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Abstract. We consider Dirichlet series of the type
∑

(log k)η(k(log k)ϑ)−s. We

prove the existence of an analytic continuation to the cut plane and give exact in-

formation about the singularity. We use this to generalize results, which occur in
Ramanujan’s second notebook.

1. Introduction and Statement of Results

The aim of this paper is to present generalizations of results due to Ramanujan
[1, p. 308], Berndt and Evans [2] and Müller [5,6]. The first three authors study
asymptotic expansions of sums of the form

(1.1)

∞
∑

k=1

exp (−xkp) km−1 and

∞
∑

k=1

exp (−xkp) km−1 log k

for x → 0+. Berndt and Evans use a technique credited to Mellin, which involves
certain Dirichlet series and their analytic continuation. Müller gives the analytic
continuation of a large class of Dirichlet series, which are given by

(1.2) ζΛ(s) =
∞
∑

n=1

λ−sn ,

where Λ = (λn) has the asymptotic expansion

(1.3)
∞
∑

k=−m

Akn
−k, m ∈ N, n→ ∞

with A−m > 0. He uses Ramanujan’s result (cf. [1, p.308]) and an approximation
technique to give a meromorphic continuation of these series to the whole complex
plane. In [5] he computes the residues at the poles of these functions.
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Our approach will allow to study the asymptotic behaviour of sums of the form

(1.4)

∞
∑

k=2

exp
(

−kα(log k)βx
)

kδ(log k)ε, for x→ 0+,

where α > 0 and β, δ, ε are real numbers. Clearly this is related to the singular
behaviour of the analytic continuation of the Dirichlet series

(1.5)

∞
∑

k=2

kδ(log k)ε

(kα(log k)β)
s .

The correspondence is via Mellin transform and Mellin’s inversion formula.
If we set β = 0 and let ε be a positive integer, this class reduces to a class similar

to that in (1.1) and can be treated by the same methods (cf. [2, Theorems 3.1 and
3.2]). In the general case studied here there occur nonpolar singularities. In the
analytic continuation of (1.5) we have a branch cut caused by the logarithm in the
denominator and the non-integral power of the logarithm in the numerator. That
is the matter why we are forced to use other methods to get the asymptotics of
(1.4) resp. the analytic continuation of (1.5). These methods are similar to those
used by A. Selberg to derive the asymptotics of the summatory function of the
Dirichlet-coefficients of (ζ(s))α for α ∈ R (cf. [7]).

Theorem 1. Let η and ϑ be real numbers, then the Dirichlet series

ζη,ϑ(s) =

∞
∑

k=2

(log k)η

(k(log k)ϑ)
s

admits an analytic continuation to the whole complex plane except the line joining

1 and −∞. This line gives a branch cut of the function, whose nature depends on

the parameters. The singular expansion of the function around s = 1 starts with

(1.6)

Γ(η − ϑ+ 1)(s− 1)ϑ−η−1 for ϑ− η 6∈ N

(−1)m−1

(m− 1)!
(s− 1)m−1 log

1

s− 1
for ϑ− η = m ∈ N.

For the full expansion we refer to (2.2) and (2.3).

Remark 1. As mentioned above we get a meromorphic continuation of ζη,ϑ in the
special case ϑ = 0, η ∈ N. For a proof of this see [2, 8].

Remark 2. The term “singular expansion” shall describe the kind of singularity
that the function has at the indicated point. Thus the function can be written as a
sum of the singular part and a holomorphic function around this point. The terms
in this expansion are ordered, such that later terms give smaller contributions to
the asymptotic expansions of the sum (1.4).

The Dirichlet series (1.5) can be derived from the series studied in Theorem 1
by a linear change of the argument. From this observation and by a use of Mellin’s
inversion formula we get



ANALYTIC CONTINUATION OF A CLASS OF DIRICHLET SERIES 3

Theorem 2. Let α > 0, β 6= 0, δ, ε be real numbers and η = ε − βδ
α

and ϑ = β
α
.

Then the function

fα,β,δ,ε(x) =
∞
∑

k=2

exp
(

−kα(log k)βx
)

kδ(log k)ε

has the following asymptotics for x → 0+, which has to be described by eight dif-

ferent cases:

(1) δ > −1

αϑ−η−1Γ

(

δ + 1

α

)

x−
δ+1

α

(

log
1

x

)η−ϑ(

1 +
β(ϑ− η)

log 1
x

log log
1

x
+ · · ·

)

(2) δ = −1 and ε < −1

∞
∑

k=2

(log k)
ε

k
+
α−ε−1

1 + ε

(

log
1

x

)ε+1(

1 +
β(ε+ 1)

log 1
x

log log
1

x
+ · · ·

)

(3) δ = −1 and ε = −1

log log
1

x
+ γ +

β

log 1
x

log log
1

x
+ · · ·

(4) δ = −1 and ε > −1

α−ε−1

1 + ε

(

log
1

x

)ε+1(

1 +
β(ε+ 1)

log 1
x

log log
1

x
+ · · ·

)

(5) −1− α < δ < −1

∞
∑

k=2

(log k)
ε
kδ + Γ

(

δ + 1

α

)

x−
δ+1

α αϑ−η−1

(

log
1

x

)η−ϑ

+ · · ·

(6) ϑ− η 6= 1 and δ = −1− α

∞
∑

k=2

(log k)
ε
kδ +

αη−ϑ+1x

η − ϑ+ 1

(

log
1

x

)η−ϑ+1

+ · · ·

(7) ϑ− η = 1 and δ = −1− α

∞
∑

k=2

(log k)
ε
kδ − x log log

1

x
+ · · ·

(8) δ < −1− α

∞
∑

k=2

(log k)
ε
kδ − αx

∞
∑

k=2

(log k)
ε+β

kδ+α + · · · .

In principle it is possible to give full asymptotic expansions by the methods used

in the proof. We will supply all the tools needed for this, but do not state the

corresponding formulæ because of their length.
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Corollary. If we set β = 0 we get simpler expressions for the main terms of the

asymptotics in the cases

(1) δ > −1

α−ε−1Γ

(

δ + 1

α

)

x−
δ+1

α

(

log
1

x

)η−ϑ

+α−ε−1x−
δ+1

α

∑

k≥1

(

log
1

x

)ε−k Γ(k)
(

δ+1
α

)

k!
+· · ·

(2) δ = −1 and ε < −1
∞
∑

k=2

(log k)
ε

k
+
α−ε−1

1 + ε

(

log
1

x

)ε+1

− γα−ε−1

(

log
1

x

)ε

+ · · ·

(3) δ = −1 and ε = −1

log log
1

x
+ γ + Γ0(0)

(

log
1

x

)−2

+ · · ·

(4) δ = −1 and ε > −1

α−ε−1

1 + ε

(

log
1

x

)ε+1

− γα−ε−1

(

log
1

x

)ε

+ · · · .

Where Γ0(z) = Γ(z)− 1
z
. In the remaining cases the terms of Theorem 1 are not

affected because the dominant singularity is polar.

2. Proofs of the Theorems

Proof of Theorem 1. In order to give the analytic continuation of ζη,ϑ(s) we use
the Euler Maclaurin summation formula

(2.1) ζη,ϑ(s) =

∫ ∞

2

(log x)
η

(

x (log x)
ϑ
)s dx+H(s),

to show that H(s) is an entire function. From the m-th order Euler Maclaurin
formula we get an analytic continuation of H(s) to a holomorphic function in ℜs >
1−m.

H(s) =
1

2
f(2)−

m
∑

k=1

B2k

2k!
f (2k−1)(2) +Rm(s)

with

fk(x) =
(log x)

η

(

x (log x)
ϑ
)s .

Since mis arbitrary and Rm(s) is holomorphic for ℜs > 1 − m we conclude that
H(s) is an entire function.

What remains is to investigate the analytic behaviour of the integral in (2.1).
For this purpose we substitute x = exp( z

s−1) for ℜs > 1 to get
∫ ∞

2

(log x)
η

(

x (log x)
ϑ
)s dx = (s− 1)ϑs−1−η

∫ ∞

(s−1) log 2

zη−ϑse−z dz.

Because of the exponential decay of the integral we can do this also for non-real
s in this half-plane. The integral which remains now is an incomplete Γ-function.
We treat the behaviour of this function in the arc-region | arg(s − 1)| ≤ ψ < π in
the following lemma.
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Lemma 1. The following equation holds for ϑ− η 6∈ N

∫ ∞

(s−1) log 2

zη−ϑse−z dz = Γ(η + 1− ϑs)−
∞
∑

k=0

(−1)k

k!

((s− 1) log 2)
k+η+1−ϑs

k + η + 1− ϑs
.

If ϑ− η = m ∈ N we have

∫ ∞

(s−1) log 2

zη−ϑse−z dz = Γm−1(η + 1− ϑs)−

∞
∑

k=0

k 6=m−1

(−1)k

k!

((s− 1) log 2)
k+η+1−ϑs

k + η + 1− ϑs

−
(−1)m−1

(m− 1)!

((s− 1) log 2)
ϑ(1−s)

− 1

ϑ(1− s)
,

where Γm(z) = Γ(z) − (−1)m

m!(m+z) .

Proof. The proof of this lemma is done by splitting the usual Γ-integral into two
parts and replacing the exponential function by its Taylor expansion for the inte-
gration from 0 to (s− 1) log 2. For η − ϑ < −1 we use the following formula

Γ(z) =

∫ ∞

0

xz−1

(

e−x −

K−1
∑

k=0

(−1)k

k!
xk

)

dx for −K < ℜz < −K + 1.

For ϑ − η = m ∈ N we subtract the residue of the Γ-function at 1−m and group
it with the corresponding term in the sum. �

By the expressions we have obtained in the lemma and the singular expansion of
(s−1)ϑs−1−η we get the following expansion around the singularity s = 1 for ζη,ϑ(s)
for ϑ− η 6∈ N

(2.2) (s− 1)ϑ−η−1
∞
∑

n=0

(−ϑ)n

n!
(s− 1)n

n
∑

j=0

(

n

j

)

Γ(j)(η − ϑ+ 1)

(

log
1

s− 1

)n−j

and for ϑ− η = m ∈ N

(2.3)

(s− 1)m−1
∞
∑

n=1

(−1)n

n!
ϑn(s− 1)n

n−1
∑

k=0

(

n

k

)

Γ
(k)
m−1(1−m)

(

log
1

s− 1

)n−k

+

(−1)m

(m− 1)!
(s− 1)m−1

∞
∑

n=0

(−1)n+1

(n+ 1)!
ϑn(s− 1)n

(

log
1

s− 1

)n+1

.

The singular expansions start with the terms indicated in (1.6). This proves the
theorem. �

Proof of Theorem 2. In order to compute the asymptotic expansion of fα,β,δ,ε(x)
we compute its Mellin-transform

Φ∗(s) =

∫ ∞

0

fα,β,δ,ε(x)x
s−1 dx = Γ(s)

∞
∑

k=2

kδ(log k)ε

(kα(log k)β)
s = Γ(s)ζη,ϑ(αs− δ)
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for η = ε− βδ
α

and ϑ = β
α
. We now use Mellin’s inversion formula

fα,β,δ,ε(x) =
1

2πi

c+i∞
∫

c−i∞

Γ(s)ζη,ϑ(αs− δ)x−s ds

for some c > δ+1
α

. We note here that by Lemma 1 the integrand has a singularity

for s = δ+1
α

.
The main ingredient of our proof is the correspondence between the type of the

singularity of f∗(s) and the asymptotic behaviour of f(x), if the two functions are
related by Mellin’s inversion formula

f(x) =
1

2πi

1+i∞
∫

1−i∞

f∗(s)x−s ds.

We summarize these well-known facts (cf.[3], [4]) in the following lemma.

Lemma 2. Let F ∗(s) be analytic in Hξ,ψ = {s ∈ C \ {0} | ℜs > −ξ ∧ | arg s| < ψ}
for some ξ > 0 and π

2 < ψ < π. Then the following correspondences hold for real a

and b ∈ N0 and a 6∈ N0

f∗(s) = O

(

|s|a
(

log
1

|s|

)b
)

⇒ f(x) = O

(

(

log
1

x

)−1−a(

log log
1

x

)b
)

f∗(s) = o

(

|s|a
(

log
1

|s|

)b
)

⇒ f(x) = o

(

(

log
1

x

)−1−a(

log log
1

x

)b
)

f∗(s) ∼ sa
(

log
1

s

)b

⇒

f(x) =
1

(

log 1
x

)a+1

b
∑

ℓ=0

(

b

ℓ

) (

1

Γ

)(b−ℓ)

(−a)

(

log log
1

x

)ℓ

+ o

(

(

log
1

x

)−a−1
)

.

If a ∈ N0 we have for b ∈ N

f∗(s) = O

(

|s|a
(

log
1

|s|

)b
)

⇒ f(x) = O

(

(

log
1

x

)−1−a(

log log
1

x

)b−1
)

f∗(s) = o

(

|s|a
(

log
1

|s|

)b
)

⇒ f(x) = o

(

(

log
1

x

)−1−a(

log log
1

x

)b−1
)

f∗(s) ∼ sa
(

log
1

s

)b

⇒

f(x) =
1

(

log 1
x

)a+1

b−1
∑

ℓ=0

(

b

ℓ

) (

1

Γ

)(b−ℓ)

(−a)

(

log log
1

x

)ℓ

+ o

(

(

log
1

x

)−a−1
)

.

With help of (2.2) and (2.3) we can find the singular expansion of Γ(s)ζη,θ(αs−δ)

in s = δ+1
α

. Observing that for the cases (2) and (5–8) there comes an additional
contribution from the first order pole of ζη,ϑ(αs − δ)Γ(s) in s = 0 and applying
Lemma 2 we derive the asymptotics stated in Theorem 2. �
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