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Abstract. We extend previous results of Delange [De] concerning the existence of
distribution functions of certain q-adic digital functions to the case of digital expan-

sions with respect to linear recurrences with decreasing coefficients. Furthermore we
investigate a special case of digital functions and give a functional equation for the

related distribution function. We prove uniqueness and continuity of the solution of

this equation.

1. Introduction

Let us recall that if
(

Gn

)

n
is an increasing sequence of positive integers with

G0 = 1, we can expand every positive integer with respect to this sequence, i.e.

(1.1) ∀n ∈ N, n =
∞
∑

k=0

εkGk ,

this expansion being finite and unique, provided that for every K,
∑K−1

k=0 εkGk <
GK . The digits εk can be computed by the greedy algorithm.

In this paper, we will only study the case that the base sequence is a recurrence
sequence with decreasing integer coefficients a0 ≥ a1 ≥ · · · ≥ ad−1 ≥ 1, namely :

(1.2)
Gn+d = a0Gn+d−1 + · · ·+ ad−1Gn for n ≥ 0 with

G0 = 1 and Gk = a0Gk−1 + · · ·+ ak−1G0 + 1 for k < d.

The initial values are chosen as the “canonical initial values” from [GT]. In this
case, a finite sum

∑∞

k=0 εkGk is the expansion of some integer iff

(1.3) (εk, . . . , ε0, 0
∞) < (a0, . . . , ad−1 − 1)∞

(< being understood as the lexicographical order) for every k. The (εk, · · · , ε0)
that verify this condition are called “admissible strings”. The dominating root of
the characteristic equation Xd−a0X

d−1−· · ·−ad−1 = 0, say α, is a Pisot number;

these equations have been studied by Brauer [Br]. In particular, lim
n→∞

Gn

αn
exists

and is non-zero. For detailed discussion of these numbers systems, we refer to
[Fr,GT,GLT].
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We want to study the notion of G-additive functions (which generalize A. O. Gel-
fond’s [Ge] q-additive functions) and we will give a sufficient condition for the ex-
istence of a related distribution function. More precisely, we consider arithmetic
functions which satisfy

(1.4) f

(

K
∑

k=0

εkGk

)

=
K
∑

k=0

f(εkGk)

for which we investigate existence and properties of

(1.5) F (x) := lim
N→∞

1

N

∑

n<N

χx (f(n)) =: lim
N→∞

FN (x)

where χx denotes the characteristic function of the interval ] − ∞, x[. This is a
continuation of investigations initiated by Delange [De], who gave a necessary and
sufficient condition for the existence of a distribution function in the q-adic case.
These investigations complement considerations concerning uniform distribution of
G-additive (and also q-additive) functions modulo 1 (cf. [MF], [GT]).

We will give a sufficient condition for the existence of such a function in the
Brauer case. For this purpose we will use a result of Kooman [Ko1,Ko2], who
derived an extension of the theory of Poincaré and Perron concerning linear recur-
rences with non-constant coefficients. We will give some indications, why it seems
to be difficult to give also necessary conditions.

In a last part we study in more details a special case of G-additive functions,
which satisfy

(1.6) f (0ε0 . . . εK0∞) = βf (ε0 . . . εK0∞)

where
∑K

k=0 εkGk is the G-expansion of any integer and |β| being smaller than
1. We give a functional equation satisfied by the distribution function. The ideas
which led to the functional equation also give a proof of the continuity of F for
every non-trivial function f of this type.

We shall use the convention that
∑−1

k=0 = 0. Double brackets will indicate
intervals of N.

2. Existence of the distribution function

According to Delange, we say that f admits a distribution function F if the limit
(1.5) exists for every point of continuity of F . By basic Fourier-Stieltjes transform
theory (see for example [Ch]), we know that a necessary and sufficient condition
for that to hold is the pointwise convergence of the characteristic functions

ΦN (t) =

∫ ∞

−∞

eitxdFN (x) =
1

N

∑

n<N

∫ ∞

−∞

eitxδf(n)(x) =
1

N

∑

n<N

eitf(n)

to a function Φ continuous at 0. (In fact, an almost everywhere convergence is
enough, provided that Φ(0) = 1, but we will not use this refinement.) Moreover, if
that situation holds, then Φ is the characteristic function of F .

We first state three lemmata.
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Lemma 1. Let m be a positive integer, and (xk)0≤k<m a finite sequence of real
numbers. Then, the following inequality holds:

(2.1)

∣

∣

∣

∣

∣

m−1
∑

k=0

eitxk −m

∣

∣

∣

∣

∣

≤ |t|

∣

∣

∣

∣

∣

m−1
∑

k=0

xk

∣

∣

∣

∣

∣

+
t2

2

m−1
∑

k=0

x2
k.

Proof.
∣

∣

∣

∣

∣

m−1
∑

k=0

eitxk −m− it
m−1
∑

k=0

xk

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

m−1
∑

k=0

∫ txk

0

(eiu − 1)du

∣

∣

∣

∣

∣

≤
m−1
∑

k=0

t2x2
k

2

because |eiu − 1| ≤ |u| for every u. The lemma follows immediately.

The second lemma is a special case of a theorem due to Kooman [Ko1,Ko2].

Lemma 2. Suppose we have a linear recurrence with non-constant coefficients

Zn+d = a
(n)
0 Zn+d−1 + · · ·+ a

(n)
d−1Zn.

Suppose further that there exist ak for k = 0, . . . , d− 1, ad−1 6= 0 such that

(2.2)

∞
∑

n=0

∣

∣a
(n)
k − ak

∣

∣

converges for every k = 0, . . . , d − 1 and that P := Xd − a0X
d−1 − · · · − ad−1

has distinct roots αi. Then initial values Z
(i)
0 , . . . , Z

(i)
d−1 (for i = 1, . . . , d) can be

chosen such that the corresponding solutions Z
(1)
n , . . . , Z

(d)
n satisfy

lim
n→∞

Z
(i)
n

αn
i

= 1

for i = 1, . . . , d. In particular, if there is one dominating root α , then the limit

lim
n→∞

Zn

αn

exists for every solution of the recurrence.

The third one is a result which is part of the folklore in the study of digital
functions. Special cases are proved in [CRT] and [GLT].

Lemma 3. Let g be a G-multiplicative function of modulus less or equal to 1, where
G is a basis given by the recurrence (1.2). Assume further that

lim
k→∞

1

Gk

∑

n<Gk

g(n)

exists, then

lim
N→∞

1

N

∑

n<N

g(n)

exists also.
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Theorem 4. Let f be a G-additive function, such that the series

(2.3)
∞
∑

n=0

∣

∣

∣

∣

∣

as−1
∑

ℓ=0

f(a0Gn+d−1 + · · ·+ as−1Gn+d−s + ℓGn+d−s−1)

∣

∣

∣

∣

∣

converges for every s = 0, . . . , d− 1 and such that the series

(2.4)
∞
∑

n=0

a0
∑

ℓ=0

f(ℓGn)
2

converges, then the distribution function exists and its Fourier-Stieltjes transform
is equal to the limit for N → ∞ of

ΦN (t) =
1

N

∑

n<N

eitf(n).

Proof.
Let ΞN be defined as :

ΞN (t) := GNΦGN
(t).

For an arbitrary integer n, let us consider the G-expansion of any integer m

smaller than Gn+d : m =
∑n+d−1

k=0 εkGk. Because of the admissibility of the string
(εn+d−1, · · · , εn), the G-expansion of m is of one of the following types :

(2.5)











































































a0Gn+d−1 + a1Gn+d−2 + · · ·+ ad−2Gn+1 + kGn + r,

with k ≤ ad−1 − 1 and r < Gn

a0Gn+d−1 + a1Gn+d−2 + · · ·+ ad−3Gn+2 + kGn+1 + r,

with k ≤ ad−2 − 1 and r < Gn+1

· · · · · · · · · · · ·

a0Gn+d−1 + kGn+d−2 + r

with k ≤ a1 − 1 and r < Gn+d−2

kGn+d−1 + r

with k ≤ a0 − 1 and r < Gn+d−1

Conversely, all those sums represent a unique integer smaller than Gn+d. Thus, we
have the following recurrence formula for Ξ :

(2.6)

Ξn+d(t) =

(

a0−1
∑

k=0

eitf(kGn+d−1)

)

Ξn+d−1(t)+

eitf(a0Gn+d−1)

(

a1−1
∑

k=0

eitf(kGn+d−2)

)

Ξn+d−2(t) + · · ·+

eitf(
∑d−2

j=0 ajGn+d−1−j)

(

ad−1−1
∑

k=0

eitf(kGn)

)

Ξn(t)
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with
Ξs(t) =

∑

n<Gs

eitf(n)

for s = 0, . . . , d− 1.

First step : We prove that
Ξn(t)

αn
has a limit for every t, where we recall that

α is the dominating root. For that, we show that the relation (2.4) verifies the
assumptions of Lemma 2.

Fixing t, we have Ξn+d(t) = a
(n)
0 (t)Ξn+d−1(t) + · · · + a

(n)
d−1(t)Ξn(t), where, for

any s, 0 ≤ s < d− 1,

a(n)s (t) = eitf(
∑s−1

j=0 ajGn+d−1−j)

(

as−1
∑

k=0

eitf(kGn+d−1−s)

)

.

Using Lemma 1, we get:

|a(n)s (t)− as| ≤|t|

∣

∣

∣

∣

∣

∣

as−1
∑

k=0

s−1
∑

j=0

(f(ajGn+d−1−j) + f(kGn+d−1−s))

∣

∣

∣

∣

∣

∣

+
t2

2

as−1
∑

k=0





s−1
∑

j=0

(f(ajGn+d−1−j) + f(kGn+d−1−s))





2

The convergence of the series

∞
∑

n=0

∣

∣

∣

∣

∣

∣

as−1
∑

k=0

s−1
∑

j=0

(f(ajGn+d−1−j) + f(kGn+d−1−s))

∣

∣

∣

∣

∣

∣

is exactly condition (2.3). Furthermore we have





s−1
∑

j=0

(f(ajGn+d−1−j) + f(kGn+d−1−s))





2

≤

2s

s−1
∑

j=0

f(ajGn+d−1−j)
2 + 2s2f(kGn+d−1−s)

2

by Schwarz inequality. Hence,

as−1
∑

k=0





s−1
∑

j=0

(f(ajGn+d−1−j) + f(kGn+d−1−s))





2

≤

2sas

s−1
∑

j=0

f(ajGn+d−1−j)
2 + 2s2

as−1
∑

k=0

f(kGn+d−1−s)
2

≤ 2(d− 1)a0

d−2
∑

j=0

f(ajGn+d−1−j)
2 + 2(d− 1)2

d−1
∑

s=0

a0−1
∑

k=0

f(kGn+d−1−s)
2.
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Thus,

∞
∑

n=0

as−1
∑

k=0





s−1
∑

j=0

(f(ajGn+d−1−j) + f(kGn+d−1−s))





2

≤ 2(d− 1)2 (a0 + d)
∞
∑

n=0

a0
∑

ℓ=0

f(lGn)
2.

We are now allowed to apply Lemma 2, which tells us that
Ξn(t)

αn
has a limit for

every t.

Second step :

We use the result of the first step to prove that the limit of Θn(t) :=
Ξn(t)

αn
is a

continuous function of t. Θn(t) satisfies

Θn+d(t) =
a
(n)
0 (t)

α
Θn+d−1(t) +

a
(n)
1 (t)

α2
Θn+d−2(t) · · ·+

a
(n)
d−1(t)

αd
Θn(t),

and the conditions of Lemma 2 remain satisfied for this recurrence.
Let K be a compact subset of R. For every s and every n, the function t 7→

|a
(n)
s (t)−as| is continuous on K, and has a maximum on it that we note m

(n)
s . Let

(Mn)n be the sequence defined by

Mn+d =
(

a0 +m
(n)
0

)

Mn+d−1 + · · ·+
(

ad−1 +m
(n)
d−1

)

Mn with

Mk = sup
t∈K

|Ξk(t)| for 0 ≤ k ≤ d− 1.

By a trivial recurrence on n, we have |Ξn(t)| ≤ Mn for every n ∈ N and every
t ∈ K. Moreover,

|Ξn+d(t)− Ξn+d−1(t)| ≤
∣

∣a
(n)
0 (t)− 1

∣

∣|Ξn+d−1(t)|+
∣

∣a
(n)
1 (t)

∣

∣|Ξn+d−2(t)|+ · · ·

+
∣

∣a
(n)
d−1(t)

∣

∣|Ξn(t)|

≤
(

a0 +m
(n)
0 − 1

)

Mn+d−1 +
(

a1 +m
(n)
1

)

Mn+d−1 + · · ·

+
(

ad−1 +m
(n)
d−1

)

Mn

≤ |Mn+d −Mn+d−1|.

We can apply Lemma 2 to the sequence (Mn)n, every series
∑∞

n=0 m
(n)
s being equal

to a convergent series
∑∞

n=0 |a
(n)
s (ts) − as|. Thus, (Mn)n is convergent, and the

series
∞
∑

n=0

(Ξn+1(t)− Ξn(t)) is normally convergent. Hence, its limit is continuous.

Third step : Up to now, we have proved that
GnΦGn

(t)

αn
admits a continuous

limit. But lim
n→∞

Gn

αn
exists and is non-zero, so (ΦGn

(t))
n
admits a continuous limit.
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Now, f being G-additive, eitf is G-multiplicative, and we can apply Lemma 3 to
finish the proof of Theorem 4. �

Remark : It seems to be difficult to obtain a necessary condition for the dis-
tribution function to exist. The limitation comes from the perturbation part of
the proof, namely Kooman’s Lemma 2. His result does not hold if absolute con-
vergence of the coefficients is not assumed, but the Zn

Gn
could converge, even if the

series
∑

n |a
(n)
k − ak| diverge, as the following counterexample shows :

Zn+2 =

(

a1 −
1

n

)

Zn+1 +

(

a2 +
Gn+1

nGn

)

Zn

= a1Zn+1 + a2Zn

With Z0 = G0 and Z1 = G1.

In the following we will use ideas from [GLT] and [Ma] to give an alternative ap-
proach to the existence of a distribution function in a more specific case: According
to [GLT], the G-compactification of N is defined as

KG := {(εn)n∈N ; ∀k ∈ N, (εk, . . . , ε0) is admissible} ,

where KG is endowed with the topology induced by that of the infinite product of
discrete spaces

∏+∞

n=0 [[ 0; a0 ]] . The addition of 1 can be extended on KG, where it
is a continuous map. With this operator, it has been shown in the same paper that
the so-called adding machine is uniquely ergodic. We will note P the corresponding
probability measure, and consider KG as a Borel probability space. We identify N

and its image in KG. If C is the cylinder [ε0, . . . , εK−1], then C has probability
(2.7)
FKαd−1 + (FK+1 − a0FK)αd−2 + · · ·+ (FK+d−1 − a0FK+d−2 − · · · − ad−2FK)

αK(αd−1 + αd−2 + · · ·+ 1)
,

where FK := #
{

n < GK ; n ∈ C
}

. The difference between this formula and that
of [GLT] is due to a modification of the notations and to a printing error in the
previous paper.

Proposition 5. Let f be a G-additive function. Then f can be extended to a
continuous function on KG if and only if

(2.8)
∞
∑

n=0

a0
∑

ℓ=0

|f(ℓGn)| < ∞.

Then the distribution function of the extension is exactly F (except, maybe, at the
points of discontinuity of F ).

Proof. We first prove the equivalence of the existence of a continuation to KG with
(2.8): Suppose first that (2.8) holds. Then the series

∑∞

n=0 f(εnGn) is absolutely
convergent for any infinite string (εn)n∈N in KG. Thus, f can be extended on

the compactum to f̃ , whose continuity is a trivial consequence of (2.8) and of the
product topology structure.
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Conversely, suppose that

∞
∑

n=0

a0
∑

ℓ=0

|f(ℓGn)| = ∞.

Then there is an ℓ0 ∈ [[ 0, a0 ]] for which

∞
∑

n=0

|f(ℓ0Gn)| = ∞.

Then there is a k ∈ [[ 0, d− 1 ]] such that the series

(2.9)

∞
∑

n=0

|f(ℓ0Gk+dn)|

diverges. Define now

bn =

{

ℓ0 if f(ℓ0Gk+nd) > 0

0 else
cn =

{

ℓ0 if f(ℓ0Gk+nd) < 0

0 else.

The strings (0(k)b00
(d−1)b10

(d−1)b2 . . . ) and (0(k)c00
(d−1)c10

(d−1)c2 . . . ) are admis-
sible, since (0(k)(ℓ00

(d−1))(∞)) is admissible. By the divergence of (2.9) at least one
of those strings corresponds to an infinite value of the extension.

Since the adding machine is uniquely ergodic, every point, in particular 0, is
generic. Thus, for any Riemann-integrable complex-valued function g on KG, we
have

(2.10)
1

N

N−1
∑

n=0

g(n) −→
N→∞

∫

KG

g dP.

In particular, if we take g to be χt ◦ f̃ , and if we note F̃ the distribution function
of the integrable function f̃ , (2.10) yields F (t) = F̃ (t). Of course, the previous

argument is valid if χt ◦ f̃ is Riemann-integrable, i.e. iff F̃ is continuous at the
point t. �

Remarks : Proposition 5 gives a new and extremely short proof for the ex-
istence of the distribution function, provided that (2.8) holds. Indeed, (2.8) is
stronger than (2.3), and this probabilistic approach does not help in the most gen-
eral case. Consider, e.g., Gn+2 = 3Gn+1+3Gn and the G-additive function defined
by f(Gn) =

1
n+1 , f(2Gn) = − 1

n+1 and f(3Gn) = 0. Then the series (2.3) and (2.4)

converge, whereas (2.8) diverges. This is also a strong difference between Mau-
claire’s study of arithmetic additive functions [Ma] and the G-additive functions we
deal with.

3. Application to a particular case

Recall that the shift adjoint operator associated to the basis (Gn)n is defined as
follows:

S : N −→ N

∑

k

εkGk 7−→
∑

k

εkGk+1.
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In this part, we study a special kind of G-additive functions, which satisfy

(3.1) ∀n ∈ N : f(S(n)) = βf(n)

where |β| < 1 (this is clearly a rewriting of (1.6)). A typical example of such a
function is f(

∑

εkGk) :=
∑

εkβ
k. Anyway, f is given by its values on [[ 1; a0 ]] as it

yields from f(
∑

εkGk) =
∑

βkf(εk).

Proposition 6. If |αβ| < 1, then F has zero derivative almost everywhere, in
the sense of Lebesgue measure µ. The Hausdorff dimension of the set where the
derivative does not vanish is at most logα

log 1
|β|

.

Proof. Clearly,

f(N) ⊂

∞
⋂

K=0

⋃

(ε
K

,... ,ε
0
)

admissible

[

f

(

K
∑

k=0

εkGk

)

−
∣

∣βKf(εK)
∣

∣ ; f

(

K
∑

k=0

εkGk

)

+
∣

∣βKf(εK)
∣

∣

]

.

Moreover, the set of admissible (ε
K
, . . . , ε

0
) has cardinal GK+1, and if we define λ

to be max
0≤ε≤a0

|f(ε)|, then

µ







⋃

(ε
K

,... ,ε
0
)

admissible

[

f

(

K
∑

k=0

εkGk

)

−
∣

∣βKf(εK)
∣

∣ ; f

(

K
∑

k=0

εkGk

)

+
∣

∣βKf(εK)
∣

∣

]







is smaller than or equal to 2λ|β|KGK+1 and hence belongs to O
(

|αβ|K
)

. Suppose

now |αβ| < 1. f(N) is an enumerable intersection of sets whose measure tends to
zero. Hence,

µ
(

f(N)
)

= 0.

This shows that the derivative of F is 0 on the complement of a set of measure 0.
The statement concerning Hausdorff dimension is an immediate consequence of the
fact that f(N) can be covered by Gk intervals of length λβk for all positive integers
k. For suitable choice of f at the digits there is equality, but it is also possible that
the dimension breaks down. �

We now try to obtain a functional equation for F . For this, we exhibit a tiling
of [[ 0;GK [[ involving the shift operator, to allow us to use (3.1).

Let K be an integer, and n ∈ [[ 0;GK+1 [[ . Writing n =
∑K

k=0 εkGk, we define

ℓ(n) := min {k ∈ [[ 0;K ]] ; εk < ad−1} ;

If the previous set is empty, ℓ(n) is defined as −1. Thus, n can be uniquely written
as follows :

(3.2)

n = Sℓ+1(m) + r with 0 ≤ ℓ ≤ K, m < GK−ℓ and r ∈ Pℓ

or n ∈ QK :=

{

K
∑

k=0

εkGk ; εk ≥ ad−1 for each k

}
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where

Pℓ =

{

m ∈ N ; m =
ℓ
∑

k=0

εkGk, ∀k < ℓ : εk ≥ ad−1, 0 ≤ εℓ < ad−1

}

.

We are now able to write FGK
in a different way.

GK+1FGK+1
(t) =

∑

n<GK+1

χt (f(n))

=

K
∑

ℓ=0

∑

x∈Pℓ
m<GK−ℓ

χt

(

f
(

Sℓ+1(m) + x
))

+
∑

y∈QK

χt (f(y)) .

If β > 0, we get

(3.3) GK+1FGK+1
(t) =

K
∑

ℓ=0

∑

x∈Pℓ

GK−ℓ−1
∑

m=0

χ t−f(x)

βℓ+1
(f(m)) +

∑

y∈QK

χt (f(y)) .

If β < 0, we get

(3.4)

GK+1FGK+1
(t) =

K
∑

ℓ=0
ℓ≡1[2]

∑

x∈Pℓ

GK−ℓ−1
∑

m=0

χ t−f(x)

βℓ+1
(f(m)) +

∑

y∈QK

χt (f(y))

+
K
∑

ℓ=0
ℓ≡0[2]

∑

x∈Pℓ

GK−ℓ−1
∑

m=0

(

1− χ t−f(x)

βℓ+1
(f(m))

)

.

For convenience, we will henceforth consider positive β. We will mention the
results obtained for negative ones, the computations being quite identical. We
state now some intermediate results.

Lemma 7. Let us define pℓ := #Pℓ. Then the generating function of the pℓ is
given by

P (z) =

∞
∑

ℓ=0

pℓz
ℓ = ad−1

1 + z + · · ·+ zd−1

1− (a0 − ad−1)z − · · · − (ad−2 − ad−1)zd−1
.

In particular

∞
∑

ℓ=0

pℓ
αℓ

is convergent to α.

Proof. By (3.2), we have the following recurrence formula :

GK+1 =
K
∑

ℓ=0

pℓGK−ℓ +
pK+1

ad−1
.

Translating this recurrence into a relation of the generating functions P (z) and
G(z) of pn and Gn resp. yields

G(z) = zG(z)P (z) +
1

ad−1
P (z) or P (z) =

G(z)

zG(z) + 1
ad−1

.
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G(z) is given by (cf. [GT])

G(z) =
1 + z + · · ·+ zd−1

1− a0z − · · · − ad−1zd−1
.

Thus we have the desired result for P (z) and

α = P

(

1

α

)

=

∞
∑

n=0

pn
αn

.

�

Remark . It is an immediate consequence of this lemma and the definition of
Hausdorff dimension that the dimension of f(

⋃

ℓ Pℓ) is at most log γ

log 1
|β|

for |β| ≤ 1
α
,

where γ is the dominating root of the polynomial

zd−1 − (a0 − ad−1)z
d−2 − (a1 − ad−1)z

d−3 − · · · − (ad−2 − ad−1).

Remark . Notice that in the case a0 = a1 = . . . = ad−1 = a the Pℓ are only
non-empty for ℓ = 0, . . . , d−1. Furthermore, in the case a1 = a2 = . . . = ad−1 = a,
a0 = a+1 the number of elements of the Pℓ is ad for ℓ ≥ d− 1. These are the only
cases where pℓ remains bounded.

Corollary 8. The following series converges normally :

∞
∑

ℓ=0

1

αℓ+1

∑

x∈Pℓ

F

(

t− f(x)

βℓ+1

)

.

Proof.
∣

∣

∣

∣

1

αℓ+1

∑

x∈Pℓ

F

(

t− f(x)

βℓ+1

) ∣

∣

∣

∣

≤
pℓ

αℓ+1
,

whose sum converges by the previous Lemma 7. We denote H the function defined
by Corollary 8. �

Dividing (3.3) by GK+1 and subtracting H(t) we get

FGK+1
(t)−H(t) =

K
∑

ℓ=0

GK−ℓ

GK+1

∑

x∈Pℓ

1

GK−ℓ

GK−ℓ−1
∑

m=0

χ t−f(x)

βℓ+1
(f(m))

−

K
∑

ℓ=0

1

αℓ+1

∑

x∈Pℓ

F

(

t− f(x)

βℓ+1

)

−

∞
∑

ℓ=K+1

1

αℓ+1

∑

x∈Pℓ

F

(

t− f(x)

βℓ+1

)

+
1

GK+1

∑

y∈QK

χt (f(y)) .



12 GUY BARAT AND PETER J. GRABNER

Thus, for any integer S smaller than K we have

|FGK+1
(t)−H(t)| ≤

S
∑

ℓ=0

∣

∣

∣

∣

GK−ℓ

GK+1
−

1

αℓ+1

∣

∣

∣

∣

∑

x∈Pℓ

1

GK−ℓ

GK−ℓ−1
∑

m=0

χ t−f(x)

βℓ+1
(f(m))

+

K
∑

ℓ=S+1

∣

∣

∣

∣

GK−ℓ

GK+1
−

1

αℓ+1

∣

∣

∣

∣

∑

x∈Pℓ

1

GK−ℓ

GK−ℓ−1
∑

m=0

χ t−f(x)

βℓ+1
(f(m))

+

S
∑

ℓ=0

1

αℓ+1

∑

x∈Pℓ





1

GK−ℓ

GK−ℓ−1
∑

m=0

χ t−f(x)

βℓ+1
(f(m))− F

(

t− f(x)

βℓ+1

)





+
K
∑

ℓ=S+1

1

αℓ+1

∑

x∈Pℓ





1

GK−ℓ

GK−ℓ−1
∑

m=0

χ t−f(x)

βℓ+1
(f(m))− F

(

t− f(x)

βℓ+1

)





+
∞
∑

ℓ=K+1

1

αℓ+1

∑

x∈Pℓ

F

(

t− f(x)

βℓ+1

)

+
1

GK+1

∑

y∈QK

χt (f(y))

≤

S
∑

ℓ=0

∣

∣

∣

∣

GK−ℓ

GK+1
−

1

αℓ+1

∣

∣

∣

∣

pℓ + C

K
∑

ℓ=S+1

pℓ
αℓ+1

+

S
∑

ℓ=0

1

αℓ+1

∑

x∈Pℓ





1

GK−ℓ

GK−ℓ−1
∑

m=0

χ t−f(x)

βℓ+1
(f(m))− F

(

t− f(x)

βℓ+1

)





+ 2
K
∑

ℓ=S+1

pℓ
αℓ+1

+
∞
∑

ℓ=K+1

pℓ
αℓ+1

+
pK+1

ad−1GK+1

where C is a constant such that
GK−ℓ

GK+1
≤ (C − 1)αℓ+1 (The existence of C comes

from this of two constants A and B verifying Aαn ≤ Gn ≤ Bαn for every n).
Let ε > 0. There exists S in N such that

max(2, C)

∞
∑

ℓ=S+1

pℓ
αℓ+1

< ε.

Now, there exists an integer K
0
greater than S such that for every K > K

0
the

following majorations hold :

•
S
∑

ℓ=0

∣

∣

∣

∣

GK−ℓ

GK+1
−

1

αℓ+1

∣

∣

∣

∣

pℓ < ε

• ∀ℓ < S, ∀x ∈ Pℓ :

∣

∣

∣

∣

FGK−ℓ

(

t− f(x)

βℓ+1

)

− F

(

t− f(x)

βℓ+1

)∣

∣

∣

∣

≤
εαℓ+1

(S + 1)pℓ

•
pK+1

ad−1GK+1
< ε.

Then, for any K > K
0
, we have

∥

∥FGK+1
−H

∥

∥

∞
≤ 7ε. Thus we have proved the

following :
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Theorem 9. i/ For positive β, F is a solution of the functional equation

(3.5) Y (t) =

∞
∑

ℓ=0

1

αℓ+1

∑

x∈Pℓ

Y

(

t− f(x)

βℓ+1

)

.

ii/ For negative β, F is a solution of the functional equation

(3.6) Y (t) =
∞
∑

ℓ=0

(−1)ℓ

αℓ+1

∑

x∈Pℓ

Y

(

t− f(x)

βℓ+1

)

+
∞
∑

ℓ=0

p2ℓ
α2ℓ+1

In order to be able to use the above functional equations to determine the dis-
tribution functions we prove the following:

Theorem 10. The solutions of the functional equations (3.5) and (3.6) are unique
among distribution functions, where it is understood that two distribution functions
yielding the same measure are identified.

Proof. We first prove that a solution of the functional equation (3.5) has to have
compact support in the sense that “0 < f < 1” is bounded. Since the function f(x)

is bounded we can choose t0 such that t < t−f(x)
βℓ+1 for all t > t0 and for all ℓ and

x ∈ Pℓ. Then we have for such t and any solution F of (3.5)

F (t) =
∞
∑

ℓ=0

1

αℓ+1

∑

x∈Pℓ

F

(

t− f(x)

βℓ+1

)

≥
∞
∑

ℓ=0

1

αℓ+1
pℓF (t) = F (t);

the last equality is a consequence of Lemma 7. Therefore we have

(3.7) F (t) = F

(

t− f(x)

βℓ+1

)

for all ℓ. Take now ℓ = 1, x fixed and t1 large enough; then F is constant on

the interval [t1,
t1−f(x)

β2 ]. Take t2 = t1−f(x)
β2 > t

β
and continue this geometrically

increasing process, we derive that the function is constant on the interval [t1,∞[;
this constant has to be 1. The argument also applies for large negative values of t.

For negative β one has to split summation in (3.6) into odd and even ℓ; the same
arguments as above yield F (t) + F (−t) = 1 for large enough |t|. Then again (3.7)
has to hold, and thus F has compact support.

To prove uniqueness we compute the moment generating function of (3.5) and
(3.6) i.e.

F̂ (z) =

∞
∫

−∞

etzdF (t)

(we have omitted the “i” in the usual Fourier-Stieltjes transform just for conve-
nience). The transform of any solution is an entire function because of the property
proved above. It satisfies

(3.8) F̂ (z) =
∞
∑

ℓ=1

1

αℓ
F̂ (βℓz)Gℓ(z),
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where

Gℓ(z) =
∑

x∈Pℓ−1

ezf(x) =

∞
∑

n=0

zn

n!

∑

x∈Pℓ−1

f(x)n.

Since F̂ is an entire function we can write its power series expansion

F̂ (z) =
∞
∑

n=0

zn

n!
ϕ(n), ϕ(0) = 1

and insert into (3.6) which yields
(3.9)

ϕ(n)

(

1−
βn

α
P

(

βn

α

))

=

n−1
∑

k=0

(

n

k

)

ϕ(k)

∞
∑

ℓ=1

(

βk

α

)ℓ
∑

x∈Pℓ−1

(f(x))n−k, for n ≥ 1

where P (z) is the generating function of the number of elements of the P’s whose
properties have been studied in Lemma 7. (3.9) is a recurrence relation for the
ϕ(n), thus all of them are uniquely determined by this equation and therefore the
distribution function is uniquely determined in any point of continuity. �

Proposition 5 gives the existence of a continuous extension of f to KG. We will
use the properties of this extension in order to prove the continuity of F .

Lemma 11. Let s ∈ N
∗. Then the following event is almost sure w.r.t P:

As :=
{

ω = (ε0, . . . , εk, . . . ) ∈ KG ;

∃(ℓ1, . . . , ℓs) ∈ N
s, ∀j ∈ [[ 0; s− 1 ]] , (εℓ1+...+ℓj+j , . . . , εℓ1+...+ℓj+1+j) ∈ Pℓj+1

}

.

Proof.

AC
s =

{

ω ∈ KG ; #{j ∈ N; εj ≥ ad−1} < s
}

yields to

P
(

AC
s

)

=

s−1
∑

m=0

∞
∑

ℓ1=0

· · ·

∞
∑

ℓm=0

∑

x1∈Pℓ1

. . .
∑

xm∈Pℓm

P
(

[x1 . . . xm]
)

P(AC
0 )

It is hence sufficient to prove that P(A0) = 1. But P(A0) =

∞
∑

ℓ=0

∑

x∈Pℓ

P
(

[x]
)

and,

because Fℓ+1+j = Gj for any x ∈ Pℓ, (2.7) gives

P
(

[x]
)

=
G0α

d−1 + (G1 − a0G0)α
d−2 + · · ·+ (Gd−1 − a0Gd−2 − · · · − ad−2G0)

αℓ+1(1 + α + · · ·+ αd−1)
.

Thus, by Lemma 7, P(A0) =

∞
∑

ℓ=0

pℓ
αℓ+1

= 1.
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Theorem 12. Let f be of the (3.1) type, and F its distribution function. Then F
is continuous iff f is not identically 0.

Proof. If f is 0, then F is the Heaviside function χ[0,∞[, which is not continuous at
t = 0.

In general, if f satisfies (3.1), then f verifies the assumptions of Proposition 5
too. In terms of P, the continuity of F means that P(f = t) = 0 for every t (we
henceforth omit the tilde). Let us note πℓ to be the ℓ-th projection on KG. Then f
is given by f(ω) =

∑∞

ℓ=0 f ◦ πℓ(ω)β
ℓ. Let t ∈ R. Then, considering ω ∈ KG, taking

an s in N
∗ and conditioning w.r.t. the almost sure event As, we have

P
(

f(ω) = t
)

= P
(

f(ω) = t | As

)

=
∞
∑

ℓ1=0

. . .
∞
∑

ℓs=0

P

(

f(ω) = t | ∀0 ≤ j < s, (εℓ1+···+ℓj+j , . . . , εℓ1+···+ℓj+1+j) ∈ Pℓj+1

)

=
∞
∑

ℓ1=0

. . .
∞
∑

ℓs=0

∑

x1∈Pℓ1

. . .
∑

xs∈Pℓs

P ((π0(ω), . . . , πℓ1+...+ℓs+s−1(ω)) = (x1, . . . , xs))

× P

(

f(ω) = t | (π0(ω), . . . , πℓ1+...+ℓs+s−1(ω)) = (x1, . . . , xs)
)

=
∞
∑

ℓ1=0

. . .
∞
∑

ℓs=0

∑

x1∈Pℓ1

. . .
∑

xs∈Pℓs

P

(

(π0(ω), . . . , πℓ1+···+ℓs+s−1(ω)) = (x1, . . . , xs)
)

× P

(

f(ω) =
t− f(x1 . . . xs)

βℓ1+···+ℓs+s

)

.

We apply now the previous equality to some t for which P
(

f(ω) = t
)

attains its
greatest value. Because of

∞
∑

ℓ1=0

. . .

∞
∑

ℓs=0

∑

x1∈Pℓ1

. . .
∑

xs∈Pℓs

P

(

(π0(ω), . . . , πℓ1+···+ℓs(ω)) = (x1, . . . , xs)
)

= 1,

we have P

(

f(ω) =
t− f(x1 . . . xs)

βℓ1+···+ℓs+s

)

= P
(

f(ω) = t
)

for any x = x1 · · ·xs where

xj belongs to Pℓj . It is sufficient to remark that (t − f(x))/βℓ1+...+ℓs+s takes
infinitely many values (provided that f is not identically 0) to get a contradiction
if P
(

f(ω) = t
)

> 0.

Indeed, suppose there exists some ε < ad−1 such that f(ε) 6= 0. Considering
x = 0(ℓ)ε, t/βℓ+1 − f(ε)/β takes infinitely many values if t 6= 0. But for t = 0,
we get a non zero value, namely f(ε)/β, at which f reaches its maximum, and to
which we are allowed to apply the argument above. On the other side, if such an ε
does not exist, there is an η ≥ ad−1 such that f(η) 6= 0. Considering x = η0(ℓ), we
apply the same argument mutatis mutandis, which ends the proof. �

4. Concluding Remarks

Finally we want to present two special examples which show the applicability
of the functional equations (3.5) and (3.6). We will show the uniform distribution
of two van der Corput type digital sequences (for the definition of van der Corput
sequence we refer to [KN]).
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Proposition 13. Let a and d be positive integers and define Gn by the recurrence
Gn+d = a(Gn+d−1+ . . .+Gn) and the corresponding canonical initial values. Then
the G-adic van der Corput sequence

f

(

K
∑

k=0

εkGk

)

=
K
∑

k=0

εk
αk+1

is uniformly distributed in [0, 1]. The discrepancy of f(n) i.e.

DN = sup
x∈[0,1]

∣

∣

∣

∣

∣

1

N

∑

n<N

χx (f(n))− x

∣

∣

∣

∣

∣

is O( logN
N

).

Proof. The proof is done just by inserting the distribution function of uniform
distribution into (3.5). Since the solution is unique by Theorem 10, we are done.
The proof of the estimate for the discrepancy is a rephrasing of the proof for the
q-adic van der Corput sequence (cf. [KN]). �

Proposition 14. Let a be a positive integer and define Gn by the recurrence
Gn+2 = (a+ 1)Gn+1 + aGn and the initial values G0 = 1 and G1 = a+ 2. Define
a G-additive function by f(ε) = ε

α
for 0 ≤ ε ≤ a and f(a+ 1) = a

α−1
and

f

(

K
∑

k=0

εkGk

)

=

K
∑

k=0

f(εk)

αk
.

Then f(n) is uniformly distributed in [0, 1].

Proof. The proof is again done by inserting the distribution function of uniform
distribution into (3.5) and observing that

∞
⋃

ℓ=0

⋃

x∈Pℓ

[

f(x), f(x) +
1

αℓ

)

= [0, 1)

is a disjoint union. �

The two examples we presented here, are the only uniformly distributed G-
additive functions we could find. In the general case the functional equation ex-
presses some self-similarity structure of the graph of the distribution function which
shall be illustrated by the following picture. We have computed the distribution
function for Gn+3 = 3Gn+2 + Gn+1 + Gn with initial values G0 = 1, G1 = 4 and
G2 = 14 and

f

(

K
∑

k=0

εkGk

)

=
K
∑

k=0

εk
αk+1

.
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The deviation from uniform distribution comes from the fact that the reversion
of an admissible string in G-adic expansion need not be an admissible string in
α-expansion (cf. [Pa]).
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