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SPECTRAL DISJOINTNESS OF DYNAMICAL SYSTEMS RELATED

TO SOME ARITHMETIC FUNCTIONS

PETER J. GRABNER†, PIERRE LIARDET‡, AND ROBERT F. TICHY∗

Dedicated to the memory of Béla Brindza.

Abstract. We present a new and general approach to prove the spectral disjointness of
dynamical systems related to digital expansions of natural numbers and Gaussian integers.
The main tools are ideas from automata theory and rigid time in ergodic theory. This
extends earlier work of T. Kamae and M. Queffélec.

1. Introduction

Let p be an integer, p ≥ 2. An arithmetic function f : N → R is called p-additive, if it
satisfies the relation

(1.1) f

(
L∑

ℓ=0

εℓp
ℓ

)
=

L∑

ℓ=0

f(εℓp
ℓ),

where εℓ ∈ {0, . . . , p − 1}. In the sequel we will mainly be concerned with completely p-
additive functions, i.e. p-additive functions which satisfy f(εpℓ) = f(ε). A special instance
of such a function is the p-ary sum-of-digits function sp(n) defined by

sp

(
L∑

ℓ=0

εℓp
ℓ

)
=

L∑

ℓ=0

εℓ.

We will also be concerned with p-multiplicative unimodular arithmetic functions F : N → U

which satisfy the following multiplicative formula in place of (1.1)

F

(
L∑

ℓ=0

εℓp
ℓ

)
=

L∏

ℓ=0

F (εℓp
ℓ).

As usual we set e(t) = e2πit, so that e ◦ f is p-multiplicative, if f is p-additive.
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In series of papers [10, 11, 12] T. Kamae has developed a method (involving Baker’s
theory of linear forms in logarithms of algebraic numbers) to prove the mutual singularity
of the spectral measures related to the sum-of-digits function.

Let Zp denote the totally disconnected compact group of p-adic integers (cf. [9]) equipped
with its normalized Haar measure µp. For given p-additive function f we define a function
ψf : Z× Zp → R by

(1.2) ψf(n, x) = lim
m→x
m∈N

f(m+ n)− f(m),

if the limit exists and ψ(n, x) = 0 otherwise. In general, the limit does not exist for
x ∈ {−1, . . . ,−n}, if n > 0 and for x ∈ {0, . . . ,−n+ 1}, if n < 0. It is easy to see that ψf
satisfies

ψf (m+ n, x) = ψf (n, x) + ψf (m,n+ x)

for µp-almost all x. This means that ψf is a cocycle which is, in addition, µp-continuous.

As usual we set e(t) = e2πit. We define the group Gf = 〈{e(f(n)) | n ∈ N〉 usually denoted
simply by G and endowed with its normalized Haar measure hG. Finally, we consider the
transformation Tp,f on Zp ×G given by

(1.3) Tp,f(x, u) = (x+ 1, ue(ψf(1, x))).

It is easy to see that Tp,f is invertible and preserving the Haar measure on the compact
group Zp ×G. Thus (Zp ×G, Tp,f , µp ⊗ hG) is a dynamical system, which is an extension
of the odometer on Zp. Obviously, we have

T np,f(x, u) = (x+ n, ue(ψf (n, x))).

We shall study the spectral decomposition E of the unitary operator on L2(Zp × G)
associated to Tp,f . By general theory it is enough to study

〈γ ◦ T np,f , γ〉 =

∫

U

xn〈E(dx)γ, γ〉

for all functions γ ∈ L2(Zp × G). Thus, by the Bochner-Herglotz theorem, to every
γ ∈ L2(Zp ×G) we associate a measure ργ on U, which is given by its Fourier coefficients

ρ̂γ(n) = 〈γ ◦ T np,f , γ〉

and our aim will be to determine the spectral type of Tp,f i.e., the Borel measure Ξp,f on
U (defined modulo equivalence of measures), such that ργ ≪ Ξp,f for any γ ∈ L2 and there
exists a γ0 ∈ L2 such that ργ0 ∼ Ξp,f . The following decomposition

(1.4) L2(Zp ×G) =
⊕

ξ∈Ĝ

L2(Zp)⊗ ξ,

is invariant under the action of Tp,f , so that Ξp,f can be written as (∗ denotes the convolution
on U)

(1.5) Ξp,f = ∆p +∆p ∗ Λp,f ,
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where ∆p is discrete and comes from the action of addition by 1 on L2(Zp) and Λp,f comes
from the action of Tp,f on the orthocomplement of L2(Zp)⊗ 1. We shall see that ∆p and
Λp,f are mutually singular (see Corollary 3). The action of Tp,f on L2(Zp)⊗ ξ, through the
isometry ϕ 7→ ϕ⊗ ξ, corresponds to the unitary representation Vf,ξ of Z on L2(Zp) defined
by

(1.6) V n
f,ξ(h)(x) = ξ(e(ψf (n, x)))h(x+ n)

and the spectral measure ρϕ⊗ξ is the one associated to ϕ with respect to Vf,ξ. Hence we first
can restrict ourselves to the computation of ρ̂γ(n) for γ(x, u) = χ(x)ξ(u) (= χ ⊗ ξ(x, u))

with χ ∈ Ẑp and ξ ∈ Ĝ, thus

(1.7) ρ̂γ(n) = χ(1)n
∫

Zp

ξ(e(ψf(n, x)))µp(dx) (γ = χ⊗ ξ).

Therefore, ργ = δ{χ(1)} ∗ ρ1⊗ξ, where δ{z} denotes the Dirac measure supported in z. Let us
write νf for the spectral measure ρ1⊗ξ1 , setting ξ1 : u 7→ u, so that

ν̂f (n) =

∫

Zp

e(ψf (n, x)) dµp(x), n ∈ Z.

Notice that this equals the correlation coefficients

lim
N→∞

1

N

N∑

k=1

e(f(n + k)− f(k))

by unique ergodicity of the dynamical system (Zp, ·+ 1, µp) and µp-continuity of the func-
tions ψf(n, ·). Such correlation coefficients were studied in [1, 2] in the context of pseudo-
randomness of sequences. If ξ : u 7→ us (s ∈ Z), then ρ1⊗ξ = νsf .

M. Queffélec [16] proved by means of Riesz-products that given ξ such that ξ ◦ψf is not
periodic, all spectral measures ρχ⊗ξ are equivalent to νsf which is continuous and singular
(with respect to the Lebesgue measure). The fact that νsf is singular continuous is also a
consequence of the “principle of purity” (cf. [8]) implying that the spectral measure νf is
either atomic, purely singular continuous, or absolutely continuous.

In our main result we will prove spectral disjointness of Λp,f and Λq,g provided that
p, q ≥ 2 are multiplicatively independent integers and f (or g) is not trivial, that is to

say ξ(e(f)) 6= e( k
p−1

sp) for any non trivial character ξ ∈ Ĝ and any integer k. This is an

extension of the above mentioned work of Kamae concerning the sum-of-digits function.
Queffélec [17] applied general results about Riesz-products and Šrĕıder characters (cf. [19])
to give a more conceptual approach to the results of Kamae. We develop a new method
for the proof which avoids Baker’s theory on linear forms in logarithms as well as Šrĕıder
characters. In a concluding section we extend our method to more complicated digital
expansions, namely to canonical number systems for the Gaussian integers. A main ingre-
dient of our approach is the application of addition automata and ζ-rigid time in ergodic
theory.
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2. Spectral disjointness

The following theorem is due to Kamae [10, 11, 12, 17] who proved it under the assump-
tion that p and q are coprime. In this case even the measures Ξp,αsp and Ξq,βsq are mutually
singular.

Theorem 1. Let p, q ≥ 2 be two multiplicatively independent integers and let α and β be
two irrational real numbers. Then the two measures Λp,αsp and Λq,βsq are mutually singular.

We will prove a more general theorem here.

Theorem 2. Let p, q ≥ 2 be two multiplicatively independent integers and let f and g be
completely p-additive and q-additive functions. Assume that f is not trivial (i.e., ξ(e(f)) 6=
e( k

p−1
sp) for any non trivial character ξ on Gf any integers k), then the spectral measures

Λp,f and Λq,g are mutually singular.

We shall see that ξ ◦ e(f) is periodic if and only if ξ ◦ e(f) = e( k
p−1

sp) (see Proposition 2).

Addition of n =
∑K

k=0 εkp
k to x =

∑∞
ℓ=0 δℓp

ℓ ∈ Zp can be described in terms of automata.
For any digit 0 ≤ ε ≤ p − 1 we introduce the automaton Aε defined by Figure 1. The

0 1
0.     ..     ..     .

p-1-       p-1

p-     0.    ..    ..    .
p-1      -1

p-1-       0.     ..     ..     .
p-1

0     +1.    ..    ..    .
p-2-     p-1

ε

ε
ε

ε

ε

ε

ε

ε

Figure 1. The automaton Aε

addition n + x =
∑∞

k=0 ηkp
k can be performed as follows: read the digit δ0 and feed it

into the automaton Aε0 starting at the initial state. Denote the state reached after this
operation by S0. The digit written by the transducer is the digit η0. Now read the digit
δ1 and feed it into the automaton Aε1 this time starting in the state S0. Denote the state
reached after this operation by S1. The digit written by the transducer is the digit η1.
Iterating this procedure gives all digits ηk.

To each automaton and each p-additive function, we attach the matrices

A(m)
ε =

1

p




p−ε−1∑

ℓ=0

e(fm(ε+ ℓ)− fm(ℓ))

p−1∑

ℓ=p−ε

e(fm(ε+ ℓ− p)− fm(ℓ))

p−ε−2∑

ℓ=0

e(fm(ε+ ℓ + 1)− fm(ℓ))

p−1∑

ℓ=p−ε−1

e(fm(ε+ ℓ− p+ 1)− fm(ℓ))




where, for any non negative integer m, fm denotes the p-additive function defined by

fm(n) = f(pmn).
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Then we have

Proposition 1. For any p-additive function f the following product formula

(2.1) ν̂f

(
K∑

k=0

εkp
k

)
= (1, 0)A(0)

ε0
. . . A(K)

εK

(
1

ν̂fK (1)

)

holds.

Proof. Set for short Fm(n, x) = e(ψfm(n, x)). Using the p-multiplicativity of e(f) one gets
for n = ε0 + pn′:

∫

Zp

F (n, x)µp(dx) =
∑

a+ε0<p

F (ε0, a)
1

p

∫

Zq

F1(n
′, x)µp(dx)

+
∑

a+ε0≥p

F (ε0 + a− p, a)
1

p

∫

Zp

F1(n
′ + 1, x)µq(dx)

and an analogous equation for
∫
Zp
F (n+1, x)µp(dx), replacing e0 by e0+1 (with the usual

convention that a sum over an empty set is equal to 0). Consequently

(2.2)

(
ν̂f (n)

ν̂f(n + 1)

)
= A(0)

ε0

(
ν̂f1(n

′)
ν̂f1(n

′ + 1)

)

and (2.1) follows by induction. �

Remark 1. By the known fact (cf. [3]) that p-additive functions which satisfy the hypothe-
ses of Theorem 2 are pseudo-random, it follows that the corresponding spectral measure
is not atomic. Furthermore, an application of (2.1) shows that for any a ∈ {0, . . . , p− 1}

(2.3)

ν̂f (a) =
1

p

p−a−1∑

ℓ=0

e(f(a + ℓ)− f(ℓ)) +
1

p

p−1∑

ℓ=p−a

e(f(a+ ℓ− p)− f(ℓ))ν̂f(1)

ν̂f(1) =

∑p−2
ℓ=0 e(f(ℓ+ 1)− f(ℓ))

p− e(f(0)− f(p− 1))
.

If ν̂f (1) = 0 (this cannot happen for p = 2), then (2.3) shows that ν̂f (p−1) 6= 0. Moreover,
ν̂f (mp

n) = ν̂f(m) for m ∈ N; this implies that νf is not absolutely continuous.

Lemma 1. Let p ≥ 2 be an integer and f be a completely p-additive function, which does
not satisfy f(n) ≡ k

p−1
sp(n)(mod 1) for some integer k. Then there exists a constant θ,

0 < θ < 1, and a finite block of digits B (which contains at least two distinct digits) such
that

(2.4) |ν̂f (n)| ≤ θσB(n),

where σB(n) denotes the number of (non-overlapping) occurrences of the block B in the
p-ary digital expansion of n.
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Proof. We notice that the entries of the matrices (a
(ε)
ij ) = Aε satisfy

(2.5) |a
(ε)
ij | ≤ b

(ε)
ij for Bε = (b

(ε)
ij ) =

1

p

(
p− ε ε

p− ε− 1 ε+ 1

)
.

If one of the above inequalities is strict for one ε (this cannot happen for p = 2), we see
that all the entries of the matrix AδAεAη are strictly bounded by the corresponding entries
of the matrix BδBεBη. Thus we have ‖AδAεAη‖ < 1, where ‖ · ‖ denotes the matrix norm
associated to the maximum norm on C

2.
It remains to treat the case that there is equality in (2.5) for all i, j, ε. From ε = 1 and

i = j = 1 we conclude that f(δ + 1) − f(δ) ≡ C (mod 1) for some constant C. Therefore
f(δ) ≡ Cδ (mod 1), which implies that f(n) ≡ Csp(n)(mod 1). In this case the matrix Aε
takes the form

Aε =
1

p

(
(p− ε)ζε εζε−p

(p− ε− 1)ζε+1 (ε+ 1)ζε−p+1

)

with ζ = e(C). Computing the entries of the product of two matrices shows that ‖AεAη‖ <
1 for any pair (ε, η) /∈ {(0, 0), (p− 1, p− 1)} except if ζp−1 = 1.

Taking any of the blocks considered in the two cases as the block B mentioned in the
lemma and setting θ the norm of the corresponding matrix product, (2.1) gives the proof
of the lemma. �

Remark 2. Observe that ||Am0 || = ||Amp−1|| = 1 for any integers m ≥ 0. For p > 2 and
f 6≡ Csp (mod 1) the above proof shows that there is a digit ε 6= 0 such that σB(n) can be
replaced by the counting function of all occurrences of ε with at least 2 digits in between.

Proposition 2. The measure νf is discrete, if and only if f ≡ k
p−1

sp (mod 1) for k ∈ Z.

Otherwise, νf is singular continuous.

Proof. Assume first that f 6≡ k
p−1

sp (mod 1) and apply Lemma 1 to bound the Fourier

coefficients of νf in terms of the counting function of some block B of length L. Since
B 6= 0L, we can estimate σB(n) in Lemma 1 from below by the number of occurrences of
the “digit” B in the pL-ary expansion of n. We apply Tschebysheff’s inequality to obtain

#

{
n < N | σB(n) ≤

1

2pL
logpN

}
≤

4Lp2LN

logpN
.

Thus we have

(2.6)
∑

n<N

|ν̂f(n)|
2 ≤

∑

n<N
σ(n)> 1

2pL
logpN

θ
1

pL
logpN +

∑

n<N
σ(n)≤ 1

2pL
logpN

1 ≤ N
1+ 1

pL
logp θ +

4Lp2LN

logpN
,

which implies

lim
N→∞

1

N

∑

n<N

|ν̂f (n)|
2 = 0.

By the Wiener-Schoenberg theorem [18, 20] this means that νf has no point masses. By
the principle of purity, νf is singular or absolutely continuous with respect to the Haar
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measure on U. The latter case never occurs since νf(p
kℓ) = νf (ℓ) for all integers k ≥ 0 and

any ℓ ∈ Z while νf 6= 0.
In the case f ≡ k

p−1
sp (mod 1) we use the congruence sp(n) ≡ n mod (p− 1) to see that

e(f(n)) is periodic and therefore the measure is equal to the uniform distribution on the
points 〈e( k

p−1
)〉. �

Remark 3. Notice that e(ψf ) is periodic if and only if f(n) ≡ k
p−1

sp(n)(mod 1) for an

integer k.

Remark 4. The support of the measure in the discrete case is the finite group 〈e( k
p−1

)〉.

This shows that [16, Proposition 3] is not correct as stated there. Queffélec’s proof can be
corrected to show that the discrete measure is supported on an at most countable union
of classes of the group 〈{e(p−k) | k ∈ N}〉 for general additive functions f .

In the following we will need the notation

Bq(n; εs . . . ε0) = #{i ; 0 ≤ i ≤ logq n, di−s+j(n) = εj, and 0 ≤ j ≤ s},

where dj(n) denotes the j-th digit of n in base q representation and εs . . . ε0 is an arbitrary
block of digits in {0, . . . , p− 1}.

Lemma 2. Let p, q ≥ 2 be multiplicatively independent integers and r ∈ N, r > 0. Then,
for any given block εs . . . ε0, there exists an increasing sequence of integers nk such that

lim
k→∞

Bq(rp
nk , εs . . . ε0) = ∞.

Proof. We imitate the proof of [4, Theorem 2]. Let us consider the sum

(2.7)
1

N

N∑

n=1

Bq(rp
n, εs . . . ε0).

We have to show that this sum tends to ∞ as N → ∞. Let K = [N
α
] and m =

∑s

i=0 εiq
i.

For a positive integer ℓ ≤ N we consider

(2.8) Aℓ = #

{
(n, k) ; 1 ≤ n ; s ≤ k ≤ K and ℓ+

m

qs+1
≤

rpn

qk+1
< ℓ+

m+ 1

qs+1

}
.

Notice that the inequalities in (2.8) involving ℓ are equivalent to the occurrence of the
block εs . . . ε0 in the q-adic digital expansion of rpn at some position k. Taking logarithms
in (2.8) and setting α = log q

log p
we obtain

Aℓ = #

{
k ≤ K− s+ 1 ;

∃n, 1 ≤ n ≤ N,
log(ℓ+ m

qs+1 )

log p
≤ n− (k + s)α +

log r

log p
<

log(ℓ+ m+1
qs+1 )

log p

}
=

# {k 1 ≤ k ≤ K and {−(k + s)α} ∈ Iℓ}+O(log(ℓ+ 1)),
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where Iℓ denotes the interval
[
log(ℓ+ m

qs+1 )− log r

log p
,
log(ℓ+ m+1

qs+1 )− log r

log p

)

modulo 1 of Lebesgue measure |Iℓ|. By the irrationality of α the sequence (kα)k∈N is
uniformly distributed modulo 1 and thus we have

Aℓ = K|Iℓ|+ o(N) +O(log(ℓ+ 1)),

where the o(N)-term is uniform in ℓ. Summing up we obtain for 2 ≤ ψ(N) < N

ψ(N)∑

ℓ=1

Aℓ = K

ψ(N)∑

ℓ=1

|Iℓ|+ o(Nψ(N)) +O(ψ(N) logψ(N)).

Now choose the function ψ(N) such that limN→∞ ψ(N) = ∞ and the o(Nψ(N)) term
above is still O(N). We now observe that the series

∞∑

ℓ=1

|Iℓ|

is divergent and since

1

N

N∑

n=1

Bq(rp
n, εs . . . ε0) ≥

1

N

ψ(N)∑

ℓ=1

Aℓ

we get limN→∞Bq(rp
n, εs . . . ε0) = ∞. Thus the proof of the Lemma is complete. �

3. Rigid times and proof of Theorem 2

For the proof of the main result we now introduce tools from ergodic theory. Let Γ be an
infinite, countable discrete Abelian group, let V : γ → V γ be a unitary representation of Γ
on a Hilbert space H and let ζ be a complex number such that |ζ | ≤ 1. An infinite subset
S of Γ will be said a ζ-rigid time for V if the family (V s)s∈S weakly converges to ζI (where
I is the identity map) with respect to the filter of co-finite sets. In other words, for all h, h′

in H and for all ε > 0, there exists a finite subset F of S such that |〈τ sh|h′〉− ζ〈h|h′〉| ≤ ε
holds for any s ∈ S \ F . For short we write lims∈S〈V

sh|h′〉 = ζ〈h|h′〉. By polarization, S
is a ζ-rigid time for V if and only if for any h ∈ H

(3.1) lim
s∈S

〈V sh|h〉 = ζ‖h‖2.

Now we state the following general

Theorem 3. Let V be a unitary representation of Γ on H and let ζ be a complex number
of modulus ≤ 1. An infinite subset S ⊂ Γ is a ζ-rigid time for V if and only if for any
h ∈ H and any ϕ ∈ L1(Γ̂, ρh),

(3.2) lim
s∈S

∫

Γ̂

ϕ(u)u(s)ρh(du) = ζ

∫

Γ̂

ϕ(u)ρh(du),
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where ρh denotes the spectral measure of h associated to V which is given by

ρ̂h(s) = 〈V sh, h〉, s ∈ Γ.

Proof. Assume that S is a ζ-rigid time for V . For any γ ∈ Γ, let Cγ be the character on Γ̂
defined by Cγ(u) = u(γ); one has by definition

〈V s+γh|h〉 =

∫

Γ̂

Cs+γ(u)ρh(du)

=

∫

Γ̂

u(s)u(γ)ρh(du).

On the other hand,

lim
s∈S

〈V s+γh|h〉 = ζ〈V γh|h〉 = ζ

∫

Γ̂

Cγ(u)ρh(du).

Therefore (3.2) holds for ϕ = Cγ. Clearly (3.2) also holds for any linear combination of
characters and a straightforward density argument shows that (3.2) is also true for any

ϕ ∈ L1(Γ̂, ρh). Conversely, assuming that (3.2) is true for any h in H , ϕ in L1(Γ̂, ρh) and
taking ϕ = 1 we immediately get (3.1). �

The notion on ζ-rigid time furnishes the following simple test to derive the mutual
singularity of two unitary representations:

Theorem 4. Let V and V ′ be two unitary representations of Γ (on Hilbert spaces H and
H ′, respectively) and assume that S ⊂ Γ is a ζ-rigid time for V and a ζ ′-rigid time for V ′

with ζ 6= ζ ′. Then the spectral measures of V and V ′ are mutually singular.

Proof. Let h ∈ H , h′ ∈ H ′ be of norm 1 and let νh, νh′ be the corresponding spectral
measures (which are both probability measures on Γ̂). Let σ be a probability measure on

Γ̂ and assume that σ is absolutely continuous with respect to ρh and ρh′ . By definition

σ̂(γ) =

∫

Γ̂

dσ

dρh
(u)u(γ)ρh(du) =

∫

Γ̂

dσ

dρh′
(u)u(γ)ρh′(du),

and passing to the limit along S we obtain from Theorem 3

lim
s∈S

σ̂(s) = ζ = ζ ′.

This contradiction means that σ does not exist or, equivalently that ρh and ρh′ are mutually
singular. �

Now we introduce particular weighted unitary representations related to multiplicative Γ-
cocycles. Let K be a compact metrisable Abelian group with group law denoted additively
and assume that Γ acts on K by means of translations. For any γ ∈ Γ, let τγ denote the
translation which realizes the action of γ. We assume that this τ -action is ergodic and
aperiodic on K endowed with its Haar probability measure µ. Aperiodicity of τ implies
that γ 7→ τγ(0K) is one-one. For this reason we will identify γ by the group element τγ(0K).
We will also view τ as a unitary representation of Γ on the Hilbert space L2(K,µ) and
since Γ is infinite, we notice that there always exists a 1-rigid time S for τ .
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As above, U denotes the group of complex numbers of modulus 1 equipped with its Haar
measure λ and let ϕ : Γ×K → U be a τ -cocycle i.e. a measurable map such that

ϕ(γ + γ′, x) = ϕ(γ, τγ
′

x)ϕ(γ′, x) µ-a.e.

We then define the skew product action τϕ of Γ on the product space (K × U, µ⊗ λ) by

(τϕ)
γ(x, ζ) = (x+ γ, ζϕ(γ, x)).

Finally, we define the unitary representation Uϕ of Γ on L2(K) by

(3.3) Uγ
ϕ(h)(x) = ϕ(γ, x)h(τγx).

Theorem 5. Assume that S is a 1-rigid time for τ . Then for any τ -cocycle ϕ : Γ×K → U,
the set S is a ζ-rigid time for the representation Uϕ if and only if for any χ ∈ K̂,

(3.4) lim
s∈S

∫

K

ϕ(s, x)χ(x)µ(dx) =

{
ζ if χ is trivial,
0 otherwise.

Proof. For characters χ and χ′ on K, we have

〈Uγ
ϕχ|χ

′〉 = χ(γ)

∫

K

ϕ(γ, x)χ(x)χ′(x)µ(dx).

Assume that S is a ζ-rigid time for Uϕ, then lims∈S〈U
s
ϕχ|χ

′〉 = ζ〈χ|χ′〉. This proves (3.4).

Conversely, assume (3.4) for any χ ∈ K̂, then lims∈S χ(s)〈U
s
ϕχ|χ

′〉 = ζ〈χ|χ′〉 for any
characters χ and χ′ on K whereas lims∈S χ(s) = 1 due to the 1-rigidity of τ along S, hence

lim
s∈S

〈Us
ϕχ|χ

′〉 = ζ〈χ|χ′〉.

By bilinearity, the same formula holds for any linear combinations of characters. We finally
obtain by continuity, lims∈S〈U

s
ϕh|h

′〉 = ζ〈h|h′〉 for all h, h′ in L2(K,µ), as expected. �

Readily, for any integer ℓ 6= 0, the set S = {ℓpn ; n ∈ N} is a 1-rigid time for the Z-action
x 7→ x +m (m ∈ Z) on Zp. Going back to the cocycle ψf and the unitary representation
Vf,ξ we get the following consequence:

Theorem 6. Assume that f is a completely p-additive arithmetic function. Then for any
integer ℓ 6= 0 the set S := {ℓpn ; n ∈ N} is a ζ-rigid time for Vf,ξ, with ξ : u 7→ um

(u ∈ G, m ∈ Z) and

ζ = ν̂mf (ℓ).

Proof. In order to apply Theorem 5 we compute

I(n) =

∫

Zp

ξ(e(ψf(ℓp
n, x)))χ(x)µ(dx)
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for any χ ∈ Ẑp. Associated to χ, there exists an integer k such that χ(ypk) = 1 for any
y ∈ Zp and due to the p-additivity of f , one gets for any integer n ≥ k

I(n) =
1

pn

pn−1∑

m=0

∫

Zp

ξ(e(ψfn(ℓ, y)))χ(m+ pny)µ(dy)

=

(∫

Zp

χ(x)µ(dx)

)(∫

Zp

ξ(e(ψfn(ℓ, x)))µ(dx)

)
.

The complete p-additivity of f implies

I(n) = 〈χ|1〉ν̂mf(ℓ)

so that conditions (3.4) are fulfilled. �

Corollary 1. Let m,n ∈ Z, then the two measures νmf and νnf are either equal or mutually
singular.

Proof. Assume that νnf 6= νmf . There exists an ℓ ∈ Z such that ν̂nf (ℓ) 6= ν̂mf (ℓ) which
implies νmf and νnf mutually singular by using Theorems 6 and 4. �

Now we relate the measure ργ given by (1.7) for γ = χ ⊗ ξ to the measure νmf , where
m is given by ξ : u 7→ um. Recall that ργ = δ{χ(1)} ∗ νmf .

Proposition 3. With the above notations, assume that mf 6= k
p−1

sp mod 1. Then the

measure ργ is equivalent to νmf . Equivalently, all translations of νmf by pk-th roots of
unity are equivalent.

Proof. Let µ be a measure on U and ζ be a primitive K-th root of unity. Define the
measure

κ(dt) =
1

K2

∣∣∣∣∣

K−1∑

j=0

a(j)e(−jt)

∣∣∣∣∣

2 K−1∑

k=0

µ ∗ δ{ζk}(dt).

The two measures are then equivalent, if µ is continuous, since the trigonometric polynomial
vanishes in at most finitely many points. A straightforward computation shows that the
Fourier coefficients of κ and µ are related by the following formula, for 0 ≤ ℓ < K,

(3.5) κ̂(ℓ+Kn) =
1

K

K−ℓ−1∑

j=0

a(ℓ + j)a(j)µ̂(Kn) +
1

K

K−1∑

j=K−ℓ

a(ℓ+ j −K)a(j)µ̂(K(n+ 1)).



12 P. J. GRABNER, P. LIARDET, AND R. F. TICHY

Taking K = pk, where k is the smallest exponent such that χ(1)p
k

= 1, µ = νmf (which
is continuous by Proposition 2) and a(j) = e(mf(j))χ(1)js in (3.5) (0 ≤ s < pk) we obtain

κ̂(ℓ+ pkn) = χ(1)ℓs

(
1

pk

pk−ℓ−1∑

j=0

e(m(f(ℓ+ j)− f(j)))ν̂mf(n)+

1

pk

pk−1∑

j=pk−ℓ

e(m(f(ℓ+ j − pk)− f(j)))ν̂mf (n+ 1)

)
= χ(1)ℓsν̂mf (ℓ+ pkn).

The last equation holds by an application of (2.2) to the function mf as a completely

pk-additive function. Thus κ = ρχs⊗ξ and in particular ργ is equivalent to p−k
∑pk−1

j=0 νmf ∗
δ{χ(1)j}, which by the same argument is equivalent to νmf . �

Corollary 2. The spectral type of the unitary representation Vf,ξ defined by (1.6), with
ξ : u 7→ um such that mf 6≡ k

p−1
sp (mod 1), is equal to νmf , and for any h ∈ L2(Zp), any

χ ∈ Ẑp the spectral measures ρh⊗ξ and ρ(χ·h)⊗ξ (= ρh⊗ξ ∗ δ{χ(1)}) are equivalent.

Proof. It is enough to show that for any linear combination h =
∑n

j=1 ajχi of characters
χj on Zp the measure ρh⊗ξ is absolutely continuous with respect to νmf , but as a classical
result ρh⊗ξ is absolutely continuous with respect to

∑n

j=1 ρχj⊗ξ, and the result follows from
the above proposition. �

In the next corollary, we sum up results which essentially derive from Corollary 2 and
the decomposition (1.4):

Corollary 3. For any completely p-additive arithmetic function f , the dynamical system
(Zp×G, Tp,f , µp⊗hG) is ergodic. Let ∆p be the discrete part contribution of the translation
T : x 7→ x + 1 on Zp, Λp,f the part corresponding to the orthocomplement of L2(Zp, µp) ⊗

1 with Λ
(d)
p,f (resp. Λ

(c)
p,f) its discrete (resp. continuous) part. The spectral type of Tp,f

(cf. (1.5)) has the form

Ξp,f = ∆p ∗ Λ
(d)
p,f + Λ

(c)
p,f .

Moreover, let Jf be the subgroup of integers m such that mf = k
p−1

sp mod 1 for a suitable

integer k ∈ N, and let m0 ≥ 0 be defined by Jf = m0Z. Then

(i) if G0 is the subgroup of the (p− 1)-st roots of unity generated by the values of m0f ,

then the discrete part Λ
(d)
p,f of Λp,f is the spectral type of the translation z 7→ zζ0

where ζ0 = e(m0f(1)) is a generator of G0 and the (ergodic) dynamical system
(Zp × G0, T0, µp ⊗ hG0) with T0(x, z) = (x + 1, zζ0) is a factor of Tp,f under the
factor map (x, y) 7→ (x, ym0);

(ii) if m0 6= 0, G is finite and the continuous part Λ
(c)
p,f of Λp,f is given by the measure

∑

1≤m<#G
m6=0 mod m0

νmf ;
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(iii) if m0 = 0, Λp,f (= Λ
(c)
p,f) is equivalent to the measure

∞∑

m=1

2−mνmf .

In this case Ξp,f = ∆p + Λp,f .

Remark 5. In case (iii) of Corollary 3, if G is finite of cardinal r, then r and p − 1 are
relatively prime and the infinite sum can be replaced by the sum

r−1∑

m=1

νmf .

Proof of Theorem 2. From above, we may suppose that g is also not trivial. By complete
p-additivity of f and Theorem 6, the set S = {ℓpn ; n ∈ N} (ℓ ∈ N, ℓ 6= 0) is a ζ-rigid
time with ζ = ν̂f (ℓ), and we can choose ℓ such that ν̂f(ℓ) 6= 0. Lemma 2 implies that there
exists an increasing sequence of integers nk such that the number of occurrences of a given
non-zero block B in the q-ary expansion of ℓpnk tends to infinity. The estimate given in
Lemma 1 then implies

(3.6) lim
k
ν̂g(ℓp

nk) = 0.

Let H be the subspace of all h ∈ L2(Zq) such that ρh ≪ νf where ρh denotes here the
spectral measure h with respect to unitary representation V n

g,e : u 7→ e(ψg(n, x))u(x+n) of
Z on L2(Zq). The space H is invariant under Vg,e and the unitary representation χ 7→ Mχ

of Ẑq given by Mχ(u)(x) = χ(x)u(x), this latter fact following from Corollary 2. Assume
that H 6= {0} and choose h 6= 0, h ∈ H . For any function u in the orthocomplement of
H we have 〈V n

g,e(h)·u|χ〉 = 0 for any χ ∈ Zq and n ∈ Z. This implies V n
g,e(h)·u = 0 µq-a.e.

or equivalently, h(x + n)u(x) = 0 for µq-almost all x and any n ∈ Z, and consequently
u = 0 µq-a.e. Therefore H = L2(Zq), in particular ρ1 = νg ≪ νf . But ν̂g(ℓp

nk) =∫
U

dνg
dνf

(t)e(ℓpnkt)νf(dt), and

lim
k

∫

U

dνg
dνf

(t)e(ℓpnkt)νf (dt) = ζ 6= 0

by Theorem 3, in contradiction with (3.6). Thus H = {0} and we conclude that νg and νf
are mutually singular. The same conclusion holds if we replace f and g bymf andm′g with
any integers m and m′ such the characters v 7→ vm and v 7→ vm

′

are not trivial respectively
on Gf and Gg. Now, the mutual singularity of Λp,f and Λq,g is an easy consequence of
Corollary 3 part (iii). �

4. Gaussian integers

In this section we consider radix expansions for the Gaussian integers Z[i]. It is well
known that all bases b for canonical number systems in Z[i] are of the form b = −a ± i,



14 P. J. GRABNER, P. LIARDET, AND R. F. TICHY

a ∈ N, a ≥ 1 (cf.[13, 14]). Thus every Gaussian integer z can be written uniquely in the
form

z =

L∑

ℓ=0

εℓb
ℓ with εℓ ∈ A (= {0, . . . , a2})

that leads to the classical notion of b-additive arithmetic functions f : Z[i] → R which, by

definition, verify f(z) =
∑L

ℓ=0 f(εℓb
ℓ). In the following we will mainly consider completely

b-additive arithmetic functions defined by

f

(
L∑

ℓ=0

εℓb
ℓ

)
=

L∑

ℓ=0

f(εℓ)

and still denote by Gf or simply G the closed subgroup of U generated by the values of
e ◦ f . The corresponding compact group Kb (replacing the q-adic integers for the classical
radix expansions) with Haar measure µb as well as the related cocycle ψf (see infra) where
f is the sum-of-digits function have been investigated in [7].

Let (Kb, Tb, µb) be the group action of Z[i] by translation, namely T zb (x) = x+ z for any
Gaussian integer z, and let (Kb × G, Tb,f , µb ⊗ hG) be the skew product above Tb defined
by

T zb,f (x, u) = (x+ z, ue(ψf (z, x))),

where ψf is the cocycle given by

ψf (z, x) = lim
ξ→x
ξ∈Z[i]

f(z + ξ)− f(ξ),

if the limit exists and ψf (z, x) = 0 otherwise. For any z ∈ Z[i], the map ψf (z, ·) is
continuous almost everywhere. This fact was proved in [7] for the sum-of-digits function,
but since the proof makes use only of the b-additive property, it is valid in full generality.

Theorem 7. The dynamical system (Kb ×G, Tb,f , µb ⊗ hG) is uniquely ergodic.

Proof. The ergodicity will be a consequence of our next study. It can be also derived by
mimicking the proof given in [7] for the sum-of-digits function. The uniqueness of the
ergodic measure follows from the general result [see [7], Corollary 4]. �

Our first aim is the study of the spectral type of Tb,f , taking into account the decompo-
sition analogous to (1.4), replacing Zp by Kb. The dual group of Γ is identified with the

two-dimensional additive torus Γ̂ = C/Z[i] so that v ∈ Γ̂ corresponds to a unique character
χv(z) = e(ℜ(vz)) of Γ and all characters of Γ are of this form. Moreover, by duality, all

characters of Γ̂ are of the form χz : v 7→ χv(z). Now, the dual group of K(b) is identified
with the discrete subgroup

Γ̂(b) := {w ∈ Γ̂ ; ∃k ∈ N, bkw = 0},

each character χ of K(b) being identified to w(χ) = ω/bk ∈ Γ̂, ω ∈ Z[i], through the formula

χ(x) = χw(x) = e(ℜ(w
∑k−1

j=0 xjb
j)). We use the same notations as before: ρh represent the

spectral measure associated to any function h in L2(Kb × G) with respect to Tb,f . Recall
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that ρh is a measure on Γ̂ and in particular, for h = χ ⊗ ξ with χ ∈ K̂b and ξ : u 7→ um

(∈ Ĝ), one has

ρ̂χ⊗ξ(z) = χ(z)

∫

Kb

e(ψmf (z, x))µb(dx);

hence ρχ⊗ξ = δ{w(χ)} ∗ νmf .

An important spectral property related to Tb,f is the existence of rigid time. It is a
simple observation that any set S(ℓ) := {ℓbn ;n ∈ N} (for any Gaussian integer ℓ 6= 0) is a
1-rigid time for the Z[i]-action Tb on Kb by translation. Now for any character ξ of G, let
Vf,ξ be the unitary representation of Z[i] on L2(Kb) given by

V z
f,ξ(h)(x) = ξ(e(ψf (z, x)))h(x+ z).

The following theorem corresponds to Theorem 6 for p-additive function; the proof is
almost identical and is left to the reader:

Theorem 8. The set S(ℓ) is a ζ-rigid time for Vf,ξ, with ξ : u 7→ um and ζ = ν̂mf (ℓ).

The corresponding Corollary 1 holds as well.

As in the case of p-adic integers discussed in Section 2, addition of m + ni can be
performed by a family of transducer automata. They are more complicated, due to the
fact that there are 12 possible carries (including the carry 0) which form the set Σ of states.
These automata are described in Figure 2. Since the situation is more complicated than in
the p-adic case, we also give a brief verbal description. Let d : Z[i] → {0, 1, . . . , a2} be the
first digit function to base b i.e., d(z) is defined by the relation z− d(z) ∈ bZ[i] and notice
that (a2+1)b−1 = −b−2a = b2+(2a−1)b+(a−1)2. To add m+ni = ε0+ε1b+ · · ·+εrb

r

to any x =
∑∞

k=0 xkb
k (xk ∈ A) in Kb such that y = (m + ni) + x =

∑∞
k= ykb

k, we first
compute y0 = ε0 + x0 − η(a2 + 1) and report the carry c1 = η(−b − 2a) where η is equal
to 0 or 1 according to ε0 + x0 ≤ a2 or a2 + 1 ≤ ε0 + x0 (< 2a2 + 1). After computing the
digits y0, . . . ys−1, the next one, ys, is obtained by computing cs + εs + xs where cs is the
running carry to be added (and εs = 0 if s > r). This gives ys = d(cs)+ εs+xs− η(a2+1)
and the next carry cs+1 = (cs− d(cs)b

−1 + η(−b− 2a), where η is equal to 0, 1 or 2 in such
a way that 0 ≤ d(cs) + εs + xs − η(a2 + 1) ≤ a2. If we define the maps

Sη : z 7→ (z − d(z))b−1 + η(−b− 2a)

for 0 ≤ η ≤ 2 then, Σ is the smallest subset of Z[i] containing 0 and satisfying both

(∀ c ∈ Σ) (d(c) = 0 ⇒ S0(c) ∈ Σ&S1(c) ∈ Σ)

and
(∀ c ∈ Σ) (d(c) 6= 0 ⇒ ∀η ∈ {0, 1, 2} , Sη(c) ∈ Σ).

It is easy to see that there exists a positive integerM such that for any z ∈ Z[i], there is an
integer k ≥ 0 verifying for i = 0, 1, 2, |Ski (z)| ≤ M and moreover, |Si(z)| ≤ M if |z| ≤ M .
Hence |s| ≤M for any s ∈ Σ, proving that Σ is finite. By straightforward computation we
obtain

Σ = {0, 1,−A,C,−2, F, B,D,E,−B,A,−1}(4.1)
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where

A = b+ 2a, B = b+ 2a− 1, C = −b− 2a− 2,

D = −b− 2a− 1, E = b+ 2a− 2, F = −2b− 4a+ 1.

The automaton corresponding to the addition of the digit ε is depicted Figure 2.

Figure 2. The automaton Aε for base −a + i

In the labelled graph of Figure 2, the notation [q] means that q has to be added to the
digit that has just been read, if the result is still in A (= {0, . . . , a2}), so that if σ is the
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current state, the next one is the extremity of the arrow issuing from σ and labeled by [q].
Notice that there is always exactly one possibility.

Finally, by ordering Σ = {σ0, . . . , σ11} as it is given in(4.1), the corresponding matrices

Aε related to the computation of the Fourier coefficient ν̂f (
∑k

k=0 εkb
k) can be read off as

(4.2)


t(ε) 0 t(ε−a2−1) 0 0 0 0 0 0 0 0 0
t(ε+1) 0 t(ε−a2) 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 t(ε+(a−1)2) t(ε−(a+1)2) 0 0 0 t(ε− 2a)

0 0 0 t(ε−a2−2a−3) 0 0 t(ε+a2−2a−1) 0 0 0 0 t(ε−2a−2)
t(ε−2) 0 t(ε−a2−3) 0 0 0 0 0 0 0 t(ε+a2−1) 0
0 0 0 t(ε−a2−4a) t(ε−4a+1) 0 0 0 t(ε+a2−4a+2) 0 0 0
0 t(ε+2a−1) 0 0 0 t(ε−2a2+2a−3) 0 0 0 t(ε−(a−1)2−1) 0 0
0 0 0 0 0 0 t(ε+a2−2a) t(ε−a2−2a−2)0 0 0 t(ε−2a−1)
0 t(ε+2a−2) 0 0 0 t(ε−2a2+2a−4) 0 0 0 t(ε−(a−1)2−2) 0 0
0 0 0 0 0 0 t(ε+(a−1)2+1) t(ε−a2−2a) 0 0 0 t(ε−2a+1)
0 t(ε+2a) 0 0 0 t(ε−2a2+2a−2) 0 0 0 t(ε−(a−1)2) 0 0
t(ε−1) 0 t(ε−a2−2) 0 0 0 0 0 0 0 t(ε+a2) 0




with

t(q) =
1

a2 + 1

∑

k∈A∩−q+A

e(f(k + q)− f(k)) A = {0, . . . , a2},

t(q) being null if A ∩−q +A is empty (i.e., |q| > a2).
In fact, let fm be the general notation for the b-additive function z 7→ f(bmz), set

Fm(z, x) = e(ψfm(z, x)) for short and x = x0+bx
′ for any x ∈ Kb. For z ∈ Z[i] with partial

b-expansion z = ε + bz′, and any σ ∈ Σ, using the b-multiplicativity of e(f) and the fact
that µb is a product measure, one has

ν̂f (z + σ) =

∫

Kb

∑

0≤k≤a2

1{x0=k}F (z + σ, x)µb(dx)

=

2∑

η=0

(Aε)σ,Sη(σ)

∫

Kb

F1(z
′ + Sη(σ), x

′)µb(dx
′),

the term in the above summation corresponding to η = 2 being omitted if ε = 0. This
proves the following fundamental formula:

(4.3)



ν̂f (z + σ0)

...
ν̂f(z + σ11)


 = Aε



ν̂f1(z

′ + σ0)
...

ν̂f1(z
′ + σ11)


 .

Obviously, for any b-additive function f , ‖A0‖ = ‖Aa2‖ = 1 and if we denote by Bε =

(b
(ε)
α,β) the matrix Aε but with f = 0, each entry of (a2 + 1)Bε are non negative integers,

the sum of all terms on each line being equal to a2 + 1, and the entries of the matrix

(a
(ε)
α,β) = Aε satisfy |a

(ε)
α,β| ≤ b

(ε)
α,β . As in the above discussion, if there is no digit ε such that

||Aε|| < 1 then the first line of A1 says that f(δ + 1) − f(δ) ≡ C (mod 1). Assuming in
addition that f is completely additive, this implies that f(z) ≡ Csb(z)(mod 1). In that
case ||Aε|| = 1 for any digit ε but there are many triples (ε1, ε2, ε2) ∈ A such that one
entries of the product Aε1Aε2Aε3 is strictly less than the corresponding entry of Bε1Bε2Bε3 .
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For our purpose, we only need to exhibit one such triple. In fact, choosing ((a− 1)2, 2a, 0)
and working with the automata A(a−1)2 , A2a and A0 we obtain

(A(a−1)2A2aA0)B,B = (2a+ 1)2aζa
2+1 + (a2 − 2)(2a+ 1)ζ−2a−1.

where ζ = e(C). Therefore

|(A(a−1)2A2aA0)B,B| < (B(a−1)2B2aB0)B,B = (2a+ 1)2a+ (a2 − 2)(2a+ 1)

if ζ (a+1)2+1 6= 1 (and |(A(a−1)2A2aA0)B,B| = (B(a−1)2B2aB0)B,B otherwise). Consequently,
for any digits ε and η, the inequality

||AεA(a−1)2A2aA0Aη|| < 1

holds if and only if ζ is not a ((a+ 1)2 + 1)-th root of unity. The case where ζ (a+1)2+1 = 1
is very particular as it was observed in [7] where it is shown that

(4.4) ∀ (z, z′) ∈ Z[i]2 , sb(z + z′) ≡ sb(z) + sb(z
′) (mod (a+ 1)2 + 1).

We have proved the analogue of Lemma 1, namely if f is completely b-additive and does
not satisfy f(z) ≡ k

(a+1)2+1
sb(z)(mod 1) for some integer k then, there exists a constant θ,

0 < θ < 1, such that

(4.5) |ν̂f(z)| ≤ θσB(z)

for some non-overlapping block counting function σB(z) where the digit block B can be
chosen of length at most five. From (4.5) we infer the following:

Proposition 4. For any completely b-additive function f , the measure νf is discrete if
and only if f ≡ k

(a+1)2+1
sb (mod 1) for some k ∈ Z. Otherwise, νf is singular continuous

and for any w ∈ Γ̂(b), ρχw⊗1 (= νf ∗ δ{w}) is equivalent to νf .

Proof. Assume that f ≡ k
(a+1)2+1

sb (mod 1), then the map χf : z 7→ e(f(z)) is a character

of Z[i] and νf is discrete. In fact, by direct computation, χf (z) = e(ℜ
(

kz
1+(a+1)i

)
) and

ν̂f (z) = χf (z) i.e., νf = δ{α}, where α = k
1+(a+1)i

+ Z[i].

In the case f 6≡ k
(a+1)2+1

sb (mod 1), we introduce the set

∆L :=

{
L−1∑

ℓ=0

εℓb
ℓ ; (ε0, . . . , εL−1) ∈ AL

}
.

It follows from the geometric considerations in [6] that ∆L satisfies the condition (4.8)
below. Following the proof of Proposition 2 we get

(4.6) lim
L→∞

1

(a2 + 1)L

∑

z∈∆L

|ν̂f(z)|
2 = 0.

This, together with Theorem 9 infra, finishes the proof of continuity of the measure νf .
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In order to prove νf ∗ δ{w} ∼ νf for w = ωb−L with ω ∈ ∆L, ω 6= 0, we introduce the
probability measure

κ(du) =
1

(a2 + 1)L

∣∣∣
∑

z∈∆L

e(ℜ(f(z) + wz)χz(−u)
∣∣∣
2 1

(a2 + 1)L

∑

v∈∆L

µ ∗ δ{vbL}(du).

which precisely verifies for any y ∈ ∆L and y′ ∈ Z[i]

(4.7) κ̂(y + bLy′) = χw(y)ν̂f(y + bLy′)

that is to say, κ = νf ∗δ{w}. Equation (4.7) is obtained by iterating (4.3) with the b-additive
function F : z 7→ ℜ(f(z) + wz) which verifies FL ≡ ℜ(fL) mod Z[i]. �

We could not find the following straight forward generalization of the Wiener-Schoenberg
theorem in the literature. Thus we state it and give a short proof.

Theorem 9. Let G be a compact metrizable abelian group and (An)n an increasing sequence

of finite non empty subsets of Ĝ such that

(4.8) lim
n→∞

#(χAn△An)

#An
= 0

for all χ ∈ Ĝ. Let ν be a measure on G. Then the limit

(4.9) lim
n→∞

1

#An

∑

χ∈An

|ν̂(χ)|2

exists and equals ∑

g∈G

ν({g})2.

In particular, the measure has no point masses, if the limit (4.9) is zero.

Proof. The proof runs along the same lines as the proof of the classical Wiener-Schoenberg
theorem [18, 20]. It depends on the fact that

∑

χ∈An

|ν̂(χ)|2 =

∫∫

G×G

∑

χ∈An

χ(u− v) dν(u) dν(v).

Define

fn(x) :=
1

#An

∑

χ∈An

χ(x);

if we can show

(4.10) lim
n→∞

fn(x) =

{
1 for x = 0

0 otherwise,

Lebesgue’s theorem on dominated convergence yields existence of the limit (4.9) and its
value.

In order to prove pointwise convergence in (4.10) we fix x 6= 0 (for x = 0 the convergence
is trivial). Assume now that |fn(x)| ≥ ε for some ε > 0 and infinitely many n. Then there
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exists a convergent subsequence fnk
(x), whose limit is 6= 0. By our assumption on the sets

An the sequence χ(x)fnk
(x) is convergent to the same limit for any character χ. Taking χ

such that χ(x) 6= 1 gives a contradiction. �

From Proposition 4 and previous analysis we can transfer conclusions of Corollary 2
and Corollary 3 to b-additive arithmetic functions f , but replacing the index p by b, the
function k

p−1
sp (mod 1) by k

(a+1)2+1
sb (mod 1) and the group of (p− 1)-th roots of unity by

the (1 + (a+ 1)i)-torsion subgroup of Γ̂ i.e., the group

Γ̂a := {v ∈ Γ̂ ; (1 + i(a+ 1))v = 0}.

To be complete, we need to know that Tb,f is ergodic if f ≡ k
(a+1)2+1

sb (mod 1), a result

coming from the general theory [[7], Corollary 4], or simpler, due to the easy fact that

Γ̂(b) ∩ Γ̂a = {0} and (4.4) which says that Tb,f = Tb × Ra where, by definition, Rz
a : y 7→

ye(ℜ
(

z
1+(a+1)i

)
) on the group of ((a+ 1)2 + 1)-th roots of unity.

Let us mention the following simple consequences: first, as we have already noticed,
Tb,f is ergodic by the fact that the above spectral studies show that the eigenvalue 1 only
comes from Tb and so occurs with multiplicity 1. Now, the following corresponds to the
case where the eigenfunctions for Tb,f are only those issuing from Tb:

Corollary 4. Assume that f is completely b-additive and takes an irrational value. Then
G = U and the spectral type Ξb,f of Tb,f has the form Ξb,f = ∆b + Λp,f where ∆b, the
discrete part, is the spectral type of Tb and Λp,f , the singular continuous part, is given by∑∞

m=1 2
−mνmf .

A b-additive arithmetical function f will be said trivial if there exists an integer k and
a non trivial character χm : u 7→ um of Gf such that

χm(e(f)) = e
( k

(a+ 1)2 + 1
sb

)
.

According to Proposition 4, this definition is equivalent to have νmf discrete for some m
such that 0 < m < #G.

Now we want to prove an analogue of Theorem 2. Our proof will work only under the
assumption of coprimality between the bases and we have to show that the corresponding
Lemma 2 holds in this case. We recall that

Zm
∼=
⊗

p|m

Zp (p prime )

as topological rings. Continuing with b = −a+ i (a > 0), let p be an odd prime divisor of
a2 + 1. Since −1 is a square mod p, it is also a square in Zp. This means that i ∈ Zp but
we have to choose this square root of −1. We do this in connection with the factorization
p = ππ̄ where π and π̄ are conjugate and non equivalent Gaussian prime numbers. In fact,
if π = −σ + iτ , observe that the rational integers τ and σ are unities in Zp and fix one
square root i′ of −1 in Zp by assuming the relation

−σ + i′τ = 0 mod pZp.
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The specialization i → i′ over Z, allows us to identify Z[i] with Z[i′] (⊂ Zp) by the ring
isomorphism J : x+iy 7→ x+i′y. In addition, such a choice of i′ implies that the p-valuation
of J(π) is 1 and for the conjugate prime, J(π̄) = −σ − i′τ is a unity in Zp. Finally, let

i′ = r0 + r1p+ r2p
2 + . . .

be the p-adic expansion of i′, and set i′[n] =
∑n−1

k=0 rkp
k for any integers n ≥ 1. Since i′[n]

is a square root of −1mod pn, the map x+ iy 7→ x+ i′[n]y + pnZ from Z[i] to Z/pnZ is a
ring morphism with kernel πnZ[i] which induces the ring isomorphism

ϕn : u+ iv + πnZ[i] 7→ u+ i′[n]v + pnZ

from Z[i]/(π)n onto Z/pnZ. Thus, the family of morphisms ϕn defines an isomorphism ϕ
between the projective limits Z[i]π := lim

←n
Z[i]/πnZ[i] and Zp = lim

←n
Z/pnZ .

The case b = −1 + i is particular because −1 + i is the unique prime divisor (up to an
equivalence) of 2 and −1 has no square root in Z2. As a consequence, K−1+i = Z2[i].

Returning to Kb in full generality and let π1 . . . , πr be the distinct prime divisors of b
which are not above 2 (in case a is odd) and let pj be the rational prime such that πj is
above pj. Observe that the primes pj are distinct, since −a+ i is not divisible by a rational
prime. Select the square root i′j of −1 in Zpj in accordance with πj as above leading to the

isomorphism ϕ(j) between Z[i]πj and Zpj , which can be used to produce the isomorphism

Kb ≃

{ ⊗r
j=1Zpj (≃ Za2+1) if a is even;

Z2[i]⊗
(⊗r

j=1Zpj

)
otherwise.

(4.11)

Theorem 10. Let b = −a+ i and c = −a′+ i be coprime and f , g be completely b-additive,
respectively c-additive. Assume that e(f) 6= e( k

(a+1)2+1
sb) for any integer k, then the spectral

measures νf and νg are mutually singular.

Proof. We assume that e(g) 6= e( k
(a+1)2+1

sb) for any k ∈ Z otherwise, νg is discrete while

νf is continuous, and the theorem holds. Without loss of generality we may also assume
that a′ is even. Let π1 . . . , πr be the distinct prime divisors of c, respectively above the
(odd) primes p1, . . . , pr. Recall that the primes pj are distinct and let ϕ(j) : Z[i]πj → Zpj be

the above isomorphism such that ϕ(j)(πj) is equivalent to pj . Define m to be the minimal
positive integer such that bm ≡ 1 mod c and define dj as the maximal positive integer

such that ϕ(j)(bm) ∈ 1+p
dj
j Zpj =: Udj (pj). From [15, Theorem 5.7, Corollary] we infer that

Zpj ≃ U1(pj) from which we conclude that Zpj ≃ Udj (pj). Thus every element of Udj (pj)

can be written as zp
djα
j , where zj is a principal unity and α ∈ Zpj . By definition, we have

ϕ(j)(b)m = z
p
dj
j αj

j

where αj is a unity in Zpj ; it follows that 〈ϕ(1)(b)m〉 = Udj . Since the primes pj are all

distinct, (ϕ(j)(b)m, . . . , ϕ(r)(b)m) generates Ud1(p1) × · · · × Udr(pr). Thus from (4.11) we

get 1 + cdKc ⊂ 〈bm〉 for any d greater than max{d1, . . . , dr}. Therefore, for any block B
of digits in {0, . . . , a′2}, any Gaussian integer ℓ, and any k ∈ N, choosing d large enough
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with respect to ℓ, there exists a positive integer nk such that σB(ℓb
nk) ≥ k. For a suitable

choice of the digit block B, the bound (4.5) implies that

lim
k
ν̂g(ℓb

nk) = 0.

Following the proof of Theorem 2 with Proposition 4 in hand, we obtain first that νg is pure
with respect to νf , i.e., νg is absolutely continuous or singular with respect to νf . Since f
is completely b-additive, there exists ℓ ∈ Z[i] such that νf(ℓ) 6= 0. Therefore {ℓbn ; n ∈ N}
is a ζ-rigid time for Vf,ξ1 with ζ 6= 0, and therefore, by Theorem 3, νg has to be singular
with respect to νf . �

Corollary 5. With the assumptions of Theorem 10, if f and g are non trivial, then the
spectral type of the dynamical systems Tb1,f1 and Tb2,f2 are mutually singular; in particular
the direct product Tb1,f1 × Tb2,f2 is uniquely ergodic.

We have deliberately paid attention to real valued p-additive or b-additive functions. This
is not a real restriction since we work in fact with e(f) and then use the corresponding
p- or b-multiplicative notion. Indeed, our choice is motivated by the seminal paper of
A. O. Gel’fond [5].

We end this study with an application to uniform distribution which is a consequence
of Corollary 5 with more than two bases, taking into account the Tempel’man ergodic
theorem:

Theorem 11. Let f (i), i = 1, . . . , m be non trivial, completely bi-additive functions such
that the bases bi are mutually coprime and set Gi = Gf(i) . Then the sequence

z 7→ (e(f (1)(z)), . . . e(f (m)(z)))

is uniformly distributed in G1 × · · · × Gm in the sense that for any increasing sequence
(An)n of finite non empty subsets of Z[i] satisfying (4.8) and for all continuous functions
γ : G1 × · · · ×Gm → R, one has

lim
n

1

#An

∑

z∈An

γ(e(f (1)(z)), . . . , e(f (m)(z))) =

∫

G1×···×Gm

γ dH(4.12)

where H = hG1 ⊗ · · · ⊗ hGm
.

Proof. From Theorem 10, the direct product P := Tb1,f(1) × · · · × Tbm,f(m) is ergodic and
can be viewed as the skew product above the (unique) ergodic translation Tb1 × · · · × Tbm ,
built with the cocycle (e(ψf(1)), · · · , e(ψf(m))). Therefore P is uniquely ergodic and since
P is (µb1 ⊗hG1)⊗· · ·⊗ (µbm ⊗hGm

)-continuous, all points in (Kb1 ×G1)×· · ·× (Kbm ×Gm)
are generic for P . Taking Ω := ((0, 1G1), . . . , (0, 1Gm

)) one has

P z(Ω) = ((z, e(f (1)(z)), . . . , (z, e(f (m)(z)).

�

Clearly an analogous result holds for pi-additive arithmetic functions in bases pi ≥
2 which are assumed to be mutually coprime. In that case An is usually taken to be
{0, 1, . . . , n}.
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chiffres, Israel J. Math. 34 (1979), 337–342 (1980).
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