . . , cj) such that

1 ≡
(

j
∑

i=0

bi2
i

)(

j
∑

i=0

ci2
i

)

mod 2j+1.

Then we can define the following (decoding) algorithm:

Decoding Algorithm.

1. Let l = max{ i | 0 ≤ i ≤ L and ν(p · (2i + 1)) < 2ν(p)};
2. For i > l Let bi = 0;
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3. Let b0 = bl = 1;
4. For i from 0 to ⌊l/2⌋ − 1 do

4.1. Let (c0, c1, . . . , ci) = invi(b0, b1, . . . , bi);

4.2. Let c =
∑i

j=0 cj2
j;

Let d = c+ 2i+1;
Letη = ν(p) + ν(p · c) − ν(p+ 2i+1p · c);
ϑ = ν(p) + ν(p · d) − ν(p+ 2i+1p · d);

4.3. If η < ϑ then

4.3.1. Let ci+1 = 0;
4.3.2. Let (b0, b1, . . . , bi+1) = invi+1(c0, c1, . . . , ci+1);
4.3.3. If η = 0 then bi+1 = 0 else bi+1 = 1;
4.4. If η > ϑ then

4.4.1. Let ci+1 = 1;
4.4.2. Let (b0, b1, . . . , bi+1) = invi+1(c0, c1, . . . , ci+1);
4.4.3. If ϑ = 0 then bi+1 = 0 else bi+1 = 1;
4.5. If η = ϑ then

4.5.1. Let bl−i−1 = 1

4.5.2. If ν
(

∑i

j=0 bj2
j
)

+ ν
(

∑i

j=0 2j
)

− ν
(

∑i

j=0 bj2
j +

∑i

j=0 2j
)

=

2ν(p) − ν
(

p+ 2l−i+1
)

then Let bi+1 = 0 else Let bi+1 = 1.

Theorem 2. Let a(p) be an error free codeword and let bi (0 ≤ i ≤ L) be obtained

by the above Decoding Algorithm. Then p =
∑L

i=0 bi2
i.

Proof. Steps 1,2 and 3 give the correct l because if l < L then ν(p·(2l+1+1)) = 2ν(p)
and ν(p · (2l + 1)) < 2ν(p) . (This is because in the addition p+ p · 2l+1 there are
no carries and so there are no “lost digits”, while in the addition p+ p · 2l there is
at least one carry and so there is a “lost digit”.)

Suppose now, that b0, b1, . . . , bi and bl−i, bl−i+1, . . . , bl are given. Then by the
Euler-Fermat theorem there exist uniquely determined c0, c1, . . . , ci such that

m
∑

j=0

dj2
j =





i
∑

j=0

bj2
j









i
∑

j=0

cj2
j





with some m ∈ N and dj ∈ {0, 1}, 0 ≤ j ≤ m, and d0 = 1, d1 = d2 = · · · = di = 0 .

Let c =
∑i

j=0 cj2
j . If d =

∑m

j=0 dj2
j = c · p then d0 = 1 and d1 = d2 = · · · =

di = 0 .

Furthermore, if e =
∑m′

j=0 ej2
j = (c+ 2i+1) · p, then di+1 + ei+1 = 1 and ej = fj

if 0 ≤ j ≤ i.
Computing the values η = ν(p) + ν(d) − ν(p + 2i+1 · d) and ϑ = ν(p) + ν(e) −

ν(p + 2i · e) yields either (a) η < ϑ (b) ϑ < η or (c) η = ϑ . Here η (and ϑ)
represents the numbers of carries in the additions p + 2i+1 · e (and p + 2i+1 · f ).
In case (a) we have fi+1 = 1 since there are more carries. Similarly, in case (b)
we obtain ei+1 = 1 . Hence the value of bi+1 can be computed by the function
invi+1. Furthermore, in case (a) we have bl−i−1 = 0 for η = 0 and bl−i−1 = 1,
otherwise. Case (b) can be handled similarly. Case (c) appears if and only if

bl−i−1 = bl−i = · · · = bl = 1 . But then let γ = ν
(

∑i

j=0 bj2
j
)

+ ν
(

∑i

j=0 2j
)

−
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ν
(

∑i

j=0 bj2
j +

∑i

j=0 2j
)

. Since the i+1-st digit of the last sum of the expression

has value 1, γ = 2ν(p) − ν
(

p+ p · 2l−i+1
)

if and only if bi+1 = 0 .
By repeating this step we can compute p . This implies that the coding system

is uniquely decodable. �

Remark 4. From the digital construction it is clear that the length of the codewords
is exponentially growing with the length of the original words. Thus the code is
exponential in contrast to many well-known and standard other codes.

Remark 5. The code defined above is extremely redundant, because all parts of the
codeword depend on the original word.

Remark 6. Because of the previous remarks the above code is strongly error cor-
recting, and the decoding procedure is linear.

Acknowledgement. The authors are indebted to Brian Ward for preparing
the numerical experiments which were necessary for this work.
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