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Abstract. We use methods from ergodic theory to prove new versions of distribution results
for additive functions with respect to some numeration systems.

1. Introduction

Let (an)n≥0 a sequence of positive integers with an ≥ 2. One defines a so-called Cantor
numeration system Q = (qn)n≥0 by q0 = 1 and, for any non-negative integer n, qn+1 = anqn,
hence qn = an−1 · · · a1a0. With the standard convention that an empty product is equal to 1,
that formula holds for n = 0, too. Then, any positive integer m possesses a unique expansion
with respect to this numeration system by

(1.1) m =
∑

j≥0

εj(m)qj, with 0 ≤ εj(m) ≤ aj − 1.

The partial sum
∑

j<ℓ εj(m)qj is the smallest non-negative representative of the residue class

m (mod qℓ). In particular, if an = q is constant, one retrieves the usual q-adic numeration.
The Cantor numeration system is said to be constant-like if the sequence (an)n≥0 is bounded.

An arithmetic function f : N → R is called Q-additive, if f(0) = 0 and it satisfies the
relation

(1.2) f




∞∑

j=0

εj(n)qj


 =

∞∑

j=0

f (εj(n)qj) .

In the q-adic case, such functions were introduced in [13]; some specific examples were studied
earlier (cf. [6, 26]). In [9], H. Delange proved that a q-additive function f admits an asymptotic
distribution function, if and only if the two series

(1.3)

∞∑

j=0

(
q−1∑

ε=0

f(εqj)

)
and

∞∑

j=0

q−1∑

ε=0

f(εqj)2

converge [9, théorème 3]. This result can be seen as the q-adic version of the Erdős-Wintner
theorem on classical additive functions. Delange’s investigations have found many generali-
sations in various directions: q-additive functions on subsequences of the integers have been
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studied by Kátai and others in [17, 18, 19, 22], additive functions with respect to more exotic
number systems have been investigated in [3]. Furthermore, asymptotically normal distribu-
tion of q-additive functions such as the sum-of-digits function was studied in [5, 10, 11] and
very precise fractal-type asymptotic estimates of their mean value have been given in [31].

The principal purpose of this paper is to give a new proof of Delange’s theorem in terms
of ergodic theory and probability theory and to extend it to constant-like Cantor numera-
tion systems. The nature of the limiting distribution is also investigated. Furthermore, we
extend this technique to more general numeration systems, namely Ostrowski numeration
using denominators of convergents of irrational numbers as base sequence (cf. [4, 32]), and
linear recurrent ones; in the latter case, we give a refinement of the results on the existence
of asymptotic distribution functions of more general additive functions obtained in [3]. The
method we present has the advantage to prove Delange’s theorem much faster than by using
the original Fourier analysis techniques (Delange’s proof is based on Lévy’s theorem on charac-
teristic functions and thus needs quite long investigations on mean values of q−multiplicative
functions). However, it does not allow to prove results along subsequences of zero density
such as studied in [5] for polynomial subsequences and [21, 23] for the sequence of primes.
Nevertheless, in Section 3 we present some results for special subsequences of positive density.

Similar to the investigations in the present paper, H. N. Shapiro [30] gave a purely prob-
abilistic proof for the classical Erdős-Wintner theorem. In [27], E. Manstavičius constructed
Kubilius-models for the study of q-additive functions.

2. Ergodic proof of Delange’s theorem

Let us first fix some notation. As usual, ZQ = lim←−Z/qnZ denotes the profinite com-
pact group of Q-adic integers and µQ its Haar measure. We will freely identify elements
of ZQ and sequences x = (x0, x1, . . .) with xj ∈ {0, 1, . . . , aj − 1} or use Hensel’s represen-
tation x =

∑∞
j=0 xjqj. As topological probability space, ZQ is identified with the product∏

n≥0{0, 1, . . . , an − 1} endowed with the product topology and the product measure. A

general reference for these compact groups is [16, p. 109].
For a given Q-additive function f and n ∈ N we define the random variables fn : ZQ → R

by fn(x) = f(xnqn). Finally, recall that by definition f admits an asymptotic distribution
function, if the sequence of empirical distribution functions

(2.1) FN (t) =
1

N

∑

n<N

χt(f(n))

converges to some distribution function F , where χt is the indicator function of the interval
(−∞, t]. We have the following theorem.

Theorem 1. Let f : N → R be a Q-additive function with respect to a constant-like Cantor
numeration system. Then the following statements are equivalent

(1) the function f admits an asymptotic distribution function F ;
(2) the series

∞∑

j=0

1

aj




aj−1∑

ε=0

f(εqj)


 and

∞∑

j=0

1

aj

aj−1∑

ε=0

f(εqj)2

both converge
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(3) The series f̃(x) =

∞∑

n=0

fn(x) converges for almost all x ∈ Zq.

Moreover, every point y ∈ ZQ, for which f̃(y) converges is generic for χt ◦ f for every
continuity point t of F , i. e.

lim
N→∞

1

N

∑

n<N

χt(f(y + n)) = F (t).

Proof. Condition (2) is clearly equivalent to the convergence of the series in (1.3) if (an)n is
constant equal to q. The idea of the proof is to circumvent the direct proof of the equivalence
between (1) and (2) by introducing a further condition, and by showing that both of them
are equivalent to this last condition.

We first prove that (2) implies (3), and therefore assume that (2) holds. Let us first notice
that (2) can be interpreted as the convergence of both series

∑
E(fn) and

∑
E(f2

n). Since
σ2(fn) ≤ E(f2

n), the series
∑

σ2(fn) converges as well. Moreover, it follows from the con-
vergence of

∑
E(f2

n) and from the boundedness of (an)n that ‖fn‖∞ tends to 0. Hence the
convergence of any series of the type

∑
µQ(|fn| ≥ a) for a > 0. Finally, the random variables

fn are independent. Hence the assumptions of Kolmogorov’s three series theorem are satis-
fied, and the series

∑
fn converges almost surely with respect to µQ.

Conversely, assume (3). Again by Kolmogorov’s three series theorem, both series
∑

E(fn)
and

∑
σ2(fn) converge. However, using f(0) = 0, Cauchy-Schwarz inequality yields

E(fn)
2 =

1

a2n

(
an∑

ε=1

f(εqn)

)2

≤
an − 1

an
E(fn)

2.

Then E(f2
n) = E(fn)

2 + σ2(fn) ≤
an−1
an

E(f2
n) + σ2(fn), hence E(f2

n) ≤ anσ
2(fn). Since (an)n

is bounded, we get the convergence of
∑

E(f2
n) and (2) is proved.

We now prove that (1) implies (3). Assume (1). Then in particular,

Fqn(t) =
1

qn

∑

k<qn

χt(f(k))

tends to a distribution function F (t) in any continuity point of F when n tends to infinity.
Translated in terms of random variables, this means that the random series

∑
n fn converges

in distribution. Since the random variables fn are independent, this is equivalent to (3) (see
[25, section 17.2 “convergence and stability”]).

It remains to prove that (3) implies (1), which is the crucial part of the argument. Roughly
speaking, one has to show that it is enough to take the limit along the qn’s to get the limit
in general. It is achieved by a technique from ergodic theory using Birkhoff’s individual
ergodic theorem to approximate an orbit by an other one that we can control. Notice that
the argument below replaces Lemmas 1, 3, 4, as well as Propositions 1 to 6 and Theorem 1
of [9].

Definition and uniqueness of Haar measure ensure that the dynamical system (ZQ, τ) with
τ : x 7→ x+ 1 (the so-called odometer) is uniquely ergodic with invariant measure µQ. Since
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f is measurable, one has χt ◦ f ∈ L1(ZQ) for any t ∈ R. Then Birkhoff’s ergodic theorem
asserts that

lim
N→∞

1

N

∑

n<N

χt(f(n+ x)) = µQ ({y ∈ ZQ; f(y) ≤ t}) =: F (t)

for almost all x ∈ ZQ. Therefore, in other words it remains to prove that x = 0 is a generic
point for every χt ◦ f where t is a continuity point of F . Actually, we will prove directly that
every point y, where the series defining f̃ in (3) converges, is generic.

Let t ∈ R and η > 0 such that t±η are continuity points for F . Then the above application
of Birkhoff’s theorem ensures that there exists x ∈ ZQ both generic for χt−η ◦ f and χt+η ◦ f .
For any positive integer N , let m be the non-negative integer such that qm ≤ N < qm+1; then
we define

M = M(N) = qm+3 +
m∑

j=0

εj(y)qj −
m+1∑

j=0

εj(x)qj .

By construction, we have that εj(x + M) = εj(y) for all j ≤ m. Since we already have
proved that (3) implies (2), we know that ‖fm‖∞ tends to 0. Since the negative integers have
measure 0, we can assume that x has infinitely many digits εj(x) 6= aj − 1 (this means that
x is not a negative integer). Then for n < N we have

x+M =
m∑

j=0

εj(y)qj + εm+2(x)qm+2 + (εm+s+1(x) + 1)qm+s+1 +
∞∑

j=m+s+2

εj(x)qj

x+M + n =

m+1∑

j=0

εj(y + n)qj + εm+2(x)qm+2 + (εm+s+1(x) + 1)qm+s+1 +

∞∑

j=m+s+2

εj(x)qj

for some s ≥ 2 given by the carry in addition. Similarly, we have

y+n =

m∑

j=0

εj(y+n)qj+





∑∞
j=m+1 εj(y)qj if there is no

carry beyond j = m

(εm+r(y) + 1)qm+r +
∑∞

j=m+r+1 εj(y)qj if there is a carry

from j = m to j = m+ r

0 if there is a carry

from j = m to ∞.

The indices r and s depend only on x, y, and N , but not on n. Then, for N suffiently large,
we have

|f(x+M + n)− f(y + n)| < η

by the convergence of the series
∞∑

j=0

f(εj(ξ)qj)

for ξ = x and ξ = y and the fact that limj→∞ f(εjqj) = 0 by (2).
Thus, for N large enough, we have:

(2.2)
1

N

∑

n<N

χt−η(f(x+M + n)) ≤
1

N

∑

n<N

χt(f(y + n)) ≤
1

N

∑

n<N

χt+η(f(x+M + n)).
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It just remains to prove that both left and right sides of (2.2) converge respectively to F (t−η)
and F (t+η) and then use the continuity of F in η. This is done by a barycentric consideration:

1

N +M

∑

n<N+M

χt±η(f(x+ n)) =
M

N +M

(
1

M

∑

n<M

χt±η(f(x+ n))

)
(2.3)

+
N

N +M

(
1

N

∑

n<N

χt±η(f(x+M + n))

)
.

By definition of M , we have N < M < 2
(
max{an; n ∈ N}

)3
N . Thus M ≍ N and if two of

the three sums present in the expression (2.3) converge to the same limit, so does the third
one as well. Indeed, that is the case for the two first sums because of genericity of x, that
converge to F (t ± η). Therefore, N−1

∑
n<N χt±η(f(x +M + n)) converges to F (t ± η) too

and we have

F (t− η) ≤ lim inf
1

N

∑

n<N

χt(f(y + n)) ≤ lim sup
1

N

∑

n<N

χt(f(y + n)) ≤ F (t+ η).

Since the set of continuity points of a distribution function is countable, hence dense, we can
make η tend to 0, which shows the convergence of N−1

∑
n<N χt(f(y+ n)) to F (t), provided

that F is continuous at t. Thus all the assertions of the theorem have been proved. �

It is natural to ask under which conditions the series
∑∞

n=0 fn(x) converges everywhere.
Besides, as noticed in [3, Proposition 5] an immediate application of Birkhoff’s ergodic the-
orem proves the existence of an asymptotic distribution function in this case (the continuity

of f̃ ensures that χt ◦f is Riemann-integrable and unique ergodicity of (ZQ, τ) yields uniform
convergence of the ergodic means). An application of Cauchy’s criterion gives the following
equivalences.

Proposition 2. Let Q be a constant-like Cantor numeration system and f : N → R be a
Q-additive function. Then the following statements are equivalent:

(1)
∑

fn(x) converges for all x ∈ ZQ;
(2)

∑
E(|fn|) <∞;

(3)
∑

fn converges normally;
(4) f is continuous at 0;
(5) f can be extended to a continuous function on ZQ.

Remark 1. It follows from Proposition 2 that the function f is either continuous in every
point or nowhere continuous. Moreover, in the second case, we have

∀x ∈ ZQ : lim sup
y→x

|f(y)| = +∞.

In any case the second condition in (2) of Theorem 1 ensures that f ∈ L2(ZQ).

The nature of the limiting distribution can be easily solved. Let dF be the limiting dis-
tribution of the Q-additive function f . Then dF is the weak limit of dF0 ∗ · · · ∗ dFn, where
dFk = 1

ak

∑ak−1
ε=0 δf(εqk) and δa the Dirac measure concentrated in a.

Proposition 3. Let Q be a Cantor numeration system and f a Q-additive function with
limiting distribution dF . Then dF is of pure type (that is either purely atomic, purely singular
continuous or purely absolutely continuous).
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Let kn be the cardinality of the largest subset A ⊂ {0, . . . , an − 1} such that the values
f(εqn) do not depend of ε ∈ A. Then dF is atomic if and only if the series

∑
(1 − kn/an)

converges. In particular, if Q is constant-like, then dF is purely atomic if and only if fn is
the zero function for n sufficiently large.

Proof. The random variables fn are discrete and independent. Hence, by a theorem of Jessen
and Wintner [20], the law of their infinite convolution is of pure type. Moreover, a result
of Lévy [24] asserts that dF is purely atomic if and only if

∏∞
n=0 dn converges, where dn

denotes the maximal jump of fn, that is dn = maxx∈R(Fn(x) − Fn(x − 0)) (both results of
Jessen-Wintner and Lévy are [12, Lemma 1.22]). For the discrete random variable fn, one
has dn = kn/an, and the second part of the proposition follows. If (an)n is bounded, and
fn is not zero, then fn is not constant (because fn(0) = 0). Then 1 − kn/an ≥ 1/max an.
Therefore, (1− kn/an))n tends to 0 if and only if it is ultimately 0, that is if fn is ultimately
0. �

Remark 2. It seems to be hopeless to obtain a complete characterisation of additive functions
admitting an absolutely continuous limiting distribution. This is supported by the results on
the nature of Bernoulli convolutions, which correspond to the 2-additive functions f(2n) =
λ−n. In this case the properties of the measure depend heavily on the arithmetical nature of
λ (cf. [28]).

Non-constant like Cantor numeration systems. If (an)n is not bounded, then (1) and
(2) (independently) still imply (3) in Theorem 1. The inequality of Cauchy-Schwarz that has
been used does not ensure that (2) and (3) are still equivalent. A counterexample can be
easily constructed as soon (an)n is not bounded. Furthermore, there is no logical dependence
between (1) and (3):

Example 1. Let Q be a non constant-like Cantor numeration system. Since the sequence
(an)n is unbounded, there exists a subsequence (aσ(n))n such that the infinite product

∏
(1−

1/aσ(n)) converges, with
∏

n≥0(1 − /aσ(n)) ≥ 1/2. Define f(qσ(n)) = 1, and f(εqm) = 0

otherwise. Then E(fσ(n)) = E(f2
σ(n)) = aσ(n)

−1 and E(fm) = E(f2
m) = 0 otherwise. Hence∑

fn converges almost surely (in that case, this is also an immediate application of the Borel-
Cantelli lemma, since

∑
fn(x) converges if and only if εσ(n)(x) = 1 only finitely often). Since

χ1/2(f(n)) = 1 if and only if f(n) = 0, we have that

1

qσ(n)

∑

k<qσ(n)

χ1/2(f(k)) =

n−1∏

j=0

(
1−

1

aσ(j)

)
>

∞∏

j=0

(
1−

1

aσ(j)

)
≥ 1/2.

On the other hand, we have that

1

2qσ(n)

∑

k<2qσ(n)

χ1/2(f(k)) ≤
1

2
,

so that the limit in (2.1) cannot exist for t = 1/2. Since f is integral-valued, its limiting
distribution would be continuous at t = 1/2. Thus f does not admit a limiting distribution.

Example 2. We use the same construction as in Example 1 for the subsequence and consider
g((aσ(n)−1)qσ(n)) = 1, and g(εqm) = 0 otherwise. Clearly, the moments of f and g are equal.
Therefore g̃ is defined almost surely on ZQ. We claim that g possesses a limit distribution.
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Since g takes only integral values, it is sufficient to look at 1{k} ◦ g̃. Let mk(N) = 1
N#{n <

N ; g(n) = k}. We have

µQ(g̃ = k) =
∑

I⊂N

|I|=k

∏

m∈I

1

aσ(m)

∏

m6∈I

(
1−

1

aσ(m)

)

mk(qN ) =
∑

I⊂[0,N−1]
|I|=k

∏

m∈I

1

aσ(m)

∏

m6∈I
σ(m)<N

(
1−

1

aσ(m)

)
.

Furthermore, we have mk(εqN ) = mk(qN ) for any digit ε < aN , and, more generally,

mk(εnqn + εn−1qn−1 + · · · + ε0) =

εnqnmk(qn) + εn−1qn−1mk−s1(qn−1) + · · · +mk−sj(qn−j) + · · ·

εnqn + εn−1qn−1 + · · ·+ ε0
,

where sj is the number of digits εn−ℓ with ℓ < j that are of the form aσ(m)−1, with the further
convention that a negative index form gives 0. Using thatmk(qN ) tends to µQ(g̃ = k) whenN
tends to infinity and lim aσ(m) =∞, one obtains that mk(εnqn+εn−1qn−1+ · · ·+ε0)−mk(qn)
tends to zero when n gets large, which means exactly that mk(N) tends to µQ(g̃ = k). This
is equivalent to 0 being a generic point.

3. Consequences

For this section we recall that two dynamical systems are called spectrally disjoint if the
intersection of their respective spectra is {1}. Theorem 1 in [8, Chapter 10 § 1] states that the
direct product of two dynamical systems is ergodic if and only if the two dynamical systems
are ergodic and spectrally disjoint.

Proposition 4. Let Q be a constant-like Cantor-numeration system. Let A be a compact
abelian group, α ∈ A, and Tα : g 7→ g + α be the rotation by α. Assume that Tα is ergodic
and that

∀n : qnα 6= 0.

Let λA denote the Haar measure on A and let I be a subset of A of positive Haar measure and
such that λA(∂I) = 0. Finally, let f be a Q-additive function. Then the distribution function

lim
N→∞

1

#{n < N ; T n
α ξ ∈ I}

∑

n<N
Tn
α ξ∈I

χt(f(n)) = F (t)

exists, if and only if the conditions of Theorem 1 are satisfied.
Moreover, every point (x, ξ) ∈ ZQ × A, for which f̃(x) converges is generic for χt ◦ f for

every continuity point t of F , i. e.

lim
N→∞

1

#{n < N ; T n
α ξ ∈ I}

∑

n<N
Tn
α ξ∈I

χt(f(n+ x)) = F (t).

Proof. We recall that the spectrum of the dynamical system (ZQ, τ) equals (cf. [29])

{z ∈ C ; ∃n : zqn = 1} .
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On the other hand the condition on α ∈ A is equivalent to

∀χ ∈ Â \ {1}, ∀n : χ(α)qn 6= 1,

which shows that the two dynamical systems (ZQ, τ) and (A,Tα) are spectrally disjoint.
We consider the dynamical system (ZQ ×A, τ × Tα). Assume that (y, ξ) is a generic point

for χt ◦ f ⊗ 1I , i.e.
(3.1) lim

N→∞

1

N

∑

n<N

χt(f(n+ y))1I(T n
α ξ) = F (t)λA(I).

This is equivalent to

lim
N→∞

1

N

∑

n<N

χt(f(n+ y))χ(nα+ ξ) = 0

for all χ ∈ Â \ {1}. The equation χ(nα+ ξ) = χ(nα)χ(ξ) immediately implies that this limit
is uniform in ξ ∈ A and therefore the limit in (3.1) is uniform in ξ.

Then following the same lines as the proof of “(3)⇒ (1)” in Theorem 1 yields that (x, η)

is generic for any η and any x such that f̃(x) is defined.
The proof of the necessity part follows the same lines as the proof of [19, Theorem 2]. �

Remark 3. Proposition 4 should be compared to [19, Theorem 2], where necessary and
sufficient conditions for the existence of a distribution function for n ranging in E ⊂ N

defined by irrational rotations on a torus are given. Proposition 4 gives a slight generalisation
in terms of the group rotation and the underlying number system as well as a characterisation
of the generic points. The necessity part still depends on [19, Theorem 2].

4. Extension to more general numeration systems

Let us recall that if (Gn)n is an increasing sequence of positive integers with G0 = 1, we
can expand every positive integer with respect to this sequence, i.e.

∀n ∈ N, n =

∞∑

k=0

εkGk ,

this expansion being finite and unique, provided that

(4.1) ∀K :
K−1∑

k=0

εkGk < GK .

The digits εk can be computed by the greedy algorithm. The sequence (Gn)n defines a
so-called numeration system.

The notion of Q−additive function naturally extends to this of G-additive function, namely

(4.2) f

(
K∑

k=0

εkGk

)
=

K∑

k=0

f(εkGk)

for which one may investigate the existence of

(4.3) F (t) := lim
N→∞

1

N

∑

n<N

χt (f(n)) =: lim
N→∞

FN (t).

In Sections 5.1 and 5.2, we will partially extend the results of Section 2 to some families of
numeration systems. Our approach uses ideas similar to those introduced in Section 2 to give
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sufficient conditions for the existence of an asymptotic distribution. The present section is
devoted to the common framework of the study below.

For this purpose, we will use the G-adic compactification KG of N as introduced in [14] and
the embedding ν : N →֒ KG. Again, τ will denote the “addition of 1” map (extended to KG).
For x = (xn)n it can be defined as τ(x) = limn(ν(x0G0+ · · ·+xnGn+1)) (see [1]). Although
there is no group structure on KG, it is possible to endow the dynamical system (KG, τ), the
so-called odometer, with a τ -invariant probability measure µG which shall play the role of the
Haar measure. For convenience, we will occasionally denote this measure by P.

The first tool needed is a version of Kolmogorov’s three-series theorem for dependent ran-
dom variables (it is not surprinsing that only the sufficiency part is at disposal).

Lemma 1. [25, Section 29, Theorem D] Let Yn be a sequence of uniformly bounded random
variables. Denote Fn the σ-algebra generated by Y0, . . . , Yn and assume that

(4.4)
∞∑

n=0

E(Yn | Fn−1) and
∞∑

n=0

E

[
(Yn − E(Yn | Fn−1))

2
]

converge (almost surely for the first series). Then the series

∞∑

n=0

Yn converges almost every-

where.

In terms of Theorem 1, the assumptions of Lemma 1 ensure the existence of f̃ . Thus the
lemma gives the implication (2) ⇒ (3). Since the existence of the distribution function does

not imply the existence of f̃ anymore (by the lack of independence), it remains to investigate
the key part of the theorem, that is (3) implies (1). Hence we will get a sufficient condition
for the distribution function to exist (we restrict ourselves to the genericity of 0). The proof
works mutatis mutandis, provided that two conditions hold. The first one is that the sequence
(Gn+1/Gn)n is bounded. With the notation of the proof, this ensures that M(N) ≪ N .
Actually, it is already the reason for which the implication (3)⇒ (1) can fail for non-constant
like Cantor numeration systems. The second condition is more technical and ensures that if
the expansion of x+M begins with m zeroes, say, then the addition of a small number n does
not change the digits beyond m, so that we have f(x +M + n) = f(n) + f(x + M). That
is obvious for Cantor numeration system, but not true in general, since the propagation of
carries is considerably more complicated in the general case (see [1]). This condition is stated
as the hypothesis below.

Hypothesis (H). Let G = (Gn)n be a system of numeration and KG the underlying odome-
ter. For x ∈ KG and m ∈ N, let x(>m) =

∑
j≥m+1 εj(x)Gj . Then we say that G satisfies

Hypothesis (H) if:

∃k ∈ N, ∀x ∈ KG, ∀m ≥ k, ∀j > m : εj(τ
Gm−k(x(>m))) = εj(x).

Corollary 5. Let (Gn)n∈N0 be an increasing sequence of integers satisfying

lim sup
k→∞

Gk+1

Gk
<∞

and Hypothesis (H). Let f : N → R be a G-additive function. Assume that the series (4.4)
converge for fn(x) = f(xnGn). Then f admits an asymptotic distribution function.
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Proof. Hypothesis (H) implies that lim inf(Gn+1/Gn) > 1. Hence, by [2, Théorème 7] , the
dynamical system (KG, τ) is uniquely ergodic. Using the notation of the proof of Theorem 1,
take M = M(N) = Gm+3 −

∑
j≤m+1 εj(x)Gj , where x is a generic point belonging to KG \

∪n≥1τ
−n(0). The proof is then an immediate adaptation of the Cantor case. �

In order to study the purity of the limiting distribution, we define a sequence (Xn)n of ran-
dom variables on the probability space (KG, µG) by Xn((x0, x1, x2, . . .)) = xn. The following
proposition shows that the sequence of random variables (Xn) satisfies a Kolmogorov 0-1-law.

Proposition 6. Let G = (Gn)n∈N be a numeration system and (KG, τ) be the underlying
odometer. Assume that (KG, τ) admits a τ -invariant ergodic measure µG. Then for any

A ∈ T =
⋂

n∈N

σ(Xn,Xn+1, . . .), either µG(A) = 0 or µG(A) = 1 holds.

Proof. Let A ∈ σ(Xn,Xn+1, . . .). Then we claim that A△τ−1(A) ⊆
⋃

m≥n[ν(Gm− 1)], where

[ν(Gm − 1)] = {x = (xn)n ∈ KG; x0 = ε0(Gm − 1), . . . , xm−1 = εm−1(Gm − 1)} .

To prove that we assume that x ∈ A△τ−1(A). Then τ(x) ∈ A and x /∈ A, or x ∈ A and τ(x) /∈
A. This means that for all n, the operation x 7→ x+ 1 has changed at least one of the digits
xn, xn+1, . . .. By definition of τ , this can only happen if the word ε0(Gm−1) · · · εm−1(Gm−1)
is a prefix of x for some m ≥ n. Hence for A ∈ T we have

A△τ−1(A) ⊆
⋂

n∈N

⋃

m≥n

[ν(Gm − 1)] = τ−1({0})).

Since µG is non-atomic (cf. [2, Theorem 8 (a)]), this implies µG(A△τ−1(A)) = 0. By ergodicity
of µG this yields either µG(A) = 0 or µG(A) = 1. �

The following proposition is an analogue to the theorem of Jessen and Wintner [20].

Proposition 7. Let G = (Gn)n∈N be a numeration system and (KG, τ) be the underlying
odometer. Assume that (KG, τ) admits a τ -invariant ergodic measure µG. Then the distribu-
tion function (if it exists) of a G-additive function is of pure type (either purely atomic, or
singular continuous, or absolutely continuous).

Proof. The proof is the same as the proof of [12, Lemma 1.22] using Proposition 6 instead of
Kolmogorov’s 0-1-law for independent random variables. �

The second part of Proposition 3 cannot be generalised offhand. Indeed, Lévy’s proof is
based on concentration inequalities, where the assumption of independence is hardly dispens-
able. Nevertheless, we will see a different approach in Proposition 9, that also works in that
special weakly dependent setting.

5. Special systems of numeration

Quite contrary to the series (1.3), the series (4.4) are poorly explicit, and their convergence
is not easily investigated: because the first series of (4.4) is a series of conditional expectations
whose convergence has to hold almost surely, and because both use invariant measure, which
is itself rather inexplicit. In this section, we examinate special numeration systems allowing
to give explicit conditions.
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5.1. Ostrowski expansions. Let α be an irrational number in the interval [0, 1/2] and write
α = [0; a1, a2, . . .] its continued fraction expansion. Define as usual (pn)n and (qn)n to be the
sequences of numerators and denominators of the convergents of α. They are given by q−1 = 0,
q0 = 1 and qn = anqn−1 + qn−2. Then (qn)n≥0 is increasing and defines a so-called Ostrowski
numeration system in the sense of Section 4. The corresponding compactification is denoted
Kα (for KG), whose elements x = (xn)n are characterised by the inequalities

(5.1)





x0 ≤ a1 − 1,

∀j ≤ 1, xj ≤ aj+1,

∀j ≤ 1, (xj = aj+1 ⇒ xj−1 = 0) .

Recall that ‖x‖ is the distance to the nearest integer. In the context of continued fraction,
‖qnα‖ = |qnα− pn|.

Lemma 2 ([4, 32]). Let P be the invariant probability measure on the odometer. Then, for
any cylinder C = [x0 · · · xn] and for the n-th projection Xn on Kα, we have:

P([C]) =

{
‖qnα‖+ ‖qn+1α‖ if xn = 0,

‖qnα‖ if xn 6= 0;
(5.2)

P(Xn = a) =





qn(‖qnα‖+ ‖qn+1α‖) if a = 0,

qn‖qnα‖ if 1 ≤ a ≤ an+1 − 1,

qn−1‖qnα‖ if a = an+1.

(5.3)

From now on, we consider an Ostrowski numeration system associated with an irrational
number α with bounded partial quotients (that is the analogue of the hypothesis to be
constant-like for the Cantor numeration systems). As before, f denotes an additive func-
tion with respect to (qn)n We begin with the second series of (4.4).

Lemma 3. Let Fn be the σ-algebra generated by X0, . . . ,Xn and fn = f(XnGn). Then the
following statements are equivalent:

(1) The series

∞∑

n=0

E

[
(fn − E(fn | Fn−1))

2
]
converges.

(2) The series
∞∑

n=0

E(f2
n) converges.

(3) The series

∞∑

n=0

an+1∑

ε=1

f(εqn)
2 converges.

Proof. It is clear that (2) implies (1). Since fn ∈ L2(KG), we have

(5.4) E

[
(fn − E(fn | Fn−1))

2
]
= E(f2

n)− E (fnE(fn | Fn−1)) .

Using f(0) = 0 and Cauchy-Schwartz inequality, we get

E (fnE(fn | Fn−1)) = P(Xn > 0)E (fnE(fn | Fn−1) | Xn > 0)

≤ P(Xn > 0)
[
E(f2

n | Xn > 0)
]1/2

[E (fnE(fn | Fn−1) | Xn > 0)]1/2

≤ P(Xn > 0)E(f2
n).
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Since P(Xn > 0) is bounded away from 1, this shows that (1) implies (2). The equivalence
with (3) is then immediate, noticing that infε,n P(Xn = ε) > 0 by the boundedness of the
partial quotients an. �

Less immediate is the first series, which is a series of random variables and not a numerical
one. For x = x0x1 · · · ∈ Kα and n ∈ N, let Cn

x = [x0 · · · xn] and, for k ∈ N , Cn
k = Cn

ν(k).

Using Lemma 2, we compute

E(fn | Fn−1) =

qn−1∑

k=0

1

P(Cn
k )

∫

Cn
k

fn(x) dP(x)1Cn
k

=

qn−1∑

k=0

1

P(Cn
k )

an+1∑

ε=0

f(εqn)P([ε0(k) · · · εn−1(k)ε])1Cn
k

=

qn−1−1∑

k=0

‖qnα‖

‖qn−1α‖+ ‖qnα‖

an+1∑

ε=1

f(εqn)1Cn
k
+

qn−1∑

k=qn−1

‖qnα‖

‖qn−1α‖

an+1−1∑

ε=1

f(εqn)1Cn
k

=

(
‖qnα‖

‖qn−1α‖+ ‖qnα‖

an+1∑

ε=1

f(εqn)

)

︸ ︷︷ ︸
αn

1(Xn−1=0) +

(
‖qnα‖

‖qn−1α‖

an+1−1∑

ε=1

f(εqn)

)

︸ ︷︷ ︸
βn

1(Xn−1 6=0),(5.5)

where the equalities hold almost surely.

Lemma 4. Let a = (αn)n and b = (βn)n be two real (or complex) valued sequences. Let a⊕ b
be the set of the sequences (un)n, such that, for all n ∈ N, one has un ∈ {αn, βn}. Then:

(
∀u ∈ a⊕ b,

∑

n∈N

un converges

)
⇐⇒

∑

n∈N

αn,
∑

n∈N

βn, and
∑

n∈N

|αn − βn| converge.

Proof. We present the proof for real sequences; the extension to complex sequences is obvious.
The sequences a, b, max(a, b), and min(a, b) are elements of a⊕b. Hence so does the sequence
|a−b| = max(a, b)−min(a, b) ∈ a⊕b, which proves that the condition is necessary. Conversely,
assume that the three series of the right-hand side converge. Let u ∈ a⊕ b; define v = (vn)n
by vn = αn − βn if un = αn, and vn = βn − αn if un = βn. Then |v| = |a− b|, hence

∑
vn is

(absolutely) convergent. Morever, u = 1
2(a+ v + b), hence the convergence of

∑
un. �

We get the following result:

Proposition 8. Let (qn)n an Ostrowski numeration system associated to an irrational number
α, and assume that α has bounded partial quotients (an)n. Let f be a (qn)n-additive function.
Let αn and βn be as in 5.5. Assume that the four series below converge.

∞∑

n=0

an+1∑

ε=1

f(εqn)
2,

∞∑

n=0

αn,

∞∑

n=0

βn,

∞∑

n=0

|αn − βn|.

Then f admits an asymptotic distribution function.

We now generalise the second part of Proposition 3.

Proposition 9. Let (qn)n be an Ostrowski numeration system associated to an irrational
number α, and assume that α has bounded partial quotients. Let f be a (qn)n-additive function
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admitting an asymptotic distribution dF . Then dF is purely atomic if and only if fn is
ultimately 0.

Proof. We now prove the second assertion of the theorem. Assume fn ≡ 0 for n ≥ n0. Then
f only takes finitely many values. Therefore dF is atomic.

Assume now that fnk
6≡ 0 for an increasing sequence (nk)k. Without loss of generality, we

may assume that nk+1 − nk ≥ 3 and that supj≥1 ‖fnk+j
‖∞ < 1

2 min(Ak, Bk), where

(5.6) Ak = min
{
|f(εnk

qnk
)|; 0 ≤ εnk

≤ ank+1, f(εnk
qnk

) 6= 0
}
,

and

(5.7) Bk = min
{
|f(εnk−1qnk−1) + f(εnk+1qnk+1)|;

0 ≤ εnk−1 ≤ ank
, 0 ≤ εnk+1 ≤ ank+2, f(εnk−1qnk−1) + f(εnk+1qnk+1) 6= 0

}
.

Let t ∈ R and set A = {x ∈ K ; f(x) = t}. We define maps Φk on A by Φk((x0, x1, . . .)) =
(x′0, x

′
1, . . .) as follows:

• if f(xnk
qnk

) 6= 0, then x′j = xj for j 6= nk and x′nk
= 0,

• if f(xnk
qnk

) = 0 and f(xnk−1qnk−1)+f(xnk+1qnk+1) = 0, then x′j = xj for |j−nk| ≥ 2,

x′nk−1 = x′nk+1 = 0, and x′nk
is chosen so that f(x′nk

qnk
) 6= 0,

• if f(xnk
qnk

) = 0 and f(xnk−1qnk−1)+f(xnk+1qnk+1) 6= 0, then x′j = xj for |j−nk| 6= 1

and x′nk−1 = x′nk+1 = 0.

Then, (5.6) and (5.7) ensures that Φk(A) ∩ Φj(A) = ∅ for k 6= j. Furthermore, we have by
construction µ(A) ≤ cµ(Φk(A)), where the constant c is positive (it is possible to compute

explicitely one value for c from (5.2): one gets c = minn
qn−1‖qn+2α‖

qn(‖qn+2α‖+‖qn+3α‖)
). It follows that

µ(A) = 0. Therefore, dF is not atomic. �

5.2. Linear recurrent bases. An other case of special interest is that where the numeration
system is given by a recurrence sequence arrising from the β-numeration with decreasing
coefficients. Namely, a0 ≥ a1 ≥ · · · ≥ ad−1 ≥ 1, and

(5.8)
Gn+d = a0Gn+d−1 + · · · + ad−1Gn for n ≥ 0 with

G0 = 1 and Gk = a0Gk−1 + · · ·+ ak−1G0 + 1 for k < d.

The initial values are chosen as the “canonical initial values” from [15]. In this case, a finite
sum

∑∞
k=0 εkGk is the expansion of some integer if and only if

(5.9) (εk, . . . , ε0, 0
∞) < (a0, . . . , ad−1 − 1)∞

(< being understood as the lexicographical order) for every k. The strings (ε0, ε1, . . .) that
verify this condition are called admissible strings. The dominating root of the characteristic
equation Xd − a0X

d−1 − · · · − ad−1 = 0, say α, is a Pisot number; these equations have been

studied by Brauer [7]. In particular, lim
n→∞

Gn

αn
exists and is non-zero.

It was proved in [14] that (KG, τ). Furthermore, the measure µG was computed explicitely
there: let C = [x0 · · · xk], be a cylinder in KG, and Fm = #{k < Gm; ν(k) ∈ C}. Then

(5.10) P(C) =
Fk+1α

d−1 + (Fk+2 − a0Fk+1) + · · ·+ (Fk+d − a0Fk+d−1 − · · · − ad−2Fk+1)

αk+1(αd−1 + · · ·+ α+ 1)
.
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In [3, Theorem 4] it was proved that a G-additive function f admits an asymptotic distribution
function, if the series

∞∑

n=0

∣∣∣∣∣

as−1∑

ℓ=0

f(a0Gn+d−1 + · · ·+ as−1Gn+d−s + ℓGn+d−s−1)

∣∣∣∣∣ for s = 0, . . . , d− 1(5.11)

∞∑

n=0

a0∑

ℓ=0

f(ℓGn)
2(5.12)

converge.
In the sequel, we look at the case d = 2, and write Gn+2 = aGn+1 + bGn, where a ≥ b.

With the notation of (5.10), we have Fk+1 = 1, and Fk+2 = a + 1 if xk < b, Fk+2 = a if
b ≤ xk ≤ a. Hence

P([x0x1 · · · xk]) =

{
α−k−1 if xk < b

1
αk(α+1)

if b ≤ xk ≤ a.

We shall now turn our attention to E(fn | Fn−1) and use the notation of Section 5.1.

E(fn | Fn−1) =

Gn−1∑

k=0

1

P(Cn
k )

∫

Cn
k

fn(x) dP(x)1Cn
k

=

Gn−1∑

k=0

1

P(Cn
k )

a∑

ε=0

f(εGn)P([ε0(k) · · · εn−1(k)ε])1Cn
k

=

bGn−1−1∑

k=0

αn

(
b−1∑

ε=1

f(εGn)α
−n−1 +

a∑

ε=b

f(εGn)
1

αn(α+ 1)

)1Cn
k

+

Gn−1∑

k=bGn−1

αn−1(α+ 1)

(
b−1∑

ε=1

f(εGn)α
−n−1 +

a−1∑

ε=b

f(εGn)
1

αn(α+ 1)

)1Cn
k

=

(
1

α

b−1∑

ε=1

f(εGn) +
1

α+ 1

a∑

ε=b

f(εGn)

)1(Xn−1<b)

+

(
α+ 1

α2

b−1∑

ε=1

f(εGn) +
1

α

a−1∑

ε=b

f(εGn)

)1(b≤Xn−1≤a),

where the equalities hold almost surely. Lemma 3 can be immediately adaptated: the asser-
tions (1) and (2) are still equivalent and are also equivalent to an appropriate form of (3),
which now reads off

(5.13) (3′) The series
∞∑

n=0

a∑

ε=1

f(εGn) converges.

Hence we get the proposition below.
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Proposition 10. Let G = (Gn)n be a linear recurrent numeration system given by Gn+2 =
aGn+1 + bGn. Let f be a G-additive function. Assume that the four series below converge.

∞∑

n=0

a∑

ε=1

f(εGn)
2,

∞∑

n=0

(
1

α

b−1∑

ε=1

f(εGn) +
1

α+ 1

a∑

ε=b

f(εGn)

)
,

∞∑

n=0

(
α+ 1

α2

b−1∑

ε=1

f(εGn) +
1

α

a−1∑

ε=b

f(εGn)

)
,

∞∑

n=0

∣∣∣∣∣
1

α2

b−1∑

ε=1

f(εGn) +
1

α(α + 1)

a−1∑

ε=b

f(εGn)−
1

α+ 1
f(aGn)

∣∣∣∣∣ .

Then f admits an asymptotic distribution function.

Similar to Proposition 9 one can prove the following proposition.

Proposition 11. Let G = (Gn)n be a linear recurrent sequence. Let f be a G-additive
function admitting an asymptotic distribution dF . Then dF is purely atomic if and only if
fn is ultimately 0.

Example 3. Let Gn+2 = aGn+1+aGn. Then the conditions of Proposition 10 can be slightly
simplified. The function f admits an asymptotic distribution if the following series converge:

∞∑

n=0

a∑

ε=1

f(εGn),

∞∑

n=0

a∑

ε=1

f(εGn)
2,

∞∑

n=0

∣∣∣∣∣

a−1∑

ε=0

f(εGn)− af(aGn)

∣∣∣∣∣ ,
∞∑

n=0

(
α

a−1∑

ε=0

f(εGn) + af(aGn)

)
.

Example 4. The case a = 1 is interesting and can be easily generalised to obtain the so-called
Multinacci sequence Gn+d = Gn+d−1 +Gn+d−2 + · · · + Gn. For this numeration system, we
get P([x0 · · · 01

s]) = (αd + · · · + αd−s)αk+d and the sufficient conditions are the convergence
of the series

∞∑

n=0

|f(Gn)| and
∞∑

n=0

|f(Gn)|
2.

In particular, under this condition, the function f can be continuously extended to the odome-
ter KG, for which case the existence of the limit distribution is obvious. The series in (5.11)
yield the same trivial sufficient condition in this case.

The arguments used above for linear recurrent numeration systems of degree 2 are straight-
forward to extend to higher degrees. However, the explicit computation of the measures of
the cylinders using (5.10) and the subsequent computation of the conditional expectations
E(f | Fn−1) become more and more unpleasant, due to the rapidly increasing number of cases
to distinguish.
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