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Abstract

This survey discusses recent developments in the context of spherical designs and min-
imal energy point configurations on spheres. The recent solution of the long standing
problem of the existence of spherical t-designs on Sd with O(td) number of points by
A. Bondarenko, D. Radchenko, and M. Viazovska attracted new interest to this subject.
Secondly, D. P. Hardin and E. B. Saff proved that point sets minimising the discrete Riesz
energy on Sd in the hypersingular case are asymptotically uniformly distributed. Both
results are of great relevance to the problem of describing the quality of point distributions
on Sd, as well as finding point sets, which exhibit good distribution behaviour with respect
to various quality measures.

Dedicated to Edward B. Saff on the occasion of his 70th birthday

1. Introduction

The title of this survey is alluding to the fundamental paper by E. B. Saff and
A. B. J. Kuijlaars [176], which discusses in large generality how to construct point sets
on the sphere

S
d :=

{
x ∈ R

d+1 | ‖x‖ = 1
}
,

which have “good distribution properties” with respect to various measures. That pa-
per appeared in 1997 and motivated and initiated a fruitful direction of research. Evenly
distributed point sets have many applications, the most prominent being numerical inte-
gration, approximation, interpolation, and sampling; each of these applications needs a
different definition of what the word “evenly” should mean.
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The present survey on point distributions on the sphere is motivated by two rather
recent important contributions, which both shed new light on the subject. The first was
D. P. Hardin’s and E. B. Saff’s [119] proof that minimal energy point configurations on
the sphere provide asymptotically uniformly distributed point sets for hypersingular Riesz
potentials. This result has become popular under the name Poppy seed bagel theorem.
This will be one subject of Section 3. The second breakthrough was A. V. Bondarenko’s,
D. Radchenko’s, and M. S. Viazovska’s [29] proof that spherical t-designs with O(td) num-
ber of points exist on Sd. The definition of spherical designs, their properties, relevance,
and occurrence in different contexts will be the subject of Section 2.

Throughout the paper we use the notation XN = {x(N)
1 ,x

(N)
2 , . . . ,x

(N)
N } for a set of

N points; N will always denote the number of points, and the points x
(N)
1 ,x

(N)
2 , . . . ,x

(N)
N

usually depend on N . In order to keep the notation simple, we suppress this dependence.
Numerical computation of integrals over multidimensional domains is usually done by

weighted sums of point evaluations of the function f to be integrated. Since the sphere is a
domain with very high symmetry, it is preferable to use equal weight integration methods,

∫

Sd

f(x) dσd(x) ≈
1

N

N∑

j=1

f(xj). (1.1)

Here, and throughout the paper, we denote by σd the normalised surface area measure
on Sd. For non-random collections of integration nodes, using the right-hand side of (1.1)
as approximation for the integral is known as a Quasi-Monte Carlo (QMC) method. In
order to obtain a good approximation of the integral by the sum, the point set XN should
be well distributed over the whole sphere S

d. The notion of good distribution of a point
set is described in an intrinsic way in this context: the distribution is good, if the error for
numerical integration is small for a certain set of functions. More precisely, a sequence of
node sets (XN) will be called asymptotically uniformly distributed, if the relation

lim
N→∞

1

N

N∑

j=1

1C(xj) = σd(C) (1.2)

holds for all spherical caps C (here and throughout the paper 1C denotes the indicator
function of the set C). This is equivalent to

lim
N→∞

1

N

N∑

j=1

f(xj) =

∫

Sd

f(x) dσd(x) (1.3)

for all continuous functions f : Sd → R (see [140]).
Placing N points on the sphere so that the least distance (or equivalently, the smallest

angle) between two points,

δ(XN) := min
1≤i<j≤N

‖xi − xj‖ (1.4)
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is maximised is a further classical approach to obtain evenly distributed points, see [112].
This is the problem of best packing which has attracted attention for a long time in and
outside of mathematics. For instance, the best packing problem on the sphere is attributed
to P. M. L. Tammes [192], a botanist, who searched for an explanation of the surface
structure of pollen grains.

A likewise geometric, but qualitatively different way of evenly distributing N points
is to cover the sphere with N spherical caps of radius r centred at these points, and to
minimise r. Equivalently, the size of the largest cap, which does not contain a point of
XN ,

ρ(XN ) := max
y∈Sd

min
1≤i≤N

‖y − xi‖, (1.5)

should be as small as possible. This quantity is called the covering radius, and is also
known as the mesh norm or the fill radius. This is the problem of best covering which
originates from the realm of facility location problems where the farthest distance of a
point on the sphere to the nearest point of XN (service distance) is minimised.

The definitions of both, the least distance (1.4) and the mesh norm (1.5) can be given
using the Euclidean distance or the geodesic distance. Since the geodesic distance on S

d

equals 2 arcsin(‖ · ‖/2), they are approximately the same for small distances.
Sampling function values on the sphere (e.g., for approximation or interpolation by

splines or radial basis functions) or exploring spatial directions in an efficient way re-
quires again well distributed (but not necessary uniformly distributed) point sets on Sd.
In this context, the quality of a point set is measured differently: well distributed points
are required to be dense in a quantifiable way. As the mesh norm arises in the error of
approximation and good separation is generally associated with the “stability” of an ap-
proximation or interpolation method, one would prefer a quasi-uniform sequence of point
sets (XN) with uniformly bounded mesh-separation ratio

γ(XN) :=
ρ(XN)

δ(XN)
. (1.6)

The mesh-separation ratio can be regarded as the “condition number” for the point set.
Quasi-uniformity is a crucial property for a number of methods (see [99, 144, 180]).

2. Spherical Designs

Spherical designs were initially defined by P. Delsarte, J. M. Goethals, and J. J. Seidel
[87] in the context of algebraic combinatorics on spheres. Since then, spherical designs have
gained attraction in different areas of mathematics, ranging over number theory, geometry,
algebraic and geometric combinatorics, and numerical analysis. We will give an account
of these aspects in this section. For a survey on further developments in the context of
spherical designs mainly from the point of view of algebraic combinatorics and number
theory, we refer to the survey [15] by E. Bannai and E. Bannai.
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2.1. Definition

A spherical t-design is a finite set of points XN ⊂ Sd, such that

1

N

∑

x∈XN

f(x) =

∫

Sd

f(x) dσd(x) (2.1)

for all polynomials f ∈ R[x1, . . . , xd+1] (restricted to the sphere Sd) of total degree ≤ t.
This definition is equivalent to

∑

(x,y)∈XN×XN

P
(d)
ℓ (〈x,y〉) = 0 (2.2)

for ℓ = 1, . . . , t; here P
(d)
ℓ denotes the Legendre polynomial of degree ℓ for the sphere Sd

(see [159]). These polynomials are multiples of Gegenbauer polynomials Cα
ℓ with α = d−1

2

normalised so that P
(d)
ℓ (1) = 1. The equivalence of (2.2) and (2.1) is then an immediate

consequence of the fact that the restrictions of polynomials to Sd are spanned by the
harmonic polynomials (i.e., polynomials p satisfying △d+1p = 0 for the Laplace operator
△d+1 in Rd+1) and the addition theorem for spherical harmonics (see [159])

Z(d,ℓ)∑

k=1

Yℓ,k(x)Yℓ,k(y) = Z(d, ℓ)P
(d)
ℓ (〈x,y〉) with Z(d, ℓ) := 2ℓ+ d− 1

d− 1

(
ℓ+ d− 2

d− 2

)
; (2.3)

here and throughout this paper Yℓ,k (k = 1, . . . , Z(d, ℓ)) denotes a real orthonormal basis
of the space of spherical harmonics of total degree ℓ with respect to the scalar product
〈f, g〉 :=

∫
Sd
f(x)g(x) dσd(x). Condition (2.2) is then obtained by considering condition

(2.1) for f = Yℓ,k, squaring it, summing over k, and using (2.3).
There are two further characterisations of spherical t-designs, which show the connec-

tion of this concept to other areas of mathematics. It was observed in [151] that a spherical
2t-design XN with N points gives an isometric embedding of ℓd+1

2 into ℓN2t, which comes
from the identity

1

N

∑

x∈XN

〈x, a〉2t = 1 · 3 · 5 · · · (2t− 1)

(d+ 1)(d+ 2) · · · (d+ 2t− 1)
〈a, a〉t, (2.4)

which is valid for all a ∈ R
d+1. This identity is an immediate consequence of (2.2) and the

expansion of x2t as a sum of Legendre polynomials.
A spherical t-design XN = {x1,x2, . . . ,xN} is called rigid (see [14]), if there exists

an ε > 0, such that for all t-designs X ′
N = {x′

1,x
′
2, . . . ,x

′
N} with ‖xi − x′

i‖ < ε (for
i = 1, . . . , N) there exists a rotation η ∈ SO(d+ 1) such that X ′

N = ηXN .
It was observed in [107] in passing and later rediscovered in [188] that spherical t-designs

can be characterised by a variational property. Let p be a polynomial of degree t given by

p(z) =
t∑

ℓ=1

aℓP
(d)
ℓ (z) with aℓ > 0 for ℓ = 1, . . . , t.
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Then XN is a spherical t-design if and only if the energy functional Ep(XN) defined by

Ep(XN) :=
∑

(x,y)∈XN×XN

p(〈x,y〉) (2.5)

vanishes for XN . Since the sum (2.5) is non-negative for all XN , designs are minimisers of
this sum. This was used in [188] to characterise designs as stationary points of Ep(XN).

In order to explain the connection to other questions of algebraic and geometric com-
binatorics on Sd, we need the following notion. For a finite subset XN of Sd, we define

A(XN ) := {〈x,y〉 | x,y ∈ XN ,x 6= y}, (2.6)

the set of mutual inner products of distinct points. For a given A ⊂ [−1, 1), XN is
called an A-code, if A(XN) ⊂ A. Then, for instance, the problem of best packing of
N points on S

d can be formulated as finding the minimal β, such that there exists an
A-code with A = [−1, β]. In particular, the determination of the kissing number, that
is the maximum number of non-overlapping unit spheres that can touch another given
unit sphere, is equivalent to finding the maximal cardinality of an A-code for A = [−1, 1

2
]

(see [160]).

2.2. Relation to lattices

Designs have a very interesting connection to the theory of lattices that we want to
explain here. A lattice in Rd is a Z-module

Λ :=Zv1 ⊕ Zv2 ⊕ · · · ⊕ Zvd, (2.7)

where v1, . . . ,vd is a basis of Rd. For more detailed information on lattices, we refer to
the book [78]. A lattice Λ is called even, if all the squared norms ‖v‖2 for v ∈ Λ are even.
Even lattices can only exist if d is divisible by 8.

For any lattice Λ, the dual lattice is defined by

Λ# := {x ∈ R
d | ∀v ∈ Λ : 〈v,x〉 ∈ Z}. (2.8)

The set Λ# is again a lattice. A lattice Λ is called unimodular, if Λ# = Λ. For an even
unimodular lattice Λ, the ϑ-series

ϑΛ(τ) =
∑

v∈Λ

eπi‖v‖
2τ , τ ∈ C, Im(τ) > 0, (2.9)

is a modular form of weight d/2; i.e., the transformation formula

ϑΛ(−1/τ) = τd/2 ϑΛ(τ)

holds for all τ with Im(τ) > 0. This follows from an application of Poisson’s summation
formula.
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The theory of modular forms (see [8]) yields that for a form f of weight d/2, given by

f(τ) =

∞∑

n=0

an e
2πinτ ,

at least one of the coefficients an for n = 1, . . . , 2 + 2⌊ d
24
⌋ has to be non-zero. This implies

that every even unimodular lattice Λ contains a non-zero vector v with ‖v‖ ≤ 2 + 2⌊ d
24
⌋.

If the shortest non-zero vector v in Λ satisfies ‖v‖2 = 2 + 2⌊ d
24
⌋, then the lattice is called

extremal.
For a homogeneous polynomial p of degree j ≥ 1, which is also harmonic (△d p = 0),

and an even unimodular lattice Λ, the series

ϑΛ,p(τ) =
∑

v∈Λ

p(v) eπi‖v‖
2τ , Im(τ) > 0, (2.10)

is a modular form of weight d/2 + j. It is immediate from the symmetry of Λ and the
homogeneity of p that ϑΛ,p = 0 if j is odd. If j is even, the series ϑΛ,p is a cusp form; i.e.,

lim
Im(τ)→∞

ϑΛ,p(τ) = 0,

since p(0) = 0.
From the theory of modular forms (see [8]) it is known that there is a unique cusp

form ∆(τ) (this standard notation “Delta” is not to be confused with the Laplace operator
△ “triangle”) of weight 12 having an expansion of the form

∆(τ) = e2πiτ +
∞∑

n=2

an e
2πinτ .

It follows from degree considerations that for an even, unimodular, extremal lattice Λ and
a homogeneous, harmonic polynomial p of degree j ≥ 1,

ϑΛ,p(τ) = ∆(τ)1+⌊ d
24

⌋f(τ), (2.11)

where f(τ) is a modular form of weight

d

2
− 12

⌊
d

24

⌋
+ j − 12.

If this weight is negative, then f has to vanish identically, since there are no modular forms
of negative weight. Consider d = 24m+k with k ∈ {0, 8, 16} and insert this into the above
equation. This yields k/2 + j − 12 for the weight of f . For k = 0, 8, and 16, this yields
negative weights for j ≤ 11, 7, and 3, respectively, which shows that for all shells of the
corresponding lattices the sum

∑

‖v‖2=n

p(v) = nj/2
∑

‖v‖2=n

p
(
v/

√
n
)
= 0 (2.12)

for all homogeneous harmonic polynomials of degree 1 ≤ j ≤ 11, 7, 3, respectively. Sum-
ming up, we have proved the following theorem.
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Theorem 2.1 ([198]). Let Λ be an extremal even unimodular lattice in Rd with d = 24m+

k for k = 0, 8, 16. Then any non-empty shell of Λ defines a j-design n− 1
2{v ∈ Λ | ‖v‖2 = n}

for j = 11− k/2.

For further developments in the context of designs, lattices, modular forms, and algebraic
codes, we refer to [10, 12, 15, 80, 161, 162].

2.3. Lower bounds

In [87] a linear programming method has been developed, which produces lower bounds
for the number of points N of a spherical t-design. This method has been applied success-
fully to related questions, such as finding the minimal cardinality of A(XN ) for sets XN

with N points.
We give a short explanation of this powerful method, that has been applied with great

success to several problems of discrete geometry, the most prominent being the solution
of Kepler’s conjecture by T. Hales [113]. Since we use the method only on the sphere, we
restrict the description to this case here. Let f : [−1, 1] → R+ be a continuous positive
function given by its expansion in terms of Legendre polynomials; i.e.,

f(x) =

∞∑

n=0

f̂(n)Z(d, n)P (d)
n (x). (2.13)

If the coefficients f̂(n) are non-positive for n > t, then any t-design XN has to have

cardinality N ≥ f(1)/f̂(0). The proof of this fact is given by the relations

f(1)N ≤
∑

(x,y)∈XN×XN

f(〈x,y〉)

= f̂(0) (N)2 +
∑

n>t

f̂(n)Z(d, n)
∑

(x,y)∈XN×XN

P (d)
n (〈x,y〉)

≤ f̂(0)N2.

The first inequality is a consequence of the positivity of f , the equality uses the characteri-
sation of t-designs by (2.2), and the second inequality uses that f̂(n) ≤ 0 for n > t and the

non-negativity of the double sums
∑

(x,y)∈XN×XN
P

(d)
n (〈x,y〉). Equality can only occur, if

f(x) = 0 for all x ∈ A(XN ) and f̂(n) = 0 for n > t; i.e., f is a polynomial of degree ≤ t.
In [87] a polynomial pt of degree t was constructed, which gives the lower bound

N ≥
{(

d+t/2
d

)
+
(
d+t/2−1

d

)
for t even,

2
(
d+(t−1)/2

d

)
for t odd.

(2.14)

This polynomial actually provides the best possible lower bound that can be obtained by
polynomial functions f . Designs attaining this lower bound are called tight. It was shown
in [16, 17] that tight designs only exist for d = 1 and all t, or finitely many values of t if
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d ≥ 2. The proof uses the fact that for a tight spherical t-design XN , the corresponding
set A(XN) has to consist exactly of the zeros of the polynomial pt constructed in [87].
Galois theory is then used to derive a contradiction, if t is large enough. The same fact
about A(XN) shows that tight designs are rigid (see [14]). Notice that the bound is of
order td. Later, V. A. Yudin [202] considered a wider class of functions than polynomials.
He constructed a function f , which allowed for a considerable improvement of the lower
bound. The bounds for spherical designs he gives are again of order td, but they are
larger by a factor depending on d. This factor is exponential in d. For d = 2, the gain is
asymptotically about 7%.

We give a short description of Yudin’s construction. The function f is obtained as the
spherical convolution of two positive functions F and G, which ensures the positivity of f .
The spherical convolution of two functions F and G is given by

F ⋆ G(〈x,y〉) :=
∫

Sd

F (〈x, z〉)G(〈z,y〉) dσd(z).

In order to obtain the required sign change of the Laplace-Fourier coefficients of f , the
function G is chosen as

G(x) = (1− x2)1−
d
2

(
(1− x2)

d
2F ′(x)

)′
+ (t + 1)(t+ d)F (x),

which is motivated by the fact that the Legendre polynomials are eigenfunctions of the
differential operator L defined by

LF (x) := (1− x2)1−
d
2

(
(1− x2)

d
2F ′(x)

)′
.

If F is expressed in terms of its Laplace-Fourier expansion

F (x) =
∞∑

n=0

F̂ (n)Z(d, n)P (d)
n (x),

then the function G is given by

G(x) =
∞∑

n=0

(t + 1− n) (n+ t + d) F̂ (n)Z(d, n)P (d)
n (x).

Hence the spherical convolution is given as

f(x) = F ⋆ G(x) =

∞∑

n=0

(t+ 1− n) (n+ t + d) F̂ (n)2 Z(d, n)P (d)
n (x),

which has the required sign-change in its Laplace-Fourier coefficients. The problem of
maximising the quotient f(1)/f̂(0) = f(1)/F̂ (0)2 turns out to be a variational problem for
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F :

f(1) =
ωd−1

ωd

∫ 1

−1

F (x)G(x)
(
1− x2

)d/2−1
dx

=
ωd−1

ωd

∫ 1

−1

(
−
(
1− x2

)
F ′(x)2 + (t+ 1) (t + d)F (x)2

) (
1− x2

)d/2−1
dx

must be maximised subject to the condition

F̂ (0) =
ωd−1

ωd

∫ 1

−1

F (x)
(
1− x2

)d/2−1
dx = 1.

The symbol ωd denotes the surface area of Sd and it satisfies

∫ 1

−1

(
1− x2

)d/2−1
dx =

ωd

ωd−1
=

√
π Γ(d/2)

Γ((d+ 1)/2)
.

Furthermore, f has to be non-negative on [−1, 1]. This is achieved by assuming that F
and G are both non-negative. The solution of this variational problem with the additional
condition on the sign of F is then given by

F (x) =

{
P

(d)
t+1(x)− P

(d)
t+1(αt) for αt ≤ x ≤ 1,

0 for − 1 ≤ x ≤ αt,

where αt is the largest zero of d
dx
P

(d)
t+1(x). In this case G is a piecewise constant function.

Putting everything together yields the lower bound

N ≥
∫ 1

−1
(1− x2)

d/2−1
dx

∫ 1

αt
(1− x2)d/2−1 dx

=
1

σd({y ∈ Sd | 〈y,x〉 ≥ αt})
≫d t

d (2.15)

for a t-design XN . For a more detailed exposition, we refer to [202]. Even if the obtained
function f gives a better value for the lower bound than the polynomial given in [87], the
technical requirement of non-negativity of F seems to leave room for further improvement.

A similar construction for a function f is used in [73] to obtain linear programming
bounds for the packing density of spheres in Rd. The function obtained there has sim-
ilar features; in particular, it is supported on a short interval. In [73, Section 5] it is
mentioned that the function constructed by this convolution method does not produce
optimal bounds (see [72]). The reason seems to be exactly the non-negativity requirement
on the corresponding function F . Thus there is reason to believe that Yudin’s lower bound
for the cardinality of t-designs can still be improved.

2.4. Existence

On the other hand, the question of the existence of spherical t-designs has been answered
affirmatively. First, a rather general result obtained in [184] shows that, for given t and
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large enough N , there exists a t-design with N points. Actually, the result given in [184]
is more general: given a path connected topological space Ω and a finite measure µ that
charges every non-empty open set, then for any finite set of continuous real valued functions
f1, . . . , ft there exists an N0, such that for every N > N0 there exists a set XN ⊂ Ω, such
that

1

N

∑

x∈XN

fj(x) =
1

µ(Ω)

∫

Ω

fj(x) dµ(x)

for j = 1, . . . , t. The result gives a bound for the number of points needed by geometric
quantities defined in terms of Ω and the functions f1, . . . , ft. These quantities are very
difficult to compute even in the special case of the sphere.

In order to discuss the question of existence of spherical designs further, we introduce
two quantities:

N(t, d) := min
{
N | ∃XN ⊂ S

d : XN is a t-design
}
,

N∗(t, d) := min
{
K | ∀N ≥ K : ∃XN ⊂ S

d : XN is a t-design
}
.

By definition it is clear that N∗(t, d) ≥ N(t, d).
Only very recently, the long standing problem of the existence of spherical t-designs

with O(td) points was answered affirmatively by A. V. Bondarenko, D. Radchenko, and
M. S. Viazovska [29]. They proved that N∗(t, d) = O(td) with an explicit, but large implied
constant. The proof puts the existence of spherical t-designs with N = O(td) in the context
of Brouwer’s degree theorem: Let Pt denote the Hilbert space of polynomials P of total
degree ≤ t with ∫

Sd

P (x) dσd(x) = 0

equipped with the scalar product

〈P,Q〉 =
∫

Sd

P (x)Q(x) dσd(x).

Then for every x ∈ Sd there exists a polynomial Gx such that

〈Gx, Q〉 = Q(x)

for all Q ∈ Pt. A set of points XN then is a spherical t-design, if

Gx1 + · · ·+GxN
≡ 0.

Then continuous maps xi : Pt → Sd are constructed, which in turn define the map f :
Pt → Pt by

f(P ) :=Gx1(P ) + · · ·+GxN (P ).

Then for any P ∈ Pt the identity

〈P, f(P )〉 =
N∑

i=1

P (xi(P ))
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holds. A polynomial P̃ with f(P̃ ) = 0 then gives a spherical t-design {x1(P̃ ), . . . ,xN(P̃ )}.
The construction of the maps xi is the crucial part of the proof. Starting with points
{x1(0), . . . ,xN(0)} in the parts of an equal area partition of the sphere, the maps xi are
defined by an intricate geometric procedure. The proof finishes by considering the set

Ω =

{
P ∈ Pt |

∫

Sd

‖∇P (x)‖ dσd(x) < 1

}

and observing that the construction of xi yields

〈P, f(P )〉 > 0

for P ∈ ∂Ω. This last inequality is verified by an application of a spherical version of the
Marcinkiewicz–Zygmund inequality. In this step the precise choice of the number N of
points in relation to t is significant. The Brouwer degree theorem gives the existence of a
point P̃ with f(P̃ ) = 0, which the yields the desired spherical t-design {x1(P̃ ), . . . ,xN(P̃ )}.

In a recent paper [30], the same authors showed that there exist well separated t-designs
with optimal order of the number of points:

Theorem 2.2. Let d ≥ 2. Then there exist positive constants Cd and βd such that for
every N ≥ Cdt

d there exists a t-design XN and

‖x− y‖ ≥ βdN
−1/d for all x,y ∈ XN with x 6= y.

The proof is a refinement of their original proof by keeping control on the distance of
distinct points.

2.5. Numerical results

Besides the theoretical investigation of the existence of spherical designs, several at-
tempts were made to compute lists of t-designs for moderately large values of t and N .
Since most of these computations have been done for d = 2, we will restrict to that case
in this section.

A first list of t-designs for t ≤ 21 was provided by R. H. Hardin and N. J. A. Sloane
(see [123, 124, 125]). Their list is still available on the web [126]. These numerical com-
putations, as well as those performed in [188], seem to suggest that N(t, 2) is close to
1
2
(t+1)2. Furthermore, X. Chen and R. S. Womersley found spherical t-designs by numer-

ical computations for t ≤ 100 (see [68]). Their computations seem to indicate that there
exist t-designs with less than (t+1)2 points. Later X. Chen, A. Frommer, and B. Lang [67]
used interval arithmetic to prove that there exist spherical t-designs with (t + 1)2 points
for 1 ≤ t ≤ 100. Recently, M. Gräf and D. Potts [108, 109] derived a new method based
on fast Fourier transform, which allows to find t-designs numerically with high precision
for values of t up to 1000. They also provide their results on the web [110]. Again these
numerical results show that N(t, 2) is close to 1

2
(t+ 1)2 for small values of t.
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Table 1: The lower bounds for the number of points of a t-design derived in [87] (DGS(t)) and in [202]
(Y(t)) compared to the number of points of t-designs N(t, 2) obtained in [109] (as provided on the website
[110]).

t 5 7 9 10 20 30 40 50 60 70 80 90 100 114 124

DGS(t) 12 20 30 36 121 256 441 676 961 1296 1681 2116 2601 3364 3969

Y(t) 12 20 31 37 127 271 470 723 1031 1394 1810 2282 2808 3635 4292

N(t, 2) 12 24 48 60 216 480 840 1296 1860 2520 3276 4140 5100 6612 7812

⌊
(t+1)2

2
⌋ 18 32 50 60 220 480 840 1300 1860 2520 3280 4140 5100 6612 7812

2.6. Designs and uniform distribution

It was observed independently in [107] and in [136] that spherical designs provide well-
distributed point sets on the sphere.

The spherical cap discrepancy of a point set XN of N points is given by

D(XN) := sup
y∈Sd,
ϕ∈[0,π]

∣∣∣∣∣
1

N

N∑

j=1

1C(y,ϕ)(xj)− σd(C(y, ϕ))

∣∣∣∣∣ ; (2.16)

the supremum is extended over all spherical caps

C(y, ϕ) :=
{
x ∈ S

d | 〈x,y〉 > cos(ϕ)
}
,

and measures the maximum deviation between the empirical distribution of the point
set XN from uniform distribution. In [105] the estimate

D(XN) ≤
C1(d)

M
+

M∑

ℓ=1

C2(d)

ℓ

Z(d,ℓ)∑

k=1

∣∣∣∣∣
1

N

N∑

j=1

Yℓ,k(xj)

∣∣∣∣∣ (2.17)

was proved; here M is an arbitrary positive integer, and C1(d) and C2(d) are explicit
constants depending only on the dimension d. A similar inequality was later given in [147].
The inequality (2.17) resembles the classical Erdős-Turán-Koksma inequality estimating
the Euclidean discrepancy of a point set in [0, 1]d in terms of trigonometric sums (see [140]).
In [138], N. M. Korobov introduced good lattice points (g1, . . . , gd) ∈ Zd by the requirement
that the point set {({ jg1

N
}, . . . , { jgd

N
}) | j = 0, . . . , N − 1} has small discrepancy. Here, {x}

denotes the fractional part of x, which puts the point set into the unit cube [0, 1]d.
In [107] spherical t-designs were regarded as spherical analogues of good lattice points,

in the sense that the estimate (2.17) becomes particularly simple when applied to a t-design
and choosing the parameter M to be t: the estimate then reduces to

D(XN) ≤
C1(d)

t
.
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Similarly, for a continuous function f : Sd → R satisfying the Lipschitz-condition |f(x)−
f(y)| ≤ Cf arccos(〈x,y〉), the estimate

∣∣∣∣∣
1

N

∑

x∈XN

f(x)−
∫

Sd

f(x) dσd(x)

∣∣∣∣∣ ≤ Cf


6

d

M
+ π

2M∑

ℓ=1

Z(d,ℓ)∑

k=1

∣∣∣∣∣
1

N

∑

x∈XN

Yℓ,k(x)

∣∣∣∣∣


 (2.18)

was shown in the same paper. Again, taking XN to be a 2t-design and M = t gives an
estimate 6dCf/t for the integration error.

J. Korevaar and J. L. H. Meyers [136] take a potential theoretic point of view. In their
papers [136, 137] they conjecture that N(t, d) = O(td), which was finally proved in [29].
Let µN := 1

N

∑
x∈XN

δx be the discrete equal weight distribution supported on XN ⊂ Sd.
Then the deviation of µN and the equilibrium measure σd is measured by the deviation of
the potential

UµN

d−1(x) =
1

N

∑

y∈XN

1

‖x− y‖d−1
=

∫

Sd

1

‖x− y‖d−1
dµN(y) (2.19)

from the equilibrium potential

Uσd
d−1(x) =

∫

Sd

1

‖x− y‖d−1
dσd(y) = 1

for ‖x‖ ≤ r < 1.
Taking a spherical t-design XN and using the identity (see [152])

1

‖rx− y‖d−1
=

∞∑

n=0

(
n+ d− 2

d− 2

)
P (d)
n (〈x,y〉) rn,

we obtain

UµN

d−1(rx)− 1 =

∞∑

n=t+1

(
n+ d− 2

d− 2

)
rn

1

N

∑

y∈XN

P (d)
n (〈x,y〉). (2.20)

Estimating the right hand side by |P (d)
n (·)| ≤ 1, we obtain

∣∣UµN

d−1(rx)− 1
∣∣ ≤

∞∑

n=t+1

(
n+ d− 2

d− 2

)
rn. (2.21)

The sum on the right hand side can be expressed in closed form.

∞∑

n=t+1

(
n+ d− 2

d− 2

)
rn

= (d− 1)

(
t + d− 1

d− 1

)
1

(1− r)d−1

∫ r

0

(1− ρ)d−2ρt dρ

=
rt+1

(1− r)d−1
(d− 1)

(
t+ d− 1

d− 1

) d−2∑

ℓ=0

(
d− 2

ℓ

)
(−1)ℓ

rℓ

t+ ℓ+ 1
,
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which can be proved by multiplying with (1 − r)d−1 and differentiating. Estimating the
integral in the second line by rt+1/(t+ 1) we get the estimate

∣∣UµN

d−1(rx)− 1
∣∣ ≤

(
t + d− 1

d− 2

)
rt+1

(1− r)d−1
, (2.22)

valid for any t-design XN , x ∈ Sd, and 0 ≤ r < 1. This, together with the fact that
N(t, d) = O(td), generalises [136, Theorem 2.2] to arbitrary dimension.

2.7. Applications to numerical integration on S
d

Equal weight quadrature formulas based on spherical designs are exact on polynomials
up to a given degree. This puts them into the general framework of QMC integration
methods. It turns out that designs are especially useful for integrating functions taken
from suitably defined Sobolev spaces on Sd. These spaces are reproducing kernel Hilbert
spaces, which makes the study of the worst case error in integration particularly simple
and transparent (see [165]).

In order to describe the results on numerical integration in more detail, we give a
precise definition of the function spaces. The negative Laplace-Beltrami operator −△∗

d

on Sd has the eigenvalues λℓ := ℓ(ℓ + d − 1), ℓ ∈ N0. The space of eigenfunctions for
the eigenvalue λℓ is spanned by the real spherical harmonics Yℓ,k for k = 1, . . . , Z(d, ℓ).
Since the eigenfunctions of −△∗

d form a complete L2-orthogonal system, every function
f ∈ L2(Sd) can be represented by its Laplace-Fourier series expansion

f(x) =

∞∑

ℓ=0

Z(d,ℓ)∑

k=1

f̂ℓ,k Yℓ,k(x), (2.23)

where the Laplace-Fourier coefficients are given by

f̂ℓ,k =

∫

Sd

f(x) Yℓ,k(x) dσd(x).

The series (2.23) has to be interpreted in the L2-sense. Furthermore, Parseval’s identity

∞∑

ℓ=0

Z(d,ℓ)∑

k=1

∣∣∣f̂ℓ,k
∣∣∣
2

=

∫

Sd

|f(x)|2 dσd(x) = ‖f‖22 (2.24)

and the Funk-Hecke formula

Z(d,ℓ)∑

k=1

f̂ℓ,k Yℓ,k(x) = Z(d, ℓ)

∫

Sd

f(y)P
(d)
ℓ

(
〈x,y〉

)
dσd(y) (2.25)

hold. For more details on the harmonic analysis on S
d, we refer to [159].
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In the following we adopt the notation of [61]. For s ≥ 0, we define the Hilbert space

Hs(Sd) :=



f ∈ L2(Sd)

∣∣∣∣∣

∞∑

ℓ=0

(1 + ℓ)2s
Z(d,ℓ)∑

k=1

∣∣∣f̂ℓ,k
∣∣∣
2

<∞



 . (2.26)

The inner product on Hs(Sd) is then given by

〈f, g〉Hs :=
∞∑

ℓ=0

(1 + ℓ)2s
Z(d,ℓ)∑

k=1

f̂ℓ,kĝℓ,k (2.27)

with the corresponding norm ‖f‖Hs := 〈f, f〉1/2Hs . We remark that the “sequence of weights”
((1 + ℓ)2s) can be replaced by any other comparable sequence (wℓ), in the sense of

∃C1, C2 > 0 : ∀ℓ ∈ N0 : C1(1 + ℓ)2s ≤ wℓ ≤ C2(1 + ℓ)2s.

From the definition it is clear that the spaces Hs(Sd) are getting smaller as the index
of smoothness s increases. Furthermore, the Sobolev embedding theorem ensures that
Hs(Sd) embeds continuously into Ck(Sd) when s > k + d/2; in particular, Hs(Sd) embeds
continuously into C(Sd) when s > d/2.

As a consequence of the continuous embedding of Hs(Sd) into C(Sd) for s > d/2, point
evaluation of a function is a continuous functional, which can be represented as a scalar
product by the Riesz representation theorem. This ensures the existence of a reproducing
kernel given by

K(s)
(
〈x,y〉

)
:=

∞∑

ℓ=0

(1 + ℓ)−2s Z(d, ℓ)P
(d)
ℓ

(
〈x,y〉

)
. (2.28)

It can be verified immidiately that the function K(s) is indeed a reproducing kernel satisfying

∀y ∈ S
d : K(s)(〈·,y〉) ∈ Hs(Sd) (2.29)

and
f(x) = 〈f,K(s)(〈·,x〉)〉Hs (2.30)

for all f ∈ Hs(Sd) and for all x ∈ Sd.
For f ∈ Hs(Sd), s > d/2, the integration error of the QMC method with node set XN

is given by

Error(XN)(f) :=
1

N

∑

x∈XN

f(x)−
∫

Sd

f(x) dσd(x) = 〈f, R(XN)〉Hs , (2.31)

where the function

R(XN )(y) :=
1

N

∑

x∈XN

K(s)(〈y,x〉)− 1 (2.32)
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is called the representer of the integration error. It is now a consequence of elementary
Hilbert space theory that the worst case error takes the form

wceHs(XN) := sup
‖f‖Hs=1

|Error(XN)(f)| = ‖R(XN)‖Hs . (2.33)

The squared norm ‖R(XN)‖2 = 〈R(XN), R(XN)〉 can be expressed in terms of the kernel
function K(s) by means of

‖R(XN)‖2Hs =
1

N2

∑

x,y∈XN

K(s)(〈x,y〉)− 1. (2.34)

For a more precise explanation of this formalism we refer to [61]. The expression (2.34) is
a special case of an energy functional as discussed further in Section 3.

Taking a spherical t-design for the set XN in (2.34), the first t terms in the Laplace-
Fourier expansion of K(s) are annihilated:

wceHs(XN)
2 =

∞∑

ℓ=t+1

(1 + ℓ)−2s Z(d, ℓ)
1

N2

∑

x,y∈XN

P
(d)
ℓ (〈x,y〉). (2.35)

Trivially estimating this sum and taking square roots would give a bound O(td/2−s) for the
worst case error.

A method is introduced in [131] and [132], which provides much better estimates for
the worst case error in Hs(S2). This method was extended and generalised to higher
dimensions in [60]. This is now a standard technique in this context. While too technical
to give a precise description here, we explain the two main steps. For a full description of
the method we refer to [60].

First, the tail of the series defining the kernel

K
(s)
t (x) :=

∞∑

ℓ=t+1

(1 + ℓ)−2s Z(d, ℓ)P
(d)
ℓ (x)

is rewritten in terms of Jacobi polynomials instead of Legendre polynomials. This is done
using the fact that the Legendre polynomials are special cases of Jacobi polynomials and
that there exist connection formulas involving hypergeometric expressions (see [152]). After

this transformation, the function K
(s)
t is expressed as a polynomial of degree t plus a series

K̃
(s)
t involving higher order polynomials (“kernel splitting method”). The polynomial part

is integrated exactly by the QMC method supported in XN ; the remaining part

∑

x,y∈XN

K̃
(s)

t (〈x,y〉)

is estimated using bounds for Jacobi polynomials. This part is rather delicate, since differ-
ent estimates have to be used for 〈x,y〉 ∈ [−1 + c/t, 1− c/t] and |〈x,y〉| > 1− c/t. Here,
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a coarse equidistribution property of spherical t-designs is used to obtain optimal order
estimates: there exist constants c1 and c2, independent of t and N , such that

#
(
XN ∩ C

(
x,
c1
t

))
≤ c2Nσd

(
C
(
x,
c1
t

))
. (2.36)

It was proved in [171] (see also [172]) that this is a general property of positive weight
quadrature formulas, which integrate polynomials of degree ≤ t exactly; thus (2.36) holds
a forteriori for spherical t-designs.

Using the technique described above, it was proved in [60] that the worst case integra-
tion error on Hs(Sd) (for s > d/2) is

wceHs(XN) = Os,d

(
t−s
)
. (2.37)

Using the recent progress on the existence of spherical designs with optimal growth order
(see [29]), this gives

wceHs(XN) = Os,d

(
N−s/d

)
(2.38)

if XN is a spherical t-design with N = O(td). This is known to be the optimal order for
the worst case error in Hs(Sd) (see [129, 130]).

The estimate (2.38) led to the following definition in [61]. Let s > d/2, then a sequence
of point sets (XN) on Sd is called a sequence of QMC-designs for Hs(Sd) if (2.38) holds.
The supremum over all s for which (2.38) holds, is called the strength of the sequence (XN).
By the above description, a sequence of spherical t-designs of optimal growth order O(td)
has strength ∞. For a more detailed exposition of QMC-designs and their properties, we
refer to the original paper [61]. These investigations were extended to the Lp-setting in
[51].

2.8. Applications in approximation and interpolation

Well distributed point sets can also be used as sample points for interpolation formulas.
Let f : Sd → R be a continuous function and XN a set of points with N ≥ Z(d + 1, t).
Observe that

Z(d+ 1, t) =
t∑

k=0

Z(d, k)

is the dimension of the space of all polynomials of total degree ≤ t on Sd. Then we seek a
polynomial p of degree ≤ t, such that

p(xi) = f(xi) holds for i = 1, . . . , N. (2.39)

Choosing Yℓ,k (ℓ = 0, . . . , t, k = 1, . . . , Z(d, ℓ)) as a basis for the polynomials and N =
Z(d + 1, t), we have to solve a system of N linear equations; the points must be chosen
so that this system has full rank. One possible method for choosing the set XN is to
maximise the modulus of the determinant of the system, which optimises the numerical
stability of solving the system. This approach is in the spirit of finding the extremal
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value of a functional depending on the points, such as the energy functionals discussed in
Section 3. This has been done in [187] for d = 2.

In [6] it is proposed to use spherical t-designs as interpolation points; for N ≥ Z(d+1, t)
the determinant of the matrix

Ht :=

(
N∑

j=1

Yℓ,k(xj)Yℓ′,k′(xj)

)

(ℓ,k),(ℓ′,k′)

1 ≤ ℓ, ℓ′ ≤ t, 1 ≤ k ≤ Z(d, ℓ), 1 ≤ k′ ≤ Z(d, ℓ′),

is maximised under the constraint that the point set XN is a spherical t-design. This leads
to the definition of well conditioned designs. In [6] this is worked out for d = 2.

It should be mentioned that, based on the numerical experiments in [110, 126], there
exist t-designs with ⌊(t + 1)2/2⌋ points for t ≤ 100. In the context of interpolation, the
number of points has to be chosen ≥ (t+1)2, which gives further freedom for choosing the
points that can be used to maximise the determinant of Ht.

In [7], the application of spherical designs in the context of approximation of functions
f : Sd → R is proposed. Usually, the approximation is computed by integrating f against
an approximation kernel GL, which is a polynomial of degree L in 〈x,y〉 (see [23, 173]). In
[7] the integral is replaced by the equal weight quadrature rule given by a 2L-design XN .
This approach is worked out for d = 2 and various classical approximation kernels. In order
to make this procedure numerically more stable, a regularisation procedure is investigated:
the polynomial p is chosen to minimise

N∑

j=1

(p(xj)− f(xj))
2 + λ

N∑

j=1

(Rp(xj))
2 (2.40)

amongst all polynomials of degree L; here R is an operator on the space of polynomials
and λ > 0 is the regularisation parameter. The fact that XN is chosen as a 2L-design
simplifies the linear algebra behind the least square approximation.

3. Energy

3.1. Minimal energy in applications

A surprising number of diverse applications can be formulated as a discrete or con-
tinuous minimal energy problem or a mixture of both. In the discrete setting this means
finding a collection of N distinct points in a subset Ω ⊂ Rp, p ≥ 1, that minimises a
discrete K-energy functional

EK,Q(x1, . . . ,xN) :=

N∑

i=1

N∑

j=1

i 6=j

[
K(xi,xj) + Q(xi) + Q(xj)

]

among all sets of N points from Ω. The diagonal self-interaction terms are removed to
allow singular kernels K. The external field Q is often taken to be zero. Evidently, further
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requirements on the set Ω, the kernel K, and the external field Q are needed to ensure
existence of a solution. A suitable Q compatible with K introduces soft boundaries and
thus prevents points from escaping to infinity in the case of unbounded sets Ω. On the
other hand, the restriction of the points to a finite set, fractal, torus or sphere of Hausdorff
dimension d ≤ p introduces fractal or topological aspects. A standard assumption is
that K is symmetric and lower semi-continuous on Ω × Ω and that Q is also lower semi-
continuous on Ω. This implies that the minimal K-energy problem with external field Q
has a solution for every N ≥ 2 when solved for an infinite compact set Ω. A solution is
called N-point minimal K-energy configuration associated with Q and its K-energy is equal
to the minimum N-point K-energy of Ω associated with Q given by

EK,Q(Ω;N) := inf
{
EK,Q(x1, . . . ,xN) : x1, . . . ,xN ∈ Ω

}
.

Furthermore, if EK,Q(Ω;N) > 0 for all N , then the quantities N(N −1)/EK,Q(Ω;N) form a
non-increasing sequence that is bounded from below by lower semi-continuity.4 Thus the
limit exists and it discriminates between two types of sets Ω depending on whether or not
this limit vanishes. This gives rise to two different regimes characterised by a complete
change in the nature of the minimisation problem with regard to properties of the solution
and methods that are used to study it. In the field-free setting (Q ≡ 0), the normalised
discrete minimal N-point energy of Ω, given by EK,0(Ω;N)/[N(N−1)], is also known as the
Nth diameter of Ω. The limit in the extended sense (as N → ∞) is called the transfinite
diameter of Ω.

A fundamental question concerns the “limit distribution” (if such exists) of a sequence
(X∗

N) of minimal energy configurations X∗
N on Ω as N → ∞; i.e., is there a (unique) Borel

probability measure µ∗
Ω supported on Ω that is the weak limit of the sequence formed by

the discrete equal weight distribution supported on X∗
N ,

µX∗
N
:=

1

N

N∑

j=1

δxj
.

Let M(Ω) denote the collection of Borel probability measures supported on Ω. The
analogous continuous energy problem is to find a measure in M(Ω) that minimises the
weighted K-energy associated with Q given by

IK,Q(µ) :=IK(µ) + 2

∫

Ω

Q(x) dµ(x)

among all measures in M(Ω), where

IK(µ) :=

∫

Ω

∫

Ω

K(x,y) dµ(x)dµ(y)

4The reciprocals EK,Q(Ω;N)/[N(N−1)] always form a non-decreasing sequence that may be unbounded.
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is the K-energy of µ ∈ M(Ω). A minimising measure µK,Q;Ω ∈ M(Ω) with

IK,Q(µK,Q;Ω) =WK,Q(Ω) := inf
{
IK,Q(µ)

∣∣∣ µ ∈ M(Ω)
}
,

is called a K-extremal (or positive equilibrium) measure on Ω associated with Q. In the
field free setting Q ≡ 0, a minimising measure µK;Ω is called K-equilibrium measure on Ω.
In this case, the K-energy IK(µK;Ω) is equal to the Wiener energy of Ω,

WK(Ω) := inf
{
IK(µ)

∣∣∣ µ ∈ M(Ω)
}
.

A fundamental question concerns the relationship between the Wiener energy of Ω, the
transfinite diameter of Ω, and the Chebyshev constant of Ω which is the limit as N → ∞
of the Nth Chebyshev constant of Ω defined as

MK(Ω;N) := sup
x1,...,xN∈Ω

inf
x∈Ω

1

N

N∑

j=1

K(x,xj);

see [93] and references cited therein for further details.
We conclude this section by a discussion of applications that make use of the minimal

energy problem or are related to it.

The Thomson problem and its generalisations. A classical problem in electrostatics
is to find the distribution of N unit point charges on a conductor in the most stable
equilibrium (the charges interact according to the Coulomb potential 1/r, where r
is the Euclidean distance between two interacting charges). This leads to a minimi-
sation problem for the potential energy of the discrete charge system named after
J. J. Thomson who posed it for the sphere [194].5 Generalisations of the Thomson
problem that utilise a Riesz s-potential 1/rs are used, e.g., to model multi-electron
bubbles and arrangements of protein subunits which form the shells (capsids) of
viruses; see [38] (also [40, 41]) for a discussion. In material physics (see [63]) minimal
energy points on the sphere have been used to model “spacer particles” in powders
which ensure that spherical host-particles do not touch.

Polarisation. A problem related to finding the minimal K-energy configurations on a
compact set Ω ⊂ Rp is to find optimal N-point K-polarisation configurations on Ω,
which are configurations on Ω that maximise the minimal value over Ω of the potential

1

N

N∑

j=1

K(x,xj).

5Recently, T. LaFave Jr. [141] investigated correspondences between the Thomson problem and atomic
electronic structure, and he applied discrete transformations to the Thomson problem in [142] to study
the minimal Coulomb energy.
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An optimal configuration realises the Nth Chebyshev constant of Ω. For a Riesz
kernel Ks(x,y) = 1/[m(x,y)]s with metric m and s > 0, one has the following dual-
ity: the minimal s-energy configurations tend to best-packing configurations on Ω as
s→ ∞, whereas the optimal s-polarisation configurations on Ω tend to best-covering
configurations on Ω. Questions concerning optimal polarisation configurations, their
limit distributions, polarisation inequalities, asymptotic behaviour of the Nth Cheby-
shev constant are addressed in [5, 32, 92, 117, 169]. The paper [92] proposes a con-
jecture for the dual of the Poppy-seed Bagel theorem6 for optimal polarisation points
(which is proven for the boundary case s = dim(Ω) in [32]).

Smale’s 7th Problem. In the seminal work [186], M. Shub and S. Smale define a condi-
tion number of a polynomial at a point in C, which connects the problem of solving
a polynomial equation with the discrete minimal logarithmic energy problem on S

2

(see Section 3.2). They show that a monic polynomial whose zeros are the stere-
ographic projection of minimal logarithmic energy points on the Riemann sphere,
called “elliptic Fekete polynomial”, is “well conditioned” and thus gives a good start-
ing polynomial for a homotopy method for solving a polynomial equation or system
(see [185]). This is the background for Smale’s 7th problem [189]: Find an algorithm
which, on input N , outputs distinct points x1, . . . ,xN on the Riemann sphere such
that for a universal constant c,

N∑

i=1

N∑

j=1

i 6=j

log
1

‖xi − xj‖
− VN ≤ c logN. (3.1)

Here, VN is the minimal logarithmic energy of N points on the Riemann sphere.
Smale further specifies that the algorithm is a real number algorithm in the sense
of Blum, Cucker, Shub, and Smale (see [27]) with halting time polynomial in N .
In [19], C. Beltrán showed that there are N -point sets with logarithmic energy that
differs from VN by at most 1/9. These points are rational with coordinates of order
log2N bit length. Thus, there exists an exponential running time algorithm. Mean
value considerations yield that the typical logarithmic energy of N i.i.d. uniformly
distributed random points on the Riemann sphere is of the form 1

2
N2− 1

2
N . One the

other hand, D. Armentano, C. Beltrán, and M. Shub [9] 7 observe that the typical
logarithmic energy of the zeros of certain random polynomials, 1

2
N2− 1

2
N logN− 1

2
N ,

is surprisingly small in the sense that the first two terms in the asymptotics of the
minimal N -point logarithmic energy for the Riemann sphere are recovered. A recent
account of the state of the art regarding Smale’s 7th problem can be found in [20]
(see also [21]).

Log gases, Coulomb gases, and random matrices. A log or Coulomb gas is a system

6Cf. http://news.vanderbilt.edu/2004/11/the-poppy-seed-bagel-theorem-59497/
7The paper [97] gives a generalisation to higher dimensions and other manifolds.
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of interacting particles in which the repelling interaction is governed by a logarithmic
or Coulomb potential. An external field confines the particles to a finite volume of
the space. Typically, the mean-field regime is considered. In this setting the number
N of particles is large and the pair-interaction strength (coupling parameter) scales
as the inverse of N . The Hamiltonian

H(x1, . . . ,xN) :=
N∑

i=1

N∑

j=1

i 6=j

k(xi − xj) +N
N∑

i=1

V (xi), x1, . . . ,xN ∈ R
d,

where k(x) = − log ‖x‖ if d = 2 or k(x) = ‖x‖2−d if d ≥ 3, is minimised.8 Very recent
progress provides a deep connection with the discrete minimum energy problem on
the sphere (see discussion at the end of Section 3.6). We refer further to S. R. Nodari
and S. Serfaty [164] and N. Rougerie and S. Serfaty [174]. The concept of renor-
malised energy can be also successfully applied to random matrices; see A. Borodin
and S. Serfaty [37]. For the connection between log gases and random matrix ap-
plications and theory we refer to the book of P. Forrester [98] and, e.g., T. Claeys,
A. B. J. Kuijlaars and M. Vanlessen [71] and A. Mays [155]. A related problem is
the discrete energy of periodic point sets in the Euclidean space; see D. P. Hardin,
E. B. Saff, and B. Simanek [120].

Half-toning. Loosely speaking, half-toning is a way of creating an illusion of a grey-value
image by appropriately distributing black dots. In [111], M. Gräf, D. Potts, and
G. Steidl show how the process of half-toning can be seen as a numerical integration
problem. Here, the worst-case error can be interpreted as an external field problem
where the picture drives the external field which guides the interacting points. The
aim is then to minimise the worst-case error; see also [193] and [108].

Maximising Determinants. Points that maximise a Vandermonde-like determinant are
well-suited for interpolation and numerical integration. They are called Fekete points
due to the paper [96] by M. Fekete. Given a compact set in the complex plane, Fekete
points are, indeed, minimal logarithmic energy points. However, in higher dimen-
sions, Fekete’s optimisation problem is different from minimising the logarithmic
energy. I. H. Sloan and R. S. Womersley [187] used the logarithm of the determinant
of an interpolation matrix to calculate extremal systems which yield interpolatory cu-
bature rules with positive weights on the sphere. J. Marzo and J. Ortega-Cerdá [154]
established that Fekete (or extremal) points are asymptotically uniformly distributed.

Diffusion on a sphere with localised traps. As an application in cellular signal trans-
port, D. Coombs, R. Straube, and M. Ward [79] calculate the principal eigenvalue

8Instead of the harmonic potentials one can also consider Riesz s-potentials ‖·‖−s. For s ≥ d one needs
to adjust the coupling parameter to ensure comparability between the pair-interaction part and external
field part.
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for the Laplacian on the unit sphere in the presence of N traps on the surface of
the sphere of asymptotically small radii. The positions of the traps are chosen to
minimise the discrete logarithmic energy given in (3.3) below.

3.2. The discrete and continuous minimal logarithmic and Riesz energy problem

The discrete logarithmic energy problem on Sd is concerned with the properties of N -
point configurations {x∗

1, . . . ,x
∗
N} ⊂ Sd that maximise the product of all mutual pairwise

Euclidean distances
N∏

i=1

N∏

j=1

i 6=j

‖xi − xj‖ , (3.2)

or equivalently, minimise the discrete logarithmic energy

Elog(x1, . . . ,xN) :=
N∑

i=1

N∑

j=1

i 6=j

log
1

‖xi − xj‖
(3.3)

over all N -point configurations {x1, . . . ,xN} on S
d. The discrete logarithmic energy can

be understood as a limiting case (as s→ 0) of the Riesz s-energy

Es(x1, . . . ,xN) :=

N∑

i=1

N∑

j=1

i 6=j

1

‖xi − xj‖s
;

i.e., Es(x1, . . . ,xN ) = N (N − 1) + sElog(x1, . . . ,xN) + o(s) as s→ 0.
The discrete Riesz s-energy problem for s > 0 is concerned with the properties of N -

point configurations {x∗
1, . . . ,x

∗
N} ⊂ Sd that minimise the Riesz s-energy over all N -point

configurations {x1, . . . ,xN} on Sd. For convenience we set ks(x,y) := − log ‖x − y‖ for
s = log and ks(x,y) :=1/‖x−y‖s for s ∈ R. Then we are interested in the optimal N-point
s-energy of an infinite compact set Ω ⊂ S

d defined by

Es(Ω;N) :=

{
min

{
Es(x1, . . . ,xN) | x1, . . . ,xN ∈ Ω

}
for s = log or s ≥ 0,

max
{
Es(x1, . . . ,xN) | x1, . . . ,xN ∈ Ω

}
for s < 0.

Observe that E0(Ω;N) = N2 −N (which is attained by any N -point set on Ω). The Riesz
s-kernel is conditionally positive definite of order 1 for −2 < s < 0. Alternatively, as in
the setting of numerical integration on Sd, one can minimise

2

∫

Ω

∫

Ω

‖x− y‖−s dσd(x)dσd(y)−
N∑

i=1

N∑

j=1

‖xi − xj‖−s

in this case. The papers [118, 176] are standard references for the discrete logarithmic and
Riesz s-energy problem.
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The s-potential and the s-energy of a measure µ in the class M(Ω) of Borel probability
measures supported on Ω are given, respectively, by

Uµ
s (x) :=

∫

Ω

ks(x,y) dµ(y), x ∈ R
d+1, Is(µ) :=

∫

Ω

∫

Ω

ks(x,y) dµ(x)dµ(y). (3.4)

For s > 0, the s-capacity of Ω is the reciprocal of the Wiener energy inf{Is(µ) | µ ∈ M(Ω)}.
When the Wiener energy is finite, it will be denoted byWs(Ω). Because of the possibility of
negative logarithmic energy integral, we set caplog(Ω) := exp(− inf{Ilog(µ) | µ ∈ M(Ω)}).
When finite, the infimum is denoted by Wlog(Ω). The lower semi-continuous logarithmic
kernel is bounded from below and thus the kernel ks (plus a constant) is strictly positive
definite for s = log and 0 < s < d. Consequently, the s-equilibrium measure µΩ,s on Ω
is unique for every compact set Ω ⊂ Rp with finite s-energy; see [36, 143]. For the range
−2 < s < 0, one also has a unique s-equilibrium measure on Ω; see [26] for the potential
theoretic quantities and variational inequalities.

In the remaining section we consider the sphere Sd and subsets of Sd. An external field
is a lower semi-continuous function Q : Sd → (−∞,∞] such that Q(x) <∞ on a set of
positive Lebesgue surface measure. We note that the lower semi-continuity implies the
existence of a finite cQ such that Q(x) ≥ cQ for all x ∈ Sd. The weighted energy associated
with Q(x) is then given by

IQ,s(µ) :=Is(µ) + 2

∫
Q(x)dµ(x), µ ∈ M(Sd). (3.5)

We recall from [90] the following Frostman-type result that deals with existence and unique-
ness of the s-extremal measure on Ω associated with Q and its characterisation in terms of
weighted potentials. The result is stated for the Riesz case but a similar result holds also for
the logarithmic case. The potential theory used in the context of this survey is formulated
by G. Björck [26] (dealing with Riesz potential with negative exponent), by E. B. Saff, and
V. Totik [177] (logarithmic external field problem in the plane), by N. S. Landkof [143]
(Riesz and logarithmic potential and general reference) and, in particular, for Riesz exter-
nal field problems by N. V. Zorĭı [203, 204].

Proposition 3.1. Let 0 < s < d. For the minimal energy problem on Sd with external
field Q the following properties hold:

(a) WQ,s := inf
{
IQ,s(µ)

∣∣µ ∈ M(Sd)
}
is finite.

(b) There is a unique s-extremal measure µQ,s ∈ M(Sd) associated with Q. Moreover, the
support SQ,s := supp(µQ,s) of this measure is contained in the compact set EM := {x ∈
Sd : Q(x) ≤M} for some M > 0.

(c) The measure µQ,s satisfies the variational inequalities

UµQ,s
s (x) + Q(x) ≥ FQ,s q.e. on S

d, (3.6)

UµQ,s
s (x) + Q(x) ≤ FQ,s everywhere on SQ,s, (3.7)
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where

FQ,s :=WQ,s −
∫

Q(x)dµQ,s(x). (3.8)

(d) Inequalities (3.6) and (3.7) completely characterise the s-extremal measure µQ in
the sense that if ν ∈ M(Sd) is a measure with finite s-energy such that for some
constant C we have

Uν
s (x) + Q(x) ≥ C q.e. on S

d, (3.9)

Uν
s (x) + Q(x) ≤ C everywhere on supp(ν), (3.10)

then ν = µQ,s and C = FQ,s.

A property holds quasi-everywhere if the exceptional set has s-capacity zero. If Q is
continuous on Sd, then the inequalities (3.6) and (3.9) hold everywhere on Sd.

In principle, once supp(µQ) is known, then the measure µQ can be recovered by solving
an integral equation for the weighted s-potential arising from (3.9) and (3.10). Finding
supp(µQ) when it is a proper subset of Sd can be a very difficult problem. It is a substan-
tially easier task to find a signed measure that has constant weighted s-potential everywhere
on Sd. Given a compact subset Ω ⊂ Sd with caps(Ω) > 0 and an external field Q, there
is a unique (if it exists, see [52, Lemma 23]) signed s-equilibrium measure ηK,Q supported
on Ω of total charge one associated with Q with constant weighted s-potential; i.e.,

UηK,Q
s (x) + Q(x) = GK,Q,s everywhere on Ω

for some constant GK,Q,s. A remarkable connection exists to the analogue of the Mhaskar-
Saff functional from classical planar potential theory ([157] and [177, Chapter IV, p. 194])
given by

Fs(Ω
′) :=Ws(Ω

′) +

∫
Q(x) dµΩ′(x), Ω′ ⊂ S

d compact with caps(Ω
′) > 0,

where Ws(Ω
′) is the s-energy of Ω′ and µΩ′ is the s-equilibrium measure (without external

field) on Ω′. Namely, if the signed s-equilibrium on a compact set Ω′ associated with Q
exists, then Fs(Ω

′) = GK,Q,s. The essential property of the Fs-functional is that it is
minimised for the support of the s-extremal measure (see [53, Proposition 8] for a precise
statement). The papers [52, 53, 54, 90] determine the signed s-equilibrium on the full
sphere and on spherical caps associated with logarithmic and Riesz s-external fields due
to a single point charge (or a axis-supported superposition of such fields). This signed
s-equilibrium characterises then the s-extremal measure on Sd. A further application is
the proof of optimal separation (“well-separation”) for minimal Riesz s-energy points on S

d

for the range s ∈ [d−2, d).9 The use of balayage techniques (the signed equilibrium can be

9For further discussion of the separation of minimal s-energy points on S
d, see [52] and citations

therein. It should be mentioned that S. B. Damelin and V. Maymeskul [86] give a separation result of
order N−1/(s+2), 0 < s ≤ d− 2, which is sharp for s = d− 2 > 0.
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expressed as the difference of two balayage measures) together with a restricted principle
of domination and a restricted maximum principle yields that the Riesz parameter s is
restricted to the interval [d− 2, d). New phenomena occur when s = d− 2. For example, a
boundary charge appears in the signed (d−2)-equilibrium for a spherical cap which vanishes
when the cap coincides with the support of the s-extremal measure on Sd. Numerical
methods for external field problems for Riesz potentials have been developed and applied
in [114, 115, 116, 166].

3.3. The distribution of minimal logarithmic and Riesz energy points

Let Ω be an infinite compact set Ω ⊂ Rp with Hausdorff dimension d having finite
logarithmic or Riesz s-energy (s > 0) and Q ≡ 0. Then classical potential theory implies
that the minimal energy configurations X∗

N on Ω are distributed according to the unique
equilibrium measure µΩ on Ω and the discrete measures µX∗

N
have µΩ as a weak limit. The

s-equilibrium measure on S
d is the uniform measure σd. In general, the measure µΩ will

not be uniform as the example of a circular torus shows (see [121] and [55, 56]).10 In this
potential theoretic regime (s = log or 0 < s < d), the support of µΩ depends on whether
the kernel is superharmonic, harmonic or subharmonic (see [143]). In the superharmonic
case (s = log or 0 < s < p − 2), the measure µΩ is supported on the outer boundary
(i.e., the boundary of Ω shared with the unbounded component of the ambient space Rp),
whereas in the strictly subharmonic case, the measure µΩ can be supported on all of Ω.

The intuition is that in the regime s = log or 0 < s < d global effects dominate (points
interact as if they are subject to long-range forces and the range increases as s becomes
smaller). In the hypersingular case s > d, local effects dominate (points interact as if they
are responding to a short range force). Both kinds of interactions intermingle when s = d.

In the hypersingular case s ≥ d, the energy integral attains +∞ for every µ ∈ M(Ω).
Geometric measure theory yields that the limiting distribution of a sequence (X∗

N) of
minimal Riesz s-energy N -point sets on Ω (even asymptotically s-energy minimising would
suffice) is uniformly distributed with respect to the d-dimensional Hausdorff measure Hd,

µX∗
N

∗
−→

Hd

∣∣
Ω

Hd(Ω)
as N → ∞,

for a large class of sets Ω with Hd(Ω) > 0 (see [34] and earlier work [33, 118, 119]). It should
be noted that in the case s = d an additional regularity assumption on Ω is required. In
the limit s→ ∞ only the nearest-neighbour interaction matters and the optimal solutions
are best-packing configurations which solve the Tammes problem [192]. The paper [34]
also shows analogous results for weighted Riesz s-energy

N∑

i=1

N∑

j=1

i 6=j

w(xi,xj)

‖xi − xj‖s
,

10It seems to be unresolved for which Ω the s-equilibrium measure on Ω is the uniform measure on Ω.
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where w is (almost everywhere) continuous and positive on the diagonal (called CPD
weight function). We remark that the case s = d for Sd has already been dealt with in
[103] using results from [139]. Furthermore, in [66] it was shown that the s-equilibrium
measures on Ω converge to the normalised d-dimensional Hausdorff measure restricted to
Ω as s → d− under rather general assumptions on Ω. We remark that I. Pritzker [168]
studied the discrete approximation of the equilibrium measure on a compact set Ω ⊂ Rp,
p ≥ 2, with positive s-capacity by means of points which do not need to lie inside Ω.
He also obtained discrepancy estimates in the harmonic case. The properties of so-called
greedy K-energy points were studied by A. López Garćıa and E. B. Saff [148].

Summarising, for −2 < s < 0, s = log and s > 0, the (asymptotically) s-energy
minimising N -point configuration on S

d are uniformly distributed with respect to the
surface area measure σd.

In certain applications one prefers to generate well distributed N -point sets on a com-
pact d-rectifiable set in Rp which have a prescribed non-uniform asymptotic distribution ρ
with respect to Hd as N → ∞. It is shown in [122] that such points can be obtained by
minimising the energy of N points on Ω interacting via a weighted power law potential
w(x,y)/‖x − y‖s, where s > d and w(x,y) := [ρ(x)ρ(y)]−s/(2d). Furthermore, such point
sets are “quasi-uniform” in the sense that the ratio of the covering radius to the separation
distance is uniformly bounded in N .11 As mentioned in the introduction, quasi-uniformity
is crucial for a number of numerical methods (see [99, 144, 180]). S. V. Borodachov,
D. P. Hardin, and E. B. Saff show in [35] that it suffices to use a varying truncated weight
w(x,y) Φ(‖x−y‖/rN). Thus only those pairs of points that are located at a distance of at
most rN = CN N

−1/d from each other contribute to the energy sum. (The positive sequence
(CN) can be taken to tend to ∞ as slowly as one wishes.) In this way, under suitable as-
sumptions, the complexity of the energy computation can be greatly reduced, leading to
order N Cd

N computations for generating “low energy” N -point approximations.12

A point charge approaching the sphere subject to the same law of interaction as the
points on the sphere affects the charge distribution on the sphere. Sufficiently close to
the sphere, it will generate a spherical cap with zero charge. The papers [52, 53, 54],
in particular, provide explicit representations of the charge distributions due to a single
external charge. They also address a question attributed to A. A. Gonchar, namely to find
a critical distance from the sphere surface of a point charge generating the external field so
that the support of the s-extremal measure on Sd only just becomes the whole sphere. In
the harmonic case this distance is characterised by the largest zero of polynomials dubbed
Gonchar polynomials.13

For a small N , numerical optimisation methods can be used to find putative minimal

11For the constant weight case, see also [86].
12We note that in the astronomical community a hierarchical equal area iso-latitude pixelisation

(HEALPix [100]) is used to generate large numbers of uniformly distributed points on S2; cf. also [145].
A. Holhoş and D. Roşca [133] study Riesz energy of points derived from an area-preserving map from the
2-sphere to the octahedron.

13For d = 2 and d = 4, the critical distance is the golden ratio and the plastic number.
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Riesz s-energy configurations. T. Erber and G. M. Hockney [91] noticed that the number
of local minimal energy configurations (most of which are not global ones) seems to grow
exponentially with N . Most of the numerical data is for the 2-sphere and for the Coulomb
case and a few other values of s. Regarding data, we refer to online resources [39, 127, 201]
and a more recent study of the energy landscape in [64, 65], whereas [22] provides a com-
plexity analysis for the logarithmic case. Higher dimensional configurations have also been
investigated (see [13]). In [163] monotonicity properties of the second discrete derivative
were considered and led to new putative low-energy configurations in two cases. Numerical
results in [156] suggest that a minimal s-energy N -point set may transit through one or
more (depending on N) basic configuration as s grows.14 The smallest only partly resolved
problem is the five point problem on S

2. Five points cannot form a universally optimal sys-
tem [74].15 Melnyk et al. [156] identified two basic configurations: triangular bi-pyramid
and quadratic pyramid. According to numerical results, the regular triangular bi-pyramid
is the putative energy-minimising configuration for 2 ≤ s ≤ 15.048077392 . . . , whereas for
higher values of s it seems to be the square pyramid (with adjusted height); see also [163]
for a finer analysis. Moreover, it is shown in [28] that there are sequences of s-energy
minimising configurations that tend to a square pyramid best packing configuration as
s → ∞. In general, the five point problem is a difficult problem to analyse rigorously.
Recently, the papers [182] (for the Coulomb case s = 1 and for s = 2) and [134] (for sum
of distances, s = −1) provided computer-assisted proofs that the triangular bi-pyramid is
optimal, whereas in the logarithmic case a conventional proof was given in [89]. In [197] a
bi-quadratic energy functional is considered. Other rigorously proved minimising configu-
rations are rare and are often universally optimal. Proved minimising configurations on S2

are the antipodal and equilateral configuration and the Platonic solids with N = 4, 6 and
12 vertices. For higher dimensions, we refer to [74, Table 1], [11] and [77, Section 5.3].

3.4. Asymptotic expansion of minimal Riesz energy

Let s > 0. As sets we shall consider the unit sphere Sd and, more generally, infinite com-
pact sets Ω ⊂ R

p with Hausdorff dimension 0 < d ≤ p. The leading term of the asymptotic
expansion of the N -point Riesz s-energy of Ω is well-understood if Ω has positive s-capacity
(i.e., finite Riesz s-energy). This is the potential-theoretic regime. A standard argument
from classical potential theory yields that the positive quantities N(N − 1)/Es(Ω;N) form
a monotonically decreasing sequence. The limit diams(Ω), called the generalised transfinite
diameter of Ω, is equal to the s-capacity of Ω (cf. [167]). Thus, the leading term of Es(Ω;N)
grows like N2 as N → ∞ and the leading coefficient is given by the Riesz s-energy of Ω,

14The phenomenon of transiting through several basic types of configurations can also be observed in the
external field setting when s is fixed but the distance of the external field source varies (see [53, Figure 4]).

15A universally optimal point set minimises all energy functionals with kernels of the form K(x,y) =
f(‖x − y‖2), where f is a completely monotonic C∞ function like the Riesz potential 1/rs for s > 0,
meaning that (−1)k f (k)(x) ≥ 0 for all k; see [74].
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or equivalently, by the reciprocals of the s-capacity and transfinite diameter of Ω:

lim
N→∞

Es(Ω;N)

N2
= Ws(Ω) =

1

caps(Ω)
=

1

diams(Ω)
. (3.11)

For 0 < s < d, the Riesz s-energy of the sphere S
d has the explicit form

Ws(S
d) = Is[σd] = 2d−1−sΓ((d+ 1)/2) Γ((d− s)/2)√

π Γ(d− s/2)
, (3.12)

expressed in terms of the gamma function Γ. By identifying Ws(S
d) with the analytic

continuation of the right-hand side above to the complex s-plane16, we can define the
Riesz s-energy of Sd for Riesz parameter s for which the s-energy integral (3.4) is +∞ for
every Borel probability measure on Sd. The combined effort of [43, 139, 170, 199, 200]
resulted in the following bounds for the second term of the minimal energy asymptotics:17

there exist constants c, C > 0 depending only on d ≥ 2 and 0 < s < d such that

cN1+s/d ≤ Es(Sd;N)−Ws(S
d)N2 ≤ C N1+s/d, N ≥ 2.

These estimates give the correct order of growth and sign for the second-order term. It is
an open problem if the sequence

(
Es(Sd;N)−Ws(S

d)N2
)
/N1+s/d has a limit as N → ∞.

A. A. Berezin [24] used a semi-continuum approach (a classical method from solid state
physics, cf. [104]) to derive the plausible asymptotics

Es(S2;N) ≈ N2 2
1−s

2− s

[
1− (n/N)1−s/2

]
+N1+s/2

(√
3

8π

)s/2

×
{

6

1s
+

6

(
√
3)s

+
6

2s
+

12

(
√
7)s

+
6

3s
+

6

(2
√
3)s

+
12

(
√
13)s

+ · · ·
}

based on the assumptions that a typical point (and most of its immediate neighbours) in a
minimal Riesz s-energy N -point configuration on S2 gives rise to a hexagonal Voronoi cell
(sixfold symmetry) whereas the defects according to the curved surface of the sphere will
have no significant influence on the second term in the asymptotics. Thus the contribution
to the Riesz s-energy due to a typical point can be split into a local part which uses
n nearest neighbour points from a suitably adjusted flat hexagonal lattice and a distant
part where the N − n points are replaced by the continuous uniform distribution. The
expression in curly braces gives the formal series expansion of the Epstein zeta function
of the hexagonal lattices truncated to include only the n − 1 shortest distances in the
lattice18. (In order to get a non-trivial expansion, n has to grow slowly in terms of N to

16The meromorphic function Ws(S
d), which appears in the conjecture for the asymptotics in the hyper-

singular case, has simple poles (finitely many if d is even and infinitely many if d is odd). The effect of
this dichotomy on the asymptotic expansion of the minimal Riesz s-energy is completely open for d ≥ 2
and leads to logN terms for the unit circle, cf. [57].

17Similar estimates but with negative constants c, C hold for the sum of generalised distances
(i.e., −2 < s < 0); see [2, 3, 4, 18, 128, 190, 191] and culminating in [199, 200].

18Indeed, the first few most frequent distances in a putative minimal energy configuration emulate
remarkably well the first few distances in a hexagonal lattice (see, in particular, [59, Figure 1]).
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infinity. The paper [24] mentions some numerical experiments for slowly growing n but a
rigorous investigation has not been undertaken.) The discussion leading to Conjecture 1
below suggests that the semi-continuum approach would also work for d = 4, 8, and 24.
In general, it is not clear which local approximation should be used.

For Ω in Rp with vanishing s-capacity, the leading term is rather well-understood. In
the strictly hypersingular regime s > d, Hardin and Saff [119] (for rectifiable d-dimensional
manifolds including the sphere Sd) and Borodachov, Hardin, and Saff [34] (for infinite
compact d-rectifiable sets19) established the existence of a constant Cs,d such that for a
large class of sets Ω 20

lim
N→∞

Es(Ω;N)

N1+s/d
=

Cs,d

[Hd(Ω)]
s/d
, (3.13)

where Hd denotes the d-dimensional Hausdorff measure in Rp normalised such that the d-
dimensional unit cube has Hd-measure 1. This result is referred to as the Poppy-seed Bagel
Theorem because of its interpretation for distributing points on a torus. Except for one-
dimensional sets (when Cs,1 is twice the Riemann zeta function at s, see [153, Thm. 3.1]),
the precise value of Cs,d is not known. Its determination is a challenging open problem.
The significance and difficulty of obtaining Cs,d is due to the deep connection to densest
packings. In [33] it is shown that Cs,d is tied to the largest sphere packing density ∆d in Rd

and the best-packing distance δ∗N of N -points on Sd by means of the limit relations21

lim
s→∞

[Cs,d]
−1/s = 2

[
∆d

Hd(Bd)

]1/d
= lim

N→∞
N1/dδ∗N . (3.14)

Here, Hd(B
d) is the volume of the unit ball in Rd. We recall that ∆d is only known for

three cases: ∆1 = 1, ∆2 = π/
√
12 (Thue [195] and L. Fejes Tóth [95]) and ∆3 = π/

√
18

(Kepler conjecture proved by Hales [113]). The connection to (regular) lattices comes from
the fact that the Riesz s-energies of shrunk copies of a lattice Λ in Rd restricted to the
fundamental parallelotope Ω of Λ yield an upper estimate for Cs,d (for s > d): consider
the N = nd points XN = 1

n
Λ ∩ Ω, then one has (cf. [59, Prop. 1])

Es(Ω;N) ≤ Es(XN) ≤ nd+s ζΛ(s) = N1+s/d ζΛ(s).

This implies
Cs,d ≤ min

Λ
|Λ|s/d ζΛ(s), (3.15)

where the minimum is extended over all lattices Λ in Rd with positive co-volume |Λ|.
Because of (3.14), the sharpness of this inequality touches on questions regarding densest
lattice sphere packings. For 1 ≤ d ≤ 8 and d = 24, the unique densest lattice in Rd up
to scaling and isometries is the root lattice A1, A2, A3, D4, D5, E6, E7, E8, and the Leech

19A d-rectifiable set is the Lipschitz image of a bounded set in Rd.
20The boundedness of Es(Sd;N)/N1+s/d has already been shown in [139].
21Indeed, one can recast this relation as ∆d = lims→∞ limN→∞

[
Es(12Bd;N)/N1+s/d

]
−d/s

.
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lattice Λ24, respectively (cf. [75]). Among those the hexagonal lattice A2 in R2, the E8 root
lattice in R8 and the Leech lattice Λ24 in R24 are conjectured to be universally optimal,
whereas the remaining lattices are provably not universally optimal (cf. [74, 76]). See [179]
for local optimality results and [81] for improvements. Montgomery [158] proved that the
hexagonal lattice is universally optimal amongst all lattices in R2 (which is weaker than
universal optimality amongst all periodic point configurations). H. Cohn and N. Elkies [73]
conjectured that E8 and the Leech lattice Λ24 solve the sphere packing problem in their
dimension. It is generally expected that for sufficiently large d, lattice packings are not
densest packings and [196] suggests that best-packings are highly “disordered” as d→ ∞.
This motivates the following conjecture22.

Conjecture 1 ([57]). For d = 2, 4, 8, and 24, one has Cs,d = |Λd|s/d ζΛd
(s), where Λd

denotes, respectively, the hexagonal lattice A2, the root lattices D4 and E8, and the Leech
lattice Λ24.

We remark that in [59] very coarse lower and upper bounds are obtained for Es(Sd;N)
which imply for s > d ≥ 2 and (s− d)/2 not an integer, the estimates

d

s− d

[
1

2

Γ((d+ 1)/2) Γ(1 + (s− d)/2)√
π Γ(1 + s/2)

]s/d
≤ Cs,d

[Hd(Sd)]s/d
≤
[ Hd(B

d)

Hd(Sd)(1− d/s)

]s/d
.

In the hypersingular case s = d, more can be said. It has been known from [139] that
the leading term of Ed(Sd;N) grows like N2 logN and

lim
N→∞

Ed(Sd;N)

N2 logN
=

Hd(B
d)

Hd(Sd)
=

1

d

ωd−1

ωd
=

1

d

Γ((d+ 1)/2)√
π Γ(d/2)

. (3.16)

The best estimate so far for the second-order term has been obtained recently in [59],

−c(d)N2+O(N2−2/d logN) ≤ Ed(Sd;N)−Hd(B
d)

Hd(Sd)
N2 logN ≤ Hd(B

d)

Hd(Sd)
N2 log logN+O(N2)

as N → ∞, where the constant c(d) is given by

c(2) = 1/2, c(d) :=
Hd(B

d)

Hd(Sd)

{
1− log

Hd(B
d)

Hd(Sd)
+ d [ψ(d/2)− ψ(1)− log 2]

}
> 0.

(Recall, that ψ := Γ′ /Γ denotes the digamma function.) Based on a limiting process s→ d
in Conjecture 2 given below, it is conjectured in [59] that the correct order of the second
term is N2. Furthermore, in the case d = 2 a conjecture is posed for the constant of the
N2-term.

22The conjecture for d = 2 appeared in [139].
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3.5. Higher Order Terms – Complete Asymptotic Expansions – Fundamental Conjecture

Very little is known about higher-order terms of the asymptotics of the minimal Riesz
s-energy except for the unit circle. As the Nth roots of unity are universally optimal,23

the complete asymptotic expansion can be obtained by direct computation of the Riesz s-
energy Ls(N) of the Nth roots of unity, see [57] for Euclidean and [58] for geodesic metric.
Indeed, for s ∈ C with s 6= 0, 1, 3, 5, . . . and fixed p = 1, 2, 3, . . . , one has24

Ls(N) = Ws(S
1)N2 +

2 ζ(s)

(2π)s
N1+s +

p∑

n=1

αn(s)
2 ζ(s− 2n)

(2π)s
N1+s−2n

+Os,p(N
−1+Re(s)−2p) as N → ∞,

(3.17)

where the coefficients αn(s), n ≥ 0, are defined by the generating function relation

(
sin πz

πz

)−s

=

∞∑

n=0

αn(s) z
2n, |z| < 1, s ∈ C.

Explicit formulas for αn(s) in terms of generalised Bernoulli polynomials B
(α)
n (x) are given

in [58]. The asymptotics (3.17) has two noteworthy features: this expansion is valid for
complex s and the Riemann zeta function plays an essential role. The coefficients of the
terms in the asymptotics are best understood as functions in the complex s-plane. This
is called the principle of analytic continuation.25 The interplay between the simple poles
of the coefficient Ws(S

1) of the N2-term in (3.12) and the simple poles of the shifted
Riemann zeta functions then gives rise to a logarithmic term whenever s tends to one of
the exceptional cases s = 0, 1, 3, 5, . . . .

By combining the results for the potential theoretic and the hypersingular regime, the
principle of analytic continuation motivates the following fundamental conjecture.

Conjecture 2 (see [59]). Let d ≥ 2. Then for 0 < s < d+ 2 with s 6= d,

Es(Sd;N) =Ws(S
d)N2 +

Cd(s)

[Hd(Sd)]s/d
N1+s/d + o(N1+s/d) as N → ∞,

where Ws(S
d) is the analytic continuation of the right-hand side of (3.12) and Cd(s) is the

analytic continuation of Cs,d in (3.13). Furthermore, for d = 2, 4, 8, and 24, the constant

Cd(s) is the analytic continuation of |Λd|s/d ζΛd
(s), where Λd is given in Conjecture 1.

23For s ≥ −1 (and s 6= 0) a convexity argument can be applied to get optimality for Riesz s-energy
(see [4, 94, 102]). The much more general result [74, Theorem 1.2] provides optimality for s > −2.

24The precise formulas for finite N ≥ 2 are obtained in [46].
25This principle breaks down when the perfectly symmetric unit circle is replaced by some other smooth

closed curve Γ. Then the s-equilibrium measure on Γ is not the normalised arc-length measure for each
0 < s < 1 which plays a role in the characterisation of the coefficient of N2 in the hypersingular regime
1 < s < 3; see [31].
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It should be discussed briefly that the asymptotic expansion of the minimal s-energy
can also be studied from a geometrical point of view by identifying which features of the
Voronoi cell decomposition (or its dual, the Delaunay triangulation) induced by minimal
s-energy configurations contribute in which way to the asymptotics. For the 2-sphere
and large N , the typical picture is a vast sea of hexagonal Voronoi cells — thus the
local approximation of the neighbourhood of a typical point is done by a suitably scaled
hexagonal lattice to get the second term of the asymptotics. The topology of the sphere
gives rise to geometric frustration (cf. [175]) where certain points pick up a topological
charge that measures the discrepancy from the ideal coordination number (six) of the planar
triangular lattice. Euler’s celebrated Polyhedral formula yields that the total topological
charge on S

2 is always 12. Numerically, one observes “scars” for large N emerging from
12 pentagonal centres. These scars attract pentagon-heptagon pairs which have total
topological charge zero. It is an unresolved question if there are Voronoi cells with more
than 7 sides in minimising configurations. It is not well understood how (i.e., on which
level of the asymptotic scale) scars, the type of Voronoi cells, and the variation in their
sizes affect higher-order terms of the asymptotics; see [65] for numerical background and
[41] for an approach using elastic continuum formalism.

A much harder question concerns the (asymptotic) behaviour of the “point-energies” of
an optimal configuration (i.e., the contributions to the s-energy due to individual points of
the configuration — the s-energy is the total sum of these point-energies). Point energies
are considered in [65] (see Figure 1) and asymptotic estimates are given in [86].

3.6. Asymptotic expansion of logarithmic energy

The leading term of the asymptotic expansion for a compact set Ω in Rp with positive
logarithmic capacity (i.e., finite logarithmic energy) follows from classical potential theory.
It should be noted that (see [36])

d

ds
Es(Ω;N)

∣∣∣
s=0+

= Elog(Ω;N), N ≥ 2. (3.18)

For the unit sphere Sd, one has

lim
N→∞

Elog(Sd;N)

N2
= Wlog(S

d) = log
1

caplog(S
d)
,

where the logarithmic energy of Sd is given by

Wlog(S
d) =

dWs(S
d)

ds

∣∣∣
s=0+

= log
1

2
+

1

2
[ψ(d)− ψ(d/2)] .

An averaging argument that uses an equal-area partition of Sd and bounds of G. Wag-
ner [200] and [44] yields

Elog(Sd;N) = Wlog(S
d)N2 − 1

d
N logN +O(N), N → ∞.

Relation (3.18) and Conjecture 2 provide the basis for the following conjecture posed in [59].
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Conjecture 3. For d = 2, 4, 8, and 24,

Elog(Sd;N) =Wlog(S
d)N2 − 1

d
N logN + Clog,dN + o(N) as N → ∞,

where

Clog,d =
1

d
log

Hd(S
d)

|Λd|
+ ζ ′Λd

(0).

For d = 2 one has

Clog,2 = 2 log 2 +
1

2
log

2

3
+ 3 log

√
π

Γ(1/3)
= −0.05560530494339251850 . . . .

For more details see [59]. Very recently, L. Bétermin [25] found a surprising connection
between the problem of minimising a planar “Coulombian renormalised energy” derived
from the Ginzburg-Landau model of superconductivity introduced by E. Sandier and S. Ser-
faty in [178] (also see the survey [183]) and the discrete logarithmic energy problem on S

2.
The preliminary results are: (i) the asymptotics of the minimal logarithmic energy on S2

has a term of order N , (ii) whose constant is bounded from above by Clog,2 given above, and
(iii) this constant equals Clog,2 if and only if a certain triangular lattice of density 1 (called
“Abrikosov” triangular lattice Z + eiπ/3 Z, properly scaled, see [183]) is the minimiser of
the Coulombian renormalised energy.

3.7. Numerical integration and discrepancy from the energy point of view

The reproducing kernel Hilbert space approach (see Section 2) enables us to write the
squared worst-case error as

1

N2

N∑

i=1

N∑

j=1

K(xi,xj)−
∫

Sd

∫

Sd

K(x,y) dσd(x)dσd(y),

which can be interpreted as K-energy of the node set {x1, . . . ,xN} of the QMC method.
Here, the energy kernel is a reproducing kernel for Hs(Sd). Optimal node sets are solutions
of the minimal energy problem for this kernel. In [48] and [49] it is shown how the distance
kernel

K
(s)
gd (x,y) :=2Wd−2s(S

d)− ‖x− y‖2s−d , x,y ∈ S
d, (3.19)

arises in a natural way as a reproducing kernel for Hs(Sd) for s in (d/2, d/2 + 1). Evi-
dently, there is a close connection between finding optimal QMC nodes and the problem of
maximising the sum of all pairwise distances taken to the power 2s− d. Wagner’s bounds
(see [199, 200]) yield that a sequence of N -point maximisers of such a generalised sum of
distances is a QMC design sequence for Hs(Sd), d/2 < s < d/2 + 1; see [61]. Explicit
constructions for QMC design sequences are not known. Based on numerical evidence it is
conjectured in [1, 47] that a (0, 2)-sequence (a special digital net sequence in the sense of
[88]) or a Fibonacci lattice (also see [88]) in the square [0, 1)2 mapped to the 2-sphere via
an area-preserving map (Lambert azimuthal equal-area projection) will be a QMC design
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sequence for H3/2(S2). For s ≥ d/2 + 1, the space Hs(Sd) can also be provided with a
reproducing kernel which is essentially a distance kernel with power 2s − d. In order to
ensure that the reproducing kernel is positive definite (in the sense of Schoenberg [181])
a polynomial correction term is needed when s − d/2 is not a positive integer.26 27 Such
a correction term is annihilated when the search for optimal QMC designs for Hs(Sd),
s ∈ (d/2 + L, d/2 + 1 + L), is restricted to spherical L-designs. In that case it suffices to
minimise the energy functional (see [61])

[wceHs(XN,L)]
2 =

1

N2

N∑

i=1

N∑

j=1

(−1)L+1 ‖xi,L − xj,L‖2s−d − (−1)L+1Wd−2s(S
d)

subject to the condition that the node set XN,L = {x1,L, . . . ,xN,L} ⊂ Sd is a spherical
L-design. Note that the fixed L (once s is fixed) is “small” in the following sense: a QMC
method with a more regular (in the sense of spherical designs) node set is more suitable
for integrating functions from a smoother function space Hs(Sd). But regularity beyond a
critical order will not improve the worst-case error bound; this should be compared with
the optimal order (2.38). We remark that the Cui and Freeden kernel [82]

KCF(x,y) := 2− 2 log
(
1 +

1

2
‖x− y‖

)
, x,y ∈ S

2,

which was used to define a “generalised discrepancy” to measure uniform distribution of
point set sequences, can be interpreted as reproducing kernel for H3/2(S2) as observed
in [187] and the minimising KCF-energy point configurations give rise to a QMC design
sequence for H3/2(S2). Recently, C. Choirat and R. Seri [69, 70] derived the analogous
kernel for d-spheres. The corresponding minimising configurations then form QMC design
sequences forH(d+1)/2(Sd). A curious observation is that when Hs(Sd), d/2 < s < d/2+1, is

provided with the reproducing kernel K
(s)
gd from (3.19), a limit process yields that (see [62])

lim
s→(d/2)+

[wceHs(XN)]
2 − 1

N

2s− d
=

1

N2

N∑

i=1

N∑

j=1

i 6=j

log
1

‖xi − xj‖
− Vlog(S

d)

for any N -point set XN = {x1, . . . ,xN} ⊂ Sd. This suggests that the function space
Hd/2(Sd) (which is not a reproducing kernel Hilbert space) is paired with the logarithmic
kernel and the logarithmic energy of an N -point set can be understood as a limit of worst-
case errors in the above sense. This pairing can be extended to s < d/2 and the open

26A logarithm of the distance appears in the reproducing kernel when s− d/2 is a positive integer.
27When defining the function space as Bessel potential space, then no correction terms are needed. In

the Hilbert space setting (p = 2), the worst-case error is given as a Bessel-energy. The Bessel kernel
on the sphere, however, has a series expansion in spherical harmonics without a convenient closed form
representation. For general p > 1 the worst-case error has an integral representation; see [51] and also [42].
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question is how to define integration and error of integration so that the corresponding
Riesz (2s− d)-energy is a meaningful measure for this error.

Due to J. Beck [18], the spherical cap discrepancy D(XN) given in (2.16) of anyXN ⊂ S
d

is bounded like ≫ N−1/2−1/(2d) and, by appealing to a probabilistic argument, there are
XN ⊂ Sd with

D(XN) ≪ N−1/2−1/(2d)
√

logN. (3.20)

A sequence of point sets with this property is called a low-discrepancy sequence on Sd. It
is shown in [61] that a low-discrepancy sequence (XLD

N ) on Sd is almost a QMC design
sequence for H(d+1)/2(Sd) in the sense that for sufficiently large N ,

cN−(d+1)/(2d) ≤ wceH(d+1)/2(XLD
N ) ≤ C N−(d+1)/(2d)

√
logN. (3.21)

One of the deep unresolved questions is if the logarithmic term in (3.20) arising from a
probabilistic argument can be removed. It is also unknown how to construct a sequence of
N -point sets explicitly with spherical cap discrepancy decaying like N−1/2−1/(2d)

√
logN .

For the 2-sphere, the construction of A. Lubotzky, R. Phillips, and P. Sarnak [149, 150]
satisfies the estimate D(XLPS

N ) ≪ (logN)2/3N−1/3 with numerical evidence indicating a
convergence rate of O(N−1/2), whereas the spherical Fibonacci lattice point sets of [1] obey
the estimate D(XABD

N ) ≤ 44
√
8N−1/2 with numerical results showing a convergence rate of

O((logN)cN−3/4) for some 1/2 ≤ c ≤ 1. The typical spherical cap discrepancy of N i.i.d.
uniformly distributed random points on S2 is of exact order N−1/2, see [1]. Surprisingly,
minimal Coulomb energy points on S2 do not have low spherical cap discrepancy. J. Ko-
revaar [135] conjectured that minimal (d − 1)-energy configurations on S

d have spherical
cap discrepancy of order N−1/d. This conjecture was proven by M. Götz [101] up to a
logarithmic factor. He also gave a lower bound of order N−1/2 for d = 2. It is open if
Korevaar’s conjecture extends to the full potential-theoretic regime. On the basis of the
Poppy-seed Bagel theorem, one could conjecture that minimal s-energy points for hyper-
singular s should have small spherical cap discrepancy. The only result obtained so far
is the very weak order

√
log logN/ logN result in [83] for the boundary case s = d. The

proof employs a smoothed Riesz energy functional.
Stolarsky’s invariance principle (see K. B. Stolarsky [191]) states that the sum of all

mutual distances (a Riesz energy with Riesz parameter −1) and the spherical cap L2-
discrepancy

DL2(XN) :=



∫ π

0

∫

Sd

∣∣∣∣∣
1

N

∑

y∈XN

1y∈C(z,θ) − σd(C(z, θ))

∣∣∣∣∣

2

dσd(z) sin θdθ




1/2

is constant regardless of the choice of the node set XN on Sd; i.e.,

1

N2

N∑

i=1

N∑

j=1

‖xi − xj‖+
1

Cd

[DL2(XN)]
2 =

∫

Sd

∫

Sd

‖x− y‖ dσd(x) dσd(y).
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This principle connects in a very direct way the three areas optimal energy (maximising the
sum of distances on Sd), uniform distribution (spherical cap L2-discrepancy), and numerical
integration with QMC methods for functions on S

d. Rearranging terms,

1√
Cd

DL2(XN ) =

√√√√
∫

Sd

∫

Sd

‖x− y‖dσd(x) dσd(y)−
1

N2

N∑

i=1

N∑

j=1

‖xi − xj‖,

one obtains a convenient way of computing the discrepancy DL2(XN ). It is shown in [49]
that the right-hand side represents the worst-case error of a QMC method with node set
{x1, . . . ,xN} ⊂ S

d for functions in Hs(Sd) provided with the distance kernel K
(s)
gd given in

(3.19) with s = (d+1)/2. Moreover, in this setting, the spherical cap L2-discrepancy can be
interpreted as worst-case error and vice versa. A conjecture for the asymptotic expansion
(as N → ∞) of the minimal spherical cap L2-discrepancy that is based on the fundamental
conjecture for the minimal Riesz s-energy and the principle of analytic continuation is
proposed in [45]. The paper [48] gives an extension of Stolarsky’s invariance principle
to general powers of the distance (raised to the power 2s − d) involving the generalised
spherical L2-discrepancy

∫ π

0

∫

Sd

|DXN ,β(z; cos θ)|2 dσd(z) sin θdθ,

for the local discrepancy function (with smoothness index s = β + (d− 1)/2)

DXN ,β(z; t) :=
1

N

∑

x∈XN

(x · z− t)β−1
+ −

∫

Sd

(y · z− t)β−1
+ dσd(y).

The paper [50] considers the discrepancy with respect to truncated spherical cones that are
anchored at infinity and extends Stolarsky’s invariance principle to this setting. In [106]
further connections between energy and discrepancy are discussed. We also mention [146]
which considers asymptotically uniformly distributed points with an upper bound on the
spherical cap discrepancy and a lower bound on the separation. The sphere case motivated
[84, 85].
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55 (9), 1178–1195.
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