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An interface problem for a Sierpinski and a Vicsek fractal
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We suggest a flexible way to study the self-similar interface of two different fractals. In contrast to previous
methods the participating energies are modified in the neighborhood of the intersection of the fractals. In the
example of the Vicsek snowflake and the 3-gasket, a variant of the Sierpinski gasket, we calculate the admissible
transition constants via the “Short-cut Test”. The resulting range of values is reinterpreted in terms of traces
of Lipschitz spaces on the intersection. This allows us to describe the interface effects of different transition
constants and indicates the techniques necessary to generalize the present interface results.
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1 Introduction and results

In 1993 Lindstrøm was the first to embed a fractal, the Sierpinski gasket, into the Euclidean plane and connect
them [20]. Later on Kumagai, Jonsson and Hambly/Kumagai extended his work by analytical means [17, 12, 9].
They identified the domain of the fractal Dirichlet form as a certain Lipschitz space and used an extension map
of Jonsson and Wallin, [14], to extend these functions to the plane. Then they verified that sufficiently many of
them lie in the domain of the plane Laplacian. In other words, the transition can be defined by superimposing
the two component Laplacians on the interface, and transition across the interface takes place in both directions.
This type of connection might be called “instantaneous transition”, because the composite Laplacian coincides
with the respective component Laplacians outside the overlap of the two media. When the plane is replaced by
some other fractal, the Lipschitz functions of the plane have to be extended to the fractals.

To avoid such technicalities and for engineering reasons we want to suggest a different form of transition which
might be called “gradual transition”, because the two media in question are changed gradually into a medium
which allows transition. The character of this connection can be modified in choosing a transition constant ηC in
a certain interval. The region in which the original media have to be changed is necessarily of positive Hausdorff
measure. This approach has two advantages: (1) When the union of the component fractals is still self-similar,
then the interface also is, that is, the composite Dirichlet form has a self-similar scaling. (2) Physically, the two
connected media influence each other (possibly on a molecular scale) in a small neighborhood of the interface.
Because of the self-similarity, the rescaling can be performed exclusively on this neighborhood. The disadvantage
of our setup is the self-similar interface, that is, an unusually nice match of the participating structures. For
this reason the present paper can only provide two detailed case studies, the house and the thumbtack fractal.
Hopefully, the detailed effects described below will stimulate further research.

The main results of this paper are the Theorems 6.5, 6.6 and 7.3. In the first two those transition weights are
identified which guarantee a self-similar continuous transport across the interface of our composite models in both
directions. The range of admissible transition weights is surprisingly large. The lower bound is a consequence
of the fact that points should have positive capacity and the upper bound implies a finite conductivity of the
interface. When the interface is disconnected, like in one of our examples, then the upper bound is infinite.
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Theorem 7.3 interprets these result in terms of traces. In its proof we use graph-directed constructions to rescale
a given fractal near a given interface. This indicates how one can generalize the results to connect finitely many
(p.c.f. self-similar) fractals at their interface, provided their structures match nicely, like in our model cases.

The overlap of this paper with Lindstrøm’s results is very small since he considers mainly nonreversible
processes [20, Thm. V.6]. His only reversible case (α = β ≡ 1) has no free transition constant.

The organization of the paper is as follows. In Section 2 we use graph directed methods to define the two
composite fractals we will work on, the house and the thumbtack. On the house the intersection is the classical
Cantor set, on the thumbtack it is the unit interval. Section 3 recalls the existence and uniqueness of self-similar
sets and measures in a graph-directed construction. Section 4 associates to each finitely ramified fractal a discrete
Dirichlet form. The composite part of the form is scaled by a free parameter, the transition constant ηC . This
defines a renormalization map Λη. Section 5 sketches the one to one correspondence between irreducible Λη-
eigenvectors and self-similar Dirichlet forms on fractals. Such eigenvectors are detected by the Short-cut Test for
both examples in Section 6. Section 7 describes the effect of ηC on the thumbtack via Besov spaces.

2 The construction graphs

We consider two so called nested fractals: A variant of the Sierpinski gasket with six subtriangles, which we call
“3-gasket” for short, and the Vicsek fractal in Figure 1. We want to connect the two fractals in two essentially

Fig. 1 The first three construction steps of the 3-gasket above and the Vicsek fractal below.

different ways: The house, that is, the lower side of the triangle intersects the top side of the square, and the
thumbtack, that is, the lower side of the triangle coincides with one of the diagonals of the square. In the first
case the interface is the classical middle third Cantor set and in the second it is a line segment. The difference
between a totally disconnected and a connected interface will turn out to be crucial. We will consider the two
composites as graph directed constructions in the sense of Mauldin and Williams [21].

As a graph directed construction the house has three “building blocks” or components, the triangle “T ”, the
square “S” and the composite “C” in the shape of a house, as depicted in Figure 2. We need 20 contractions

v4

v5 v6

v7 v8

v9
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v11

v12
v1 v3

v2

Fig. 2 The three building blocks of the house in the first line and their respective refinements in the second
line

ψ1, . . . , ψ20 by 1
3 to define the house as a graph directed construction. Set V := {T, S, C} and�2

v := �2 ×{v},
for v ∈ V . Let us say that ψ1, . . . , ψ6 : �2

T → �
2
T define the scaled triangles inside the triangle. The scaled

squares inside the square are produced by ψ7, . . . , ψ11 : �2
S → �

2
S. The scaled triangles inside the house

are given by ψ12, . . . , ψ15 : �2
T → �

2
C , the scaled squares inside the house by ψ16, . . . , ψ18 : �2

S → �
2
C

and the scaled houses inside the house by ψ19, ψ20 : �2
C → �

2
C . Let e ∈ E := {1, . . . , 20} and consider

ψe : �2
w → �

2
v. Define the domain of ψe by dom(e) := w and the target by tar(e) := v. We think of e as
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pointing from tar(e) to dom(e), the convention used by Mauldin and Williams. This defines the construction
graph (V,E).

To construct the thumbtack we glue the 3-gasket to the diagonal of the Vicsek fractal in�3. Therefore Figure 3,
the analog of Figure 2, shows only a perspective view of sketched sets. As a graph directed construction the

v1

v3

v2

v4

v5 v6

v7 v8

v9 v10

v11

v12

Fig. 3 (Online colour at: www.mn-journal.org) The three sketched building blocks of the thumbtack in the
first line and their respective refinements in the second line. The interface is given by the dashed line.

thumbtack has three components, the triangle “T”, the square “S” and the composite “C” in the shape of a
thumbtack. This time we need 19 contractions ψ1, . . . , ψ19 by 1

3 . Set V := {T, S, C} and �3
v := �

3 × {v},
for v ∈ V . The ψ1, . . . , ψ6 : �3

T → �
3
T define the six scaled triangles inside the triangle, the ψ7 . . . , ψ11 :

�
3
S → �

3
S give the five scaled squares inside the square. Finally, ψ12, . . . , ψ14 : �3

T → �
3
C move the scaled

triangles to their respective positions inside the thumbtack, ψ15, ψ16 : �3
S → �

3
C arranges the two scaled squares

inside the thumbtack and ψ17, ψ18, ψ19 : �3
C → �

3
C defines the scaled thumbtacks inside the thumbtack. Set

E := {1, . . . , 19}, and the construction graph is again denoted by (V,E).

3 Self-similar sets and measures

Depending on the composite under consideration let m = 2, 3. For M ⊂ �m × V define the refinement map by

Ψ(M) :=
⋃
e∈E

ψe

(
M ∩�m

dom(e)

)
.

A contraction argument, like in [21, Thm. 1], proves the existence and uniqueness of nonvoid compacts Kv ⊂
�

m
v , for v ∈ V , such that

Kv =
⋃

e∈E,tar(e)=v

ψe

(
Kdom(e)

)
.

Thus F := KT ∪KS ∪KC is a fixed point of Ψ and therefore termed a self-similar set.
A subgraph of the construction graph (V,E) is termed strongly connected, when every two vertices are con-

nected by a directed path. Hence (V,E) has three strongly connected components T , S and C. Since our
construction graphs satisfy the “open set condition”, [4, Thm. 6.4.8] shows that we could calculate a Hausdorff
dimension for every strongly connected component via [21, Thm. 3]. Here it is simpler to use the self-similarity
dimension in [6, Thm. 9.3]. This is possible because all our strongly connected components consist of a single
vertex with a loop. The T -component defines the 3-gasket KT with 6 subtriangles and Hausdorff dimension
ln 6
ln 3 . The S-component defines the Vicsek fractal KS with Hausdorff dimension ln 5

ln 3 . The C-component defines
different sets in the house and in the thumbtack case. For the house it is the classical middle third Cantor set with
Hausdorff dimension ln 2

ln 3 . For the thumbtack it is just a line segment with Hausdorff dimension 1.
To define self-similar measures on our self-similar sets we have to choose refinement weights pe > 0, for

e ∈ E, such that ∑
e∈E,tar(e)=v

pe = 1 (v ∈ V ).
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For a measure µ on the Borel sets of �m
dom(e) we define the image measure ψe(µ)(·) = µ

(
ψ−1

e (·)) on the Borel
sets of�m

tar(e). Now the refinement map

Ψ(µ) :=
∑
e∈E

pe · ψe(µ)

defines a new measure. The above choice of refinement weights guarantees that we end up with Ψ(µ)(Kv) = 1
when we started with µ(Kv) = 1 for all v ∈ V . According to [5, Thm. 3.3.16] there exists a unique Borel
measure ξ which is fixed by Ψ and has total mass 1 on each Kv, v ∈ V .

To guarantee that ξ restricted to KT is the ln 6
ln 3 -dimensional normalized Hausdorff measure on the 3-fractal,

we have to choose

p1 := . . . := p6 :=
1
6
.

The ln 5
ln 3 -dimensional normalized Hausdorff measure on the Vicsek fractal, KS , is realized by the choice

p7 := . . . := p11 :=
1
5
.

On the composite of the house we put equal weights on equal shapes.

house : p12, . . . , p15 :=
1
4
· ηT

ηT + ηS + ηC
,

p16, p17, p18 :=
1
3
· ηS

ηT + ηS + ηC
,

p19, p20 :=
1
2
· ηC

ηT + ηS + ηC
.

The exact values will be motivated in Section 5. On the interface of the thumbtack we follow the same strategy.

thumbtack : p12, p13, p14 :=
1
3
· ηT

ηT + ηS + ηC
,

p15, p16 :=
1
2
· ηS

ηT + ηS + ηC
,

p17, p18, p19 :=
1
3
· ηC

ηT + ηS + ηC
.

4 The skeleton networks

Let us denote the extremal points of the initial shapes as indicated in the first line of Figure 2 or 3 by V0 :=
{v1, . . . , v12}. They are our vertices of generation 0. The n-th generation is given by Vn := Ψn(V0), for n ∈ �.

The vertices V0 will now be endowed with weighted edges or a so called conductance. This results in a so
called electrical resistor network [3]. Consider a function c0 : V 2

0 → �+ which is symmetric, vanishes on the
diagonal and assumes only the values d1, d2 on the triangle and the square as listed below:

d1 on every {vi, vj} ⊂ {v1, v2, v3},
d2 on every {vi, vj} ⊂ {v4, . . . , v7}. (4.1)

As a nested fractal the 3-gasket defines a self-similar fractal Laplacian when all its conductances are equal [8].
This is the reason for the choice of d1. The same holds for the Vicsek fractal by [22], which justifies the choice of
d2. Further restrictions on c0 will be imposed later. On each building block Kv we define a symmetric, discrete
Dirichlet form Ev

0 (·, ·) in the sense of [7] via polarization and the quadratic form (energy)

Ev
0 (f) :=

1
2

∑
x,y∈V0∩Kv

(f(y) − f(x))2c0(x, y), (4.2)
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Math. Nachr. 280, No. 13–14 (2007) 1581

for v ∈ V and f : V0 → �. Then E0 := ET
0 + ES

0 + EC
0 defines a Dirichlet form on V0.

To define the refinement map on energies we choose transition weights ηe > 0, for e ∈ E. For f : V1 → �

we define a Dirichlet form on V1 by

E1(f) := Ψη(E0)(f) :=
∑
e∈E

ηe · Edom(e)
0 (f ◦ ψe).

The trace of E1 on V0 is given for f : V0 → � by

TrV0(E1)(f) := inf{E1(g) | g : V1 → �, g|V0 = f}.
By the Dirichlet principle, [16, Thm. 2.1.6], this solves the E1-Dirichlet problem on the “open” set V1 \ V0 with
data f on the “boundary” V0. Finally, the renormalization map is defined to be

Λη := TrV0 ◦ Ψη.

In physics the action of Λη is called “coarse graining renormalization” [11]. It can be calculated by Theorem 4.1.
Every E0 ∈ � defines a graph Γ(E0) with vertex set V0 and edge set {{x, y} ⊂ V0 | cE0(x, y) > 0}. In the same
way E1 defines a graph Γ(E1) with vertex set V1 and analogous edge set. We call a Dirichlet form irreducible,
when its graph is connected.

Theorem 4.1 (Schur complement formula [1, Eq. 6, Thm. 6]) Let W �= ∅ be a finite set and c a conductance
on W whose Dirichlet form A, defined by (4.2), is irreducible. Consider the Dirichlet operator A of A as a
matrix with respect to the standard orthonormal basis of �W . Choose ∅ �= I ⊂W and define B := W \ I . Let
AST be the submatrix of A with rows from S and columns from T , for S, T ∈ {B, I}. Denote the matrix of the
Dirichlet operator of TrB(A) by TrB(A). Then TrB(A) = ABB −ABI(AII)−1AIB .

The above Schur complement formula can be used to prove the well-known equations for the effective resis-
tance of resistors in line and in parallel. It allows us to remove dangling ends from resistor networks and it shows
that TrB ◦ TrC = TrB for B ⊂ C ⊂W .

We want to decide for which transition weights η := (ηT , ηS , ηC) there exists a unique (up to positive multi-
ples) solution of

Λη(E) = γE (γ ∈ �, E ∈ �◦). (4.3)

Such an eigenvector defines a “Laplacian” on F as we will see in Section 5. Again the triangle, the square and
the composite define irreducible subproblems. When we evaluate Λη only on conductances between points of the
triangle, {v1, v2, v3}, then

ηT =
15
7

is the only transition weight guaranteeing a Λη-fixed point [8]. Doing the same on the square, {v4, . . . , v7}, we
find the only possible transition weight

ηS = 3

according to [22]. Therefore let us fix ηT and ηS to the above values. This leaves only ηC as a free variable in
(4.3).

On the house we want c0 to be invariant under the reflection in the line through v11 and v8+v9
2 . This requires

the following choice:

house : d3 for {v8, v12}, {v9, v10},
d4 for {v10, v11}, {v11, v12},
d5 for {v8, v11}, {v9, v11},
d6 for {v8, v10}, {v9, v12},
d7 for {v10, v12},
d8 for {v8, v9}.

(4.4)
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On the thumbtack we want c0 to be invariant under the reflections in two planes, one spanned by {v9, v11, v12}
and one spanned by {v8, v10, v12}. This requires the choice:

thumbtack : d3 for {v8, v9}, {v9, v10}, {v10, v11}, {v8, v11},
d4 for {v9, v12}, {v11, v12},
d5 for {v8, v12}, {v10, v12},
d6 for {v8, v10},
d7 for {v9, v11}.

(4.5)

5 Dirichlet forms on fractals

The construction of an irreducible, regular, local, conservative and symmetric Dirichlet form on our fractal fol-
lows [10, Sect. 4], which is itself an adaption of the arguments in [16, Sect. 3], where single component fractals
are treated.

Suppose we have found a unique solution F of (4.3) for some ηC > 0. Define

Fn := Ψn
η (F) (n ∈ �).

When ηv > 1, for v ∈ V , this defines a so called regular harmonic structure for which our constructions work.
By definition ηT , ηS > 1. So we have to require

ηC > 1. (5.1)

Set V∞ :=
⋃

n∈� Vn and let m = 2, 3 depend on the composite in question. Since F is a fixed point, we have

Fn(f |Vn) ≤ Fn+1(f |Vn+1) (f : V∞ → �, n ∈ �).

By [10, Lemma 4.7] every f : V∞ → �, for which (Fn(f |Vn))n is bounded from above, is uniformly continuous
on V∞ ⊂ �m × V . So it can be extended to a continuous function f ∈ C(F,�). This enables us to define the
quadratic form E : D(E) → �+ given by

D(E) :=
{
f ∈ C(F,�) | sup

n
Fn(f |Vn) <∞

}
,

E(f) := sup
n

Fn(f |Vn) = lim
n→∞Fn(f |Vn).

It defines via polarization a Dirichlet form of the desired type on L2(F, ξ) [10, Thm. 4.9]. Here ξ is the self-
similar measure of Section 3, depending on the house or the thumbtack setup. The refinement weights of ξ have
been chosen in Section 3 in such a way that ξ turns out to be an invariant measure of the stochastic process defined
by (E ,D(E)) on F [7, Chap. 4]. The invariant measure is not unique because the process lives on three different
connected components. We have chosen the version with total mass 1 on each component.

6 The Short-cut Test

The fixed point problem (4.3) can be treated by the Short-cut Test in [23]. To this end we have to define the
domain of Λη. Let � be the set of all Dirichlet forms given in (4.2) by the conductances in (4.1) and those in
(4.4) or (4.5), respectively. These conductances take on the values d1, . . . , dk, where k = 8 for the house and
k = 7 for the thumbtack. Together with cE(x, y) = −E(1{x}, 1{y}

)
, for x �= y ∈ V0, and the fact that all our

forms vanish on constants, this defines a linear isomorphism T : � −� → �
k. For E ∈ � −� let us denote

the i-th component of T (E) by di(E), because for E ∈ � it is the conductance di. Evaluating E ∈ � only
on functions which vanish on V0 \ {v1, v2, v3} and taking our choice of ηT into account, or evaluating only at
functions vanishing on V0 \ {v4, . . . , v7} and taking our choice of ηS into consideration, we derive

di(Λη(E)) = di(E) (i = 1, 2; E ∈ �). (6.1)
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When E ∈ � \ {0}, then it defines a�-part

�E := {A ∈ � |Γ(A) = Γ(E)}.

Because of the following lemma, Λη acts on the set of�-parts supplemented by {0}.

Lemma 6.1 ([23, Lemma 16]) For E ∈ � and different x, y ∈ V0, cΛη(E)(x, y) > 0 if and only if there exists
a path in Γ(E1) connecting x to y and avoiding V0 \ {x, y}.

So a �-part containing a Λη-fixed point must be Λη-invariant. The latter can be detected graphically via
Lemma 6.1. Furthermore, Γ(A) ⊂ Γ(E) implies Γ(Λη(A)) ⊂ Γ(Λη(E)). Therefore we write �1 ≤ �2 for
�-parts�1,�2 with Γ(�1) ⊆ Γ(�2).

For E ∈ � define ker E := {f : V0 → � | E(f) = 0}. The minimum principle, [16, Prop. 2.1.7], shows
that ker E is the set of functions which are constant on the connected components of Γ(E). Suppose we have
found a reducible Λη-fixed point F ∈ �. Then �F is Λη-invariant by Lemma 6.1. To perform the Short-cut
Test we will have to calculate eigenvalues of Λη(∞F + ·). The Λη-invariance of �F implies for E ∈ � that
Λη(∞F + E)(f) <∞ if and only if f ∈ kerF . So we only have to evaluate at functions which are constant on
the connected components of Γ(F).

Remark 6.2 The eigenvalues of Λη(∞F + ·) can be found as follows: Identify each connected component of
Γ(F) with a single new point. The conductances on edges between new points are the sum of the conductances
between the corresponding components [23, Lemma 17]. The same happens for Γ(F1). So we are back to new
and simpler Dirichlet forms with finite conductances on which Λη also acts because of the Λη-invariance of�F .

By Remark 6.2 it is clear that any two Λη-invariant forms E ,F ∈ � with ker E = kerF result in the same
eigenvalue problem because their graphs have the same set of connected components. So we only have to apply
the remark to �-parts with different kernels. To illustrate the shorting effect of the remark let us consider the
composite of the house as depicted in Figure 5. We set d1 := d2 := ∞ and apply the remark. The result is shown
in Figure 4. All the sums in the figure come from the reduction of multiple edges to simple edges. The reader
might wonder, where the second edge with conductance d4 went. It became a loop at vertex v11. They do not
contribute to the energy by (4.2), so we erased the d4-loops.

v8=v9 v11

v10

v12

d3

d3

d6

d6

d8

d8

d4+d7

d4+d7d5+d6

d5+d6

2(d3+d5)

Fig. 4 (Online colour at: www.mn-journal.org) The short circuited composite of the house (d1 = d2 = ∞)

Suppose all Λη-invariant�-parts have different kernels. Let �1 be a �-part containing a Λη-fixed point F .
Let �2 be a Λη-invariant �-part strictly bigger than �1. We say that �1 is weakly repellent in �2 (the set of
all �-parts with kernels at least as big as ker�2), when the map Λη(∞F + ·) has an eigenvector in �2 whose
eigenvalue γ is strictly bigger than the eigenvalue of�1. Here comes the Short-cut Test.

Theorem 6.3 ([23, Thm. 26]) Suppose all Λη-invariant �-parts have different kernels and every �-part
containing a Λη-fixed point F is weakly repellent in �. Then there exists a unique irreducible Λη-fixed point
in�.

We can verify the assumptions of Theorem 6.3 step by step.
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Lemma 6.4 ([23, Prop. 9 (i), Rem. 31]) Suppose all Λη-invariant�-parts have different kernels. Assume the
�-part�1 contains a Λη-eigenvector with eigenvalue λ1 and there exists a�-part�2 such that�1 ≤ �2 and
ker�1 �= ker�2.

(a) When�2 contains a Λη-eigenvector with eigenvalue λ2, then λ1 ≤ λ2.
(b) When�1 is weakly repellent in�2, then�1 is weakly repellent in�.

6.1 The house

Employing Lemma 6.1 we can find the Λη-invariant �-parts graphically in Figure 5. Every �-part is char-
acterized by a unique set of positive conductances. Thus we index our �-part by representative conductances
(d1, . . . , d8) ∈ {0, 1}8, with d1 = d2 because of (6.1). We find the Λη-invariant �-parts �3,�4,�5 and
�

◦ below. They all connect the triangle, {v1, v2, v3}, and the square, {v4, . . . , v7}. The remaining connected
components are:

�3 := �(1,1,0,0,0,0,0,1) : {v8, v9}, {v10}, {v11}, {v12},
�4 := �(1,1,0,0,1,0,0,1) : {v8, v9, v11}, {v10}, {v12},
�5 := �(1,1,0,1,0,0,1,1) : {v8, v9}, {v10, v11, v12},
�

◦ = �(1,1,1,1,1,1,1,1) : {v8, . . . , v12}.
So all invariant�-parts have different kernels.

v10v9

v8 v12

v11

d3

d3

d3

d3

d4

d4

d4

d4

d5

d5d6

d6d8

d8

d7

d7

Fig. 5 (Online colour at: www.mn-journal.org) The refinement of the composite of the house

Every element E of a Λη-invariant �-part satisfies d1(E), d2(E) > 0. So every Λη-eigenvector they contain
must be a Λη-fixed point by (6.1) or there is no eigenvector at all. In the latter case we need not employ Theo-
rem 6.3. Nevertheless, we will check its eigenvalue inequality to save the work of detecting fixed points. Denote
the possible Λη-eigenvalue in�i by λi and an eigenvalue of the short circuited model by γi for i = 3, 4, 5.

setup d1 d2 d3 d4 d5 d6 d7 d8 λi γi

�3 ⊂ �4 ∞ ∞ 0 0 d5 0 0 ∞ 1 2ηC

�4 ⊂ � ∞ ∞ d3 d4 ∞ d6 d7 ∞ 1 ηC

�5 ⊂ � ∞ ∞ d3 ∞ d5 d6 ∞ ∞ 1 2ηC

Table 1 The chain�3 ≤ �4 ≤ �◦

We will apply Lemma 6.4 to the chain �3 ≤ �4 ≤ �
◦ and Theorem 6.3 to �5 ≤ �

◦. The eigenvalue
inequalities γi > λi, for i = 3, 4, 5, are obviously satisfied under the condition

ηC > 1. (6.2)
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When we apply Lemma 6.4 and Theorem 6.3 as mentioned above, then the weak repellence of �2,�3 and
�4 follows and a last application of Theorem 6.3 yields a unique irreducible fixed point in �. Since �◦ is
the only Λη-invariant �-part consisting of irreducible forms, the fixed point must even lie in �◦, that is, all its
conductances are strictly positive.

Theorem 6.5 For ηC > 1 there exists a unique (up to positive multiples) Λη-fixed point with strictly positive
and finite conductances on the house.

6.2 The thumbtack

Because of (6.1) we also restrict ourselves to d1 = d2. Again we have to find the Λη-invariant�-parts graphically
in Figure 6 by Lemma 6.1. We find the Λη-invariant�-part�1 := �(0,0,0,0,0,0,1),�2, . . . ,�10 below and�◦.

v12

v11

v9 v8

v10

d7

d6

d5

d3

d3

d4

Fig. 6 (Online colour at: www.mn-journal.org) The refinement of the composite of the thumbtack. The lines
with conductance d3 are not visible on the black and white print out

In�1 all vertices of V0 are isolated except {v9, v11}. All other invariant�-parts connect the triangle, {v1, v2, v3},
and the square, {v4, v5, v6, v7}. The remaining connected components are

�2 := �(1,1,0,0,0,0,0) : {v8}, {v9}, {v10}, {v11}, {v12},
�3 := �(1,1,0,0,0,0,1) : {v8}, {v9, v11}, {v10}, {v12},
�4 := �(1,1,0,0,0,1,0) : {v8, v10}, {v9}, {v11}, {v12},
�5 := �(1,1,0,0,0,1,1) : {v8, v10}, {v9, v11}, {v12},
�6 := �(1,1,1,0,0,1,1) : {v8, . . . , v11}, {v12}
�7 := �(1,1,0,0,1,1,0) : {v8, v10, v12}, {v9}, {v11},
�8 := �(1,1,0,0,1,1,1) : {v8, v10, v12}, {v9, v11}
�9 := �(1,1,0,1,0,0,1) : {v8}, {v9, v11, v12}, {v10},
�10 := �(1,1,0,1,0,1,1) : {v8, v10}, {v9, v11, v12}
�

◦ := �(1,1,1,1,1,1,1) : {v8, . . . , v12}.

All invariant�-parts have different kernels.
The Λη-eigenvalues of �1: Choose an E ∈ � with a single positive conductance d7. Then Theorem 4.1,

or more precisely the rule for resistors in series, shows that d7(Λη(E)) = (ηCd7)/3. Hence �1 contains an
eigenvector F (1) with eigenvalue ηC/3. According to �1 ≤ �◦ and Lemma 6.4 all eigenvalues of �◦ are not
less than any eigenvalue of�1. Thus we have to require ηC ≤ 3 in order to avoid a contradiction to the existence
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of fixed points in�◦. Together with (5.1) we arrive at

1 < ηC ≤ 3. (6.3)

Again every�-part, except�1, contains a Λη-fixed point or no Λη-eigenvector at all by (6.1). In the latter case
we need not employ Theorem 6.3. But we will check the eigenvalue inequality of this theorem for all Λη-invariant
�-parts in order to save the work of detecting fixed points. Denote the possible Λη-eigenvalue in �i by λi and
an eigenvalue of the short circuited model by γi, for 1 ≤ i ≤ 10.

setup d1 d2 d3 d4 d5 d6 d7 λi γi

�2 ⊂ �4 ∞ ∞ 0 0 0 d6 0 1 ηC

�4 ⊂ �7 ∞ ∞ 0 0 d5 ∞ 0 1 2ηC

�7 ⊂ � ∞ ∞ d3 d4 ∞ ∞ d7 := 0 1 ≥ ηC

Table 2 The chain�2 ≤ �4 ≤ �7 ≤ �◦

Our next task is to check the eigenvalue inequality of “weak repellence” for several chains. The first one is
�2 ≤ �4 ≤ �7 ≤ �◦. The meaning of “d7 := 0” in the last row is that we define d7 to vanish and calculate
an eigenvalue ηC of the short circuited model. Thus γi ≥ ηC by Lemma 6.4(a). In total we see that γi > λi, for
i = 2, 4, 7, is valid under the condition (6.3). Lemma 6.4 applied to�2 ≤ �4 ≤ �7 ≤ �◦ now implies that�2,
�4 and�7 are weakly repellent in� under the condition (6.3).

setup d1 d2 d3 d4 d5 d6 d7 λi γi

�3 ⊂ �9 ∞ ∞ 0 d4 0 0 ∞ 1 6ηC

�2 ⊂ �9 ∞ ∞ 0 d4 0 0 d7 := 0 1 ≥ ηC

�9 ⊂ � ∞ ∞ d3 ∞ d5 d6 ∞ 1 ≥ ηC

Table 3 The chains �2,�3 ≤ �9 ≤ �◦

Next we use the three chains �1,�2,�3 ≤ �9 ≤ �
◦. Weak repellence of �1 ⊂ �9: We note that

λ1 = ηC/3. Consider E ∈ � with the conductances (d1, d1, 0, d4, 0, 0,∞) and d1, d4 > 0. Because of (6.1) it
suffices to look at the composite. Here only one edge remains. The action of Λη(∞F (1) + ·) on its conductance
is

2d4 �−→ 10ηCd4(28ηCd4 + 135)
98η2

Cd
2
4 + 525ηCd4 + 225

.

So the eigenvalue of Λη

(∞F (x) + E) is strictly bigger than ηC/3 if and only if 98η2
Cd

2
4 + 105ηCd4 − 1800 < 0.

For ηCd4 positive but near 0 the inequality holds. So we end up with (6.3). In the last row of Table 6.2 we
did not calculate the conductance of the short circuited model on V1 exactly but estimated it from below. So
we got a lower estimate on γi. Again γi > λi for i = 2, 3, 9 under the condition (6.3). Lemma 6.4 applied
to �1,�2,�3 ≤ �9 ≤ �◦ now implies that �1,�2 and �3 are also weakly repellent in � under the condi-
tion (6.3).

setup d1 d2 d3 d4 d5 d6 d7 λi γi

�5 ⊂ �8 ∞ ∞ 0 0 d5 ∞ ∞ 1 ηC

�8 ⊂ � ∞ ∞ d3 d4 ∞ ∞ ∞ 1 3ηC

Table 4 The chain�5 ≤ �8 ≤ �◦

The next chain is �5 ≤ �8 ≤ �◦. Once more γi > λi holds under condition (6.3). Lemma 6.4 applied to
�5 ≤ �8 ≤ �◦ shows that�5 and�8 are weakly repellent in� for (6.3).
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setup d1 d2 d3 d4 d5 d6 d7 λi γi

�6 ⊂ � ∞ ∞ ∞ d4 d5 ∞ ∞ 1 3ηC

�10 ⊂ � ∞ ∞ d3 ∞ d5 ∞ ∞ 1 ≥ ηC

Table 5 The chains �6,�10 ≤ �◦

It remains to look at�6,�10 ≤ �◦. In the last row we estimated the conductance of the short circuited model
on V1 again from below. Condition (6.3) implies γi > λi for i = 6, 10. Lemma 6.4 applied to �6 ≤ �◦ and
�10 ≤ �◦ implies the desired weak repellence.

Another application of Theorem 6.3 now yields the existence and uniqueness of an irreducible fixed point in
�. Since �◦ is the only invariant�-part consisting of irreducible forms, we even get existence and uniqueness
in�◦.

Theorem 6.6 For 1 < ηI ≤ 3 there exists a unique (up to positive multiples) Λη-fixed point with strictly
positive and finite conductances on the thumbtack.

7 Effects on and near the interface

We discuss the effects of a varying ηC on the composite fractal and on the interface between the two component
fractals. Our first case is the thumbtack because it exhibits a richer structure than the house.

When ηC > 3, then d7, the conductance along the interface, is no more finite (short circuited). To see this
consider the overlap of the two component fractals. It is a line segment. We view it as being composed of
three subintervals of equal size, since our contractions all have the contraction factor 1

3 . Thus its energy scaling,
according to the rules for resistors in series, must be 1

3 . Since η−1
C is strictly less than that, the conductance

becomes infinite in the limit.
When ηC = 3, then the Vicsek set is unperturbed. Only the 3-gasket is gradually changed near the interface.

The (isolated) interface has positive and finite conductance, because it has exactly the energy scaling of a line.
When 15/7 < ηC < 3, then the Vicsek set and the 3-gasket are changed gradually near the interface. This is

probably the most realistic setting. The exact value of ηC has to be motivated extrinsically. The isolated interface
has conductance zero, because its energy scaling is strictly less than the one of a line. But there is still transport
across it, as we can see from the fact that the fixed point has strictly positive conductances only.

When ηC = 15/7, then the 3-gasket is unperturbed but the Vicsek set is changed.
When 1 < ηC < 15/7, then both fractals are perturbed near the interface. The conductance across the

interface is lower than in the 15/7 ≤ ηC ≤ 3 cases. Physically, this could be interpreted as the presence of a
third material at the interface, for instance an alloy of the two materials.

On the house we see similar effects as on the thumbtack. But there is no short circuiting effect, because the
interface is a totally disconnected Cantor set.

7.1 Interpretation via traces

In this subsection we consider exclusively the thumbtack. The techniques we use to prove the desired trace
results can be generalized to the connection of finitely many (p.c.f. self-similar) fractals which intersect each
other in a self-similar interface I . The idea is to redefine the given fractal KT as a graph-directed construction
which allows us to scale different copies differently. The relation between fractals and (traces of) function spaces
can be found in [14] and [25]. The operators considered in the latter book are different from the Dirichlet
operators of the Dirichlet form E considered here. We fix ηC ∈ (1, 3) in accordance with Theorem 6.6. Since the
thumbtack is finitely ramified, its Dirichlet form (E ,D(E)) induced by ηC , and killed in at least one point of V0

in every connected component, has finite “Green’s functions” [16, Thm. 3.5.7]. Hence all open sets are regular
[2, Prop. VII.3.1]. Thus we can choose an open set U ⊂ F and define the trace of E on U by

TrU (E)(f) := E(HE
Uf
)
,
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where f ∈ D(E) and HE
Uf : F → � is the E-harmonic extension of f to F , that is, it is continuous on U and

E-harmonic on U . We have a copy K� of KT in KC and its trace

E� := TrF\K�
(E).

Denote the line segment from v9 to v11 by I . We will calculate the trace of the domain D(E�) of E� on I for all
ηC . Setting ηC = 15

7 we recover the trace on I of the domain D(E(T )) of the (self-similar) Dirichlet form E(T )

of the classical 3-gasketKT .
In [12] Jonsson identified the domain of the (self-similar) Dirichlet form on the Sierpinski gasket as a certain

Lipschitz space. His results were generalized to nested fractals in [24]. This gives us

D(E(T )) = Lip
(

ln(90)−ln 7
ln 9 , 2,∞;KT

)
.

In [13] the trace on I of the domain of the Dirichlet form on the Sierpinski gasket turned out to be the Besov
space B2,2

α (I), where α = ln 5
ln 4 − ln 3/ ln 2−1

2 . This trace is analogous to classical results, that is, the drop in
“differentiability” is (d − 1)/2, where d denotes the Hausdorff dimension of the Sierpinski gasket and 1 is the
dimension of I . We will slightly generalize the arguments in [13] to achieve trace results for D(E�). In analogy
with Jonsson’s results on the Sierpinski gasket the trace of D(E(T )

)
on I should be B2,2

α (I) for

α =
ln(90) − ln 7

ln 9
− ln 6 − ln 3

ln 9
=

ln(45) − ln 7
ln 9

.

Theorem 7.3 for ηC = 15
7 will verify this guess.

To indicate how the local rescaling near I of a given fractal KT can be done in general we redefine K� as a
graph directed fractal: We start with two triangles, one which is used to reconstruct KT and one on which we
reconstruct K�. Set V := {T, �}. Let ψ1, . . . , ψ6 : �2

T → �
2
T define six scaled (by 1

3 ) copies of the T -triangle
inside the T -triangle. Use ψ7, ψ8, ψ9 : �2

T → �
2
� to define three scaled copies of the T -triangle in the upper

three positions of the �-triangle. Finally, ψ10, ψ11, ψ12 : �2
� → �

2
� produce three scaled copies of the �-triangle

on the three lower positions of the �-triangle. Choose the transition weights

η1 := . . . := η9 :=
15
7
,

η10 := η11 := η12 := ηC .

When ηC �= 15
7 , then we have broken the symmetries of the �-triangle. Only the reflection in the line through

v12 and (v9 + v11)/2 leaves the transition weights of the �-triangle invariant. Thus this triangle has two different
conductances, s on the two sides of v12 and b on the base line from v9 to v11. We endow the T -triangle with
conductance 1 on all edges. Now we can apply the new Λ�

η to these conductances.

Lemma 7.1 There exist 0 < s, b <∞ which are fixed under the above Λ�
η.

P r o o f. According to Theorem 6.6 there exists a fixed point of the old Λη of the thumbtack. Take the trace
of this fixed point on {v9, v11, v12} to find s and b.

Let (F �
n)n be the sequence of discrete Dirichlet forms defined by the corresponding Ψ�

η on the T - and �-
triangles. Like in Section 5 this sequence determines a self-similar Dirichlet form (E�,D(E�)). Let f ∈ D(E�).
We want to estimate E�(f) from below by a sum of discrete energies. Set In := Vn ∩ I , for n ∈ �. For n ∈ �
define:

fn := HE�

K�\In
f,

d0 := f0,

dn+1 := fn+1 − fn.

(7.1)

Since f is continuous by [18, Theorem 4.14] it is even uniformly continuous onK�. Thus the minimum principle
for harmonic functions applied to each element of (fn)n tells us that fn tends to f uniformly. Because of
fn =

∑n
j=0 dj this implies

f =
∞∑

n=0

dn. (7.2)
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We also have E�(fn) = F �
n+k(fn), for all n ∈ �, because F �

0 is a Λ�
η-fixed point. The Gauss-Green formula for

F �
n+k shows that F �

n+k(dn, dn+k) = 0. Hence E�(dn, dn+k) = 0. This implies E�(fn) =
∑n

j=0 E�(dn) which
converges to

E�(f) =
∞∑

n=0

E�(dn) =
∞∑

n=0

F �
n(dn). (7.3)

To identify the trace of D(E�) on I we use Theorem 8.1 in the appendix. We see that, for 1/2 < α < 1, we
have f ∈ B2,2

α (I) if and only if

‖f‖2 +

( ∞∑
n=0

3n(2α−1)
3n∑

k=1

|f(k3−n) − f((k − 1)3−n)|2
) 1

2

<∞. (7.4)

For n ∈ � denote by ∆n
k the subtriangle of side length 3−n whose corner points lie in In and comprise the points

k3−n(1, 0) and (k − 1)3−n(1, 0). Set

F �
n(∆n

k )(f) :=
1
2

∑
x,y∈Vn∩∆n

k

(f(y) − f(x))2cF�
n
(x, y).

Lemma 7.2 (C.f. [13, Cor. 4.3]) There exists ρ ∈ (0, 1) such that for every nonconstant f : V1 → � which is
F �

1-harmonic on V1 \ V0,

3∑
i=1

F �
1(∆

1
i )(f) ≤ ρ · F �

1(f).

P r o o f. Consider the configuration in Figure 7. Suppose the dashed triangles are of the form ∆1
k for

k = 0, 1, 2. Then every nonconstant real valued function f on the vertices of Figure 7 defines a 0 ≤ ρ(f) ≤ 1 by

3∑
k=0

F �
1(∆

1
k)(f) =: ρ(f) · F �

1(f).

The forms in the above equation are homogeneous of degree 2 in f , so we can assume ‖f‖2 =
√

2. Furthermore,
all forms vanish on constants, hence we may suppose that f is orthogonal to the constant function 1. When
0 < ρ(f) < 1 on the resulting compact set of functions, then our assertion follows by continuity.

Since f is nonconstant, the irreducibility of F �
1 implies 0 < ρ(f). Suppose ρ(f) = 1. Then the F �

1-energy of
f on the solid triangles of Figure 7 is 0 and f must be constant on these triangles. Let us denote the up most vertex
in Figure 7 by z and the Dirichlet operator of F �

n by Fn, for n = 0, 1. Then F1f(z) = 0 and the self-similarity
of F �

1 implies F0f(z) = 0. Now the symmetries of F0 in Lemma 7.1 show that f(z) − f(a0) = f(a3) − f(z).
Since F0 and F1 vanish on constants, we may thus assume f(z) = 0 and f(a0) = −f(a3) = 1. The mean value
property of f in the vertex of ∆1

2 which is different from a2 and a3 shows that f(a2) = 1. A similar argument
shows f(a1) = −1. Thus the mean value property of f in a2 is violated. In other words, f has to be constant
when ρ(f) = 1.

Theorem 7.3 (C.f. [13, Thm. 4.1]) For 1 < ηC < 3 the trace of D(E�) on I is B2,2
α (I), with α = 1

2 + ln ηC

ln 9 .

P r o o f. Estimating (7.4) from above: For ηC as above, b ∈ (0,∞)2 as in Lemma 7.1 and u ∈ D(E�) we
have

ηn
C · b · |u(k3−n(1, 0)) − u((k − 1)3−n(1, 0))|2 ≤ F �

n(∆n
k )(u). (7.5)

Let m ∈ � \ {0} and set u = dm on the left hand side of (7.5). Use Lemma 7.2 and F �
n(∆m

k )(dm) =
E�(∆m

k )(dm) to deduce
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a0 a1 a2 a3

(f(a2)+f(a3))/2

(f(a1)+f(a3))/2(f(a0)+f(a2))/2

(f(a0)+f(a1))/2

(f(a0)+f(a3))/2

(f(a1)+f(a2))/2

Fig. 7 (online colour at: www.mn-journal.org) The model configuration of the extension algorithm

3n∑
k=1

ηn
C · b · |dm(k3−n(1, 0)) − dm((k − 1)3−n(1, 0))|2 ≤

3n∑
k=1

F �
n(∆n

k )(dm)

≤
3m∑
k=1

ρn−mF �
n(∆m

k )(dm)

≤ ρn−mE�(dm).

Taking the square root on both sides of the above inequality and employing Minkowski’s inequality we deduce

(
3n∑

k=1

|fn(k3−n(1, 0)) − fn((k − 1)3−n(1, 0))|2
)1/2

≤
(
ρn

bηn
C

)1/2 n∑
m=0

(
ρ−mE�(dm)

)1/2
.

(7.6)

Now we use ηC = 32α−1, f = fn on Vn ∩ I and (7.6) for the next inequality. Then Hardy’s inequality in [19,
Eq. 1’] gives the second inequality and, finally, (7.3) shows the last equality:

∞∑
n=0

3n(2α−1)
3n∑

k=1

|f(k3−n(1, 0)) − f((k − 1)3−n(1, 0))|2

≤ 1
b

∞∑
n=0

ρn

(
n∑

m=0

(
ρ−mE�(dm)

)1/2

)2

≤ 4
b(1 − ρ)2

∞∑
m=0

ρmρ−mE�(dm)

=
4

b(1 − ρ)2
E�(f).

Estimating the energy from above: Consider the configuration of points in Figure 7. Suppose f(ai) is given
for i = 0, . . . , 3. We extend f to the upper three triangles in Figure 7 as indicated. The corresponding unscaled
conductances are defined by the T -triangle. So the energy is:

(f(a0) − f(a1))2

4
+

(f(a3) − f(a2))2

4
+

((f(a0) − f(a1)) + (f(a2) − f(a3))2

4
,
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(f(a1) − f(a2))2

4
+

(f(a3) − f(a2))2

4
+

((f(a1) − f(a2)) + (f(a2) − f(a3)))2

4
,

(f(a0) − f(a1))2

4
+

(f(a2) − f(a1))2

4
+

((f(a0) − f(a1)) + (f(a1) − f(a2)))2

4
.

Using the convexity of x �→ x2 we estimate their sum from above by

3
2

3∑
k=1

(f(ak) − f(ak−1))2. (7.7)

Let f ∈ B2,2
α (I). We use the values of f in ak := k3−1(1, 0), k = 0, 1, 2, 3, to prescribe values Ef(·) in

the vertices of the upper 3 triangles of generation 1. Inside these triangles we extend E�-harmonically. Thus the
E�-energy of the resulting function Ef on these three triangles is 15

7 times the energy in (7.7). Suppose we have
constructed Ef on all of K� except in the subtriangles of generation n which intersect I . Each such subtriangle
is subdivided into subtriangles of generation n+ 1. On each generation n triangle we extend as in Figure 7. The
resulting energy of all subtriangles of generation n under consideration is

15
7

· 3
2
· ηn−1

C

3n∑
k=1

(f(k3−n(1, 0)) − f((k − 1)3−n(1, 0)))2. (7.8)

On subtriangles of generation n which intersect I we extend f as in Figure 7. Their conductances are given
by the �-triangles. So the scaled energy of all subtriangles of generation n which intersect I is

ηn
C · 2b+ s

2

3n∑
k=1

(f(k3−n(1, 0)) − f((k − 1)3−n(1, 0)))2. (7.9)

The sum of (7.8) and (7.9) shows that we can bound E�(Ef) from above by a constant multiple of the double
sum in (7.4).

8 Appendix

According to [14, Prop. 1 on p. 114] the classical norm in B2,2
α (I), 0 < α < 1, is equivalent to

‖f‖B := ‖f‖2 +

( ∞∑
n=0

Ln(1+2α)

∫∫
|x−y|<L−n

|f(y) − f(x)|2 dx dy
)1/2

(8.1)

for L = 2. By [24, Lemma 2] every L ≥ 2 defines an equivalent norm. We intend to show that this norm is
equivalent to

‖f‖D := ‖f‖2 +

( ∞∑
n=0

Ln(2α−1)
Ln∑
k=1

|f(kL−n) − f((k − 1)L−n)|2
) 1

2

. (8.2)

Interpreting I as a fractal with Hausdorff dimension 1 we can use [14, Cor. 2 on p. 214] to deduce thatB2,2
α (I) is

continuously embedded into Lip(α− 1/2, I), that is, its functions are Hölder continuous if 1/2 < α < 1.

Theorem 8.1 Let L ∈ � \ {0, 1}. On C(I,�), ‖ · ‖B and ‖ · ‖D are equivalent.

P r o o f. For L = 2 this is [15, Thm. 1.1]. Our proof will rely almost entirely on the proof of Theorem 5 in
[24]. Again we have to interpret I as a nested fractal.

For the convenience of the reader we switch to the notation of [24]: N = 1 because I = [0, 1] ⊂ �
N ,

L ≥ 2 because we contract I by 1/L each time we apply a similitude, M = L because we subdivide I into
L subintervals, K = I is our fractal, V0 = {0, 1} because our subintervals overlap in their boundary points,
Vn = {kL−n | 0 ≤ k ≤ Ln} is the n-th refinement of I , df (K) = 1 because the Hausdorff dimension of
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I is 1, Fn = {kL−n + [0, L−n] | 0 ≤ k < Ln} are the subintervals of length L−n, µn is the normalized
counting measure of Vn and µ is the (one dimensional) Lebesgue measure, the conductances (axy)x,y∈V0 are just
(a01) = (1), the energy of generation 0 then is E(0)(f, f) = (f(1) − f(0))2, the energy scaling factor is ρ = L,
the unscaled energy of generation n hence is

Ẽ(n)(f, f) =
1
2

∑
x,y∈Vn

|x−y|=L−n

(f(y) − f(x))2,

the dimension of the walk is dw = 2,

bn(f) = Lnα

(
Ln

∫∫
|x−y|<L−n

(f(y) − f(x))2 dx dy

)1/2

,

c0 = 1 because it is the length of I , and, finally, k = k0 = 1 on page 283 and 285 because Ldf /Ldw = 1/L <
1/2 for L > 2. We also use c as a generic constant which might change its finite value in every inequality.

We firstly bound ‖ · ‖B by a multiple of ‖ · ‖D. Every function under consideration is continuous. Thus we
can replace the Lebesgue measure µ by the counting measure µn and consider the weak limit for n → ∞. The
arguments on the pages 279–281 show that for n ≥ m,∫∫

|x−y|<L−m

(f(y) − f(x))2 dµn(x) dµn(y)

≤ c · L
n−m

L2n

n−1∑
r=m

2r−m+1Ln−(r+1)Ẽ(r+1)(f, f)

= c · L−2m
n−m−1∑

r=0

(
2
L

)r+1

Ẽr+m+1(f, f).

Now letting n tend to infinity, multiplying both sides by Lm(1+2α) and summing over m we arrive at

(‖f‖B − ‖f‖2)2 ≤ c ·
∞∑

m=0

Lm(2α−1)
∞∑

r=0

(
2
L

)r+1

Ẽr+m+1(f, f).

All terms of the above sum are positive. So we can rearrange them. The factor of Ẽm(f, f) is

m−1∑
k=0

Lk(2α−1)

(
2
L

)m−k+1

.

When it can be bounded from above by a multiple of Lm(2α−1), then the desired estimate follows. Such a bound
exists if and only if the following sum is uniformly bounded in m.

m−1∑
k=0

(
L2α−1

)k−m
(

2
L

)m−k

=
(

2
L2α

)m 1 −
(

L2α

2

)m

1 − L2α

s

=
2
L2α

·
(

2
L2α

)m − 1
2

L2α − 1
.

This is the case if and only if 2 < L2α, that is, 1
2

ln 2
lnL < α. So 1/2 < α is sufficient.

Next we want to bound ‖ · ‖D from above by a multiple of ‖ · ‖B. The arguments on the pages 281–284 of
[24] show that

Ẽ(m)(g, g) ≤ c(g)LmL(m+ν)(−1)

+ cLm
ν−1∑
r=0

2r+23m+2r+1

∫
K

∫
|p−q|<L−(m+r)

(g(p) − g(q))2 dµ(p) dµ(q).
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For ν → ∞ and a different constant c this shows

Ẽ(m)(g, g) ≤ cL2m
∞∑

r=0

(
2
L2

)r ∫
K

∫
|p−q|<L−(m+r)

(g(p) − g(q))2 dµ(p) dµ(q).

Multiplying both sides by Lm(2α−1) and summing over m yields

(‖f‖D − ‖f‖2)2

≤ c
∞∑

m=0

Lm(2α+1)
∞∑

r=0

(
2
L2

)r ∫
K

∫
|p−q|<L−(m+r)

(g(p) − g(q))2 dµ(p) dµ(q).

Again all terms of the above sum are positive and we calculate the factor of
∫
K
∫
|p−q|<L−m . It can be bounded

from above by a multiple of Lm(2α+1) if and only if the following sum is uniformly bounded in m.

m∑
k=0

L(k−m)(2α+1)

(
2
L2

)m−k

=
(

2
L2α+3

)m m∑
k=0

(
L2α+3

2

)k

.

This is the case if and only if 2 < L2α+3, that is, −1 < α suffices.

Acknowledgements Both authors gratefully acknowledge the support by the START-project Y96-MAT of the Austrian Sci-
ence Foundation. The first author was additionally supported by the DFG research group “Spektrale Analysis, asymptotische
Verteilungen und stochastische Dynamik”.

References

[1] W. N. Anderson and G. E. Trapp, Shorted operators, II, SIAM J. Appl. Math. 28 (1), 60–71 (1975).
[2] J. Bliedtner and W. Hansen, Potential Theory. An Analytic and Probabilistic Approach to Balayage (Springer, Berlin,

1986).
[3] P. G. Doyle and J. L. Snell, Random Walks and Electrical Networks, Carus Mathematical Monographs Vol. 22 (Math.

Assoc. America, Washington, D.C., 1984).
[4] G. A. Edgar, Measure, Topology, and Fractal Geometry (Springer, New York, 1990).
[5] G. A. Edgar, Integral, Probability, and Fractal Measures (Springer, New York, 1998).
[6] K. J. Falconer, Fractal Geometry. Mathematical Foundations and Applications (Wiley, Chichester, 1990).
[7] M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in

Mathematics Vol. 19 (de Gruyter, Berlin – New York, 1994).
[8] B. M. Hambly, Brownian motion on a homogeneous random fractal, Probab. Theory Related Fields 94 (2), 1–38 (1992).
[9] B. M. Hambly and T. Kumagai, Diffusion processes on fractal fields: heat kernel estimates and large deviations, Probab.

Theory Related Fields 127, 305–352 (2003).
[10] B. M. Hambly and S. O. G. Nyberg, Finitely ramified graph directed fractals, spectral asymptotics and the multidimen-

sional renewal theorem, Proc. Roy. Soc. Edinburgh Sect. A 46, 1–34 (2002).
[11] T. Hattori, H. Hattori, and H. Watanabe, Gaussian field theories on general networks and the spectral dimension, Progr.

Theoret. Phys. Suppl. 92, 108–143 (1987).
[12] A. Jonsson, Dirichlet forms and Brownian motion penetrating fractals, Potential Anal. 13, 69–80 (2000).
[13] A. Jonsson, A trace theorem for the Dirichlet form on the Sierpinski gasket, Research Reports, No. 8, Department of
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