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Abstract. In this paper, we study the numerical integration of
continuous functions on d-dimensional spheres Sd ⊆ R

d+1 by equally
weighted quadrature rules based at N ≥ 1 points on Sd which
minimize a generalized energy functional. Examples of such points
are configurations, which minimize energies for the Riesz kernel
‖x− y‖−s 0 < s ≤ d and logarithmic kernel − log ‖x− y‖. We de-
duce that extremal point configurations are asymptotically equidis-
tributed on Sd as N → ∞ and we present explicit rates of conver-
gence for the special case s = d.

1. Introduction and Statement of Results

This paper deals with the subject of numerical integration of con-
tinuous functions on the d-dimensional unit spheres Sd ∈ R

d+1. More
precisely, given d ≥ 2, we let

Sd :=
{

x ∈ R
d+1 | 〈x, x〉 = 1

}

denote the unit sphere in R
d+1. Here and throughout, we will denote

by 〈·, ·〉 the usual inner product on R
d+1. Throughout σ will denote

Lebesgue measure on Sd and we shall put

ωd :=

∫

Sd

dσ.

Thus µ := σ
ωd

has total mass 1. Given a collection

ZN := {x1, . . . , xN}, N ≥ 1
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of N points on the sphere Sd and a continuous function f : Sd → R,
we the error in numerical integration is given by

(1.1) R(f, ZN) :=

∣

∣

∣

∣

∣

∣

1

N

N
∑

k=1

f(xk)−
∫

Sd

f(x) dµ(x)

∣

∣

∣

∣

∣

∣

.

Numerical integration of continuous functions on spheres using equally
and non equally weighted rules is a very active and popular area of re-
search with many applications in areas as diverse as spherical t-designs,
discrepancy and combinatorics, Monte-Carlo and Quasi-Monte-Carlo
methods, approximation theory, finite fields and complexity theory.
We refer the reader to [3], [6], [9], [17], [16], [34] for a more detailed
account of this vast subject. The closely related subject of distributing
points on a sphere has also been the subject of many papers. See for
instance [5], [3], [34], [11], [12], [13], [23], [25], [26], [32], [33], [38], [39],
[40], [41], [42]. On the one hand it has some interest on its own to de-
scribe a “well distributed” point set of cardinality N and even to define
suitable notions of what “well distributed” should mean. On the other
hand numerical integration procedures on the sphere require node sets
which are spread evenly all over the sphere and allow positive weights
for the according quadrature rule. In this paper we will only focus on
equal weight (Chebyshev) quadrature.
A natural measure for the quality of the distribution of a point set

ZN = {x1, . . . , xN} on the sphere Sd is the spherical cap discrepancy

(1.2) DN(ZN) = sup
C⊆Sd

∣

∣

∣

∣

∣

1

N

N
∑

k=1

χC(xk)− µ(C)

∣

∣

∣

∣

∣

,

where the supremum ranges over all spherical caps C ⊆ Sd (intersec-
tions of balls and Sd) and where χC denotes the indicator function
of C. The discrepancy simply measures the maximal deviation be-
tween the discrete point distribution {x1, . . . , xN} and the normalized
surface measure. For more general notions of discrepancy and their
properties we refer to [10]. Unfortunately, discrepancy is rather diffi-
cult to compute explicitly. In order to circumvent this, estimates for
the discrepancy in terms of Weyl sums

(1.3)
1

N

N
∑

n=1

Km,j(xn)

have been given in [19] and [15]. Here Km,j denotes an orthogonal
basis of the spherical harmonics of order m. For an account on several
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different notions of discrepancy and other measures for the quality of
spherical point distributions we refer to [16] and [3].
Numerous constructions of ’well-distributed’ point sets have been

given in the literature. These range from constructions of so called low-
discrepancy point sets in the unit cube, which can be transformed via
standard parametrizations, to constructions given by integer solutions
of the equation

x21 + · · ·+ x2d+1 = N

for N ≥ 1 projected onto the sphere. Uniform distribution of these in-
teger point sets were proved in [28] and [31] for d ≥ 4 and estimates for
the discrepancy were given in [11], [12], [13] for spheres of odd dimen-
sion. These latter estimates are based on Deligne’s famous bound for
the coefficients of cusp forms of integer weight [8]. In [25] and [26], the
parametrization of SO(3) by quaternions and again Deligne’s estimate
is used to construct a free subgroup of SO(3) with 3 generators. The
rotations in this subgroup applied to a point on the sphere are used to
form a point set of small discrepancy on S2. Spherical t-designs have
been shown to be uniformly distributed as t → ∞ in [17]. Estimates
for the discrepancy in terms of the integration error for polynomials
have been given in [4]. Furthermore, a construction of point sets based
on finite field solutions of x21 + · · ·+ x2d+1 = 1 has been investigated in
[5].
In this paper, we study numerical integration of continuous functions

on Sd using equal weighted quadrature rules based at N ≥ 1 points
on Sd which minimize a generalized energy functional, see Definition 2
below. Important examples of such points are s ≥ 0 extremal con-
figurations, i.e., points which minimize energies for the Riesz kernel
‖x − y‖−s, 0 < s ≤ d and logarithmic kernel − log ‖x − y‖, s = 0. In
the case s > 0, the energy functionals above take the form of

(1.4)

N
∑

i,j=1
i 6=j

‖xi − xj‖−s

where ||.|| denotes the Euclidean metric on R
d+1. The motivation for

introducing such functionals comes from potential theory and will be
explained carefully in Remark 1 below. In a series of papers Kuijlaars,
Wagner, Rakhmanov, Saff, and Zhou, see [23], [32], [33], [34],[38], [39],
[40], [41], [42], have recently proved upper and lower bounds for (1.4) for
s > 0 extremal configurations. Using these bounds, it is a consequence
of Theorem 3 and Theorem 4 below, that the discrete distribution of
s > 0 extremal configurations tends weakly to the normalized surface
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measure µ as N → ∞ if 0 ≤ s ≤ d. For s > d, nothing is known about
the distribution of s extremal configurations, see Remark 4 below.
In what follows, for parameter α > −1, we denote by Cα

n (x) the n-th
Gegenbauer polynomial of index α. The sequence of Gegenbauer poly-
nomials is orthogonal with respect to the weight function (1 − x2)α−

1

2

(see for instance [2] [27]). For d ≥ 2 we denote the Legendre poly-

nomials corresponding to the d-dimensional sphere by P
(d)
n (x), which

are normalized by Pn(1) = 1. We will frequently omit the upper in-
dex, when the dimension is fixed. The following relation holds between
Gegenbauer and Legendre polynomials

C
d−1

2

n (x) =

(

n+ d− 1

n

)

P (d)
n (x).

We are now able to introduce the following class of functions which
will be admissible in the following sense:

Definition 1. Let δ0 > 0 and g : [−1 − δ0, 1) → R be a continuous
function satisfying the following conditions:

(a) g is strictly increasing with

lim
t→1−

g(t) = ∞.

(b) Let g(t− δ) be given by its ultraspherical expansion

∞
∑

n=0

an(δ)P
(d)
n (t).

Then ∀n ≥ 1 and 0 < δ ≤ δ0 assume that an(δ) > 0.
(c) The integral

1
∫

−1

g(t)(1− t2)
d

2
−1dt

exists.

For any admissible g, we have:

Definition 2. Let g be admissible, d ≥ 2 and a collection ZN on Sd be
given. Then we define the corresponding energy functional associated
to the point set ZN and the function g by

(1.5) E(g, ZN) =
1

N2

N
∑

i,j=1
i 6=j

g(〈xi, xj〉).
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Furthermore, we define

(1.6) E(g,N) = min
ZN

E(g, ZN).

A point set, for which the minimal energy E(g,N) is attained, is called
a minimal energy point set. It is clear that any rotation of a point set
of minimal energy again gives a point set of minimal energy; thus such
point sets are not unique.

1.1. Why Energy Functionals? We now motivate the use of energy
functionals in numerical integration by way of a series of remarks below.
The first is contained in:

Remark 1. The study of energy functionals is motivated by the fact
that for admissible g, the energy integral

(1.7)

∫

Sd

∫

Sd

g(〈x, y〉) dν(x) dν(y)

is minimized by the normalized surface measure µ on Sd amongst all
Borel probability measures ν. This is the content of Lemma 1 below.
Thus heuristics expects that a point distribution ZN of minimal energy
gives a discrete approximation to the surface measure in the sense that
the integral with respect to the surface measure is approximated by a
discrete sum over the points of ZN . For the circle, S1, it is easy to see
that minimal energy point sets correspond to the vertices of a regular
N -gon and are thus the best points to use for numerical integration for
equally weighted quadrature rules.

Remark 2. (a) It is easy to check that the classical energy func-
tionals as studied in [23], [32], [33], [38], [39], [40], [41], and
correspond to the following choices for the admissible function
g.

(1.8) g0L(t) :=
1

2
log

1

1− t
− 1

2
log 2, s = 0

for the logarithmic energy and

(1.9) gsR(t) :=
1

2s(1− t)s
, s > 0

for the energy corresponding to the Riesz potential 1
r2s

.
(b) Since our final purpose will be to make the energy E(g, ZN) as

small as possible, and we want to have small energy to corre-
spond to reasonable dispersion of the point set ZN , it is natural
to assume g to be strictly increasing.



6 S. B. DAMELIN AND P. J. GRABNER

(c) The condition (b) of Definition 1 is nothing else than positive
definiteness of the functions g(t − δ) − a0(δ) in the sense of
Schoenberg [36]. By a general argument explained in [18], under
our assumptions continuity of g at 1− δ implies continuity of g
in [−1− δ, 1− δ].

We will also assume throughout that δ0 is fixed and small enough so
that (b) in Definition 1 holds for all sufficiently small and positive δ.
We are now in a position to state our main results.

Theorem 1. Let g be admissible, d ≥ 2, ZN a collection of N points

on Sd, f a polynomial of degree at most n ≥ 1 on Sd and 0 < δ ≤ δ0.
Then

|R(f, ZN)| ≤(1.10)

≤ max
1≤k≤n

(

Z(d, k)

ωdak(δ)

)
1

2

‖f‖2
(

E(g, ZN) +
1

N
g(1− δ)− a0(δ)

)
1

2

with Z(d, k) = 2k+d−1
k+d−1

(

k+d−1
d−1

)

.

Theorem 2. Let g be admissible, d ≥ 2, ZN a collection of N points

on Sd, m ≥ 1 and 0 < δ ≤ δ0. Let f be a continuous function of Sd

satisfying:

(1.11) |f(x)− f(y)| ≤ Cf arccos(〈x, y〉), x, y ∈ Sd.

Then

|R(f, ZN)| ≤ 12Cf
d

m
+(1.12)

+ max
1≤k≤m

(

Z(d, k)

ωdak(δ)

)
1

2

‖f‖2
(

E(g, ZN) +
1

N
g(1− δ)− a0(δ)

)
1

2

.

We note that Theorems 1 and 2 are general results which hold for
any choice of points ZN on Sd. Related estimates are given in [21] and
[4].

Remark 3. A set of points ZN on Sd, is said to be asymptotically

equidistributed if for every spherical cap C ⊆ Sd,

(1.13) lim
N→∞

#{1 ≤ j ≤ N : xj ∈ C}
N

= µ(C).

i.e., each intersection of the sphere and half space gets an equal portion
of points. By duality, it follows that (1.13) is equivalent to

(1.14) lim
N→∞

R(f, ZN) = 0

for every continuous function f on Sd.

The following theorem is well known, see for instance [38, 39].
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Theorem 3. Let d ≥ 2 and 0 ≤ s < d. Then 0 ≤ s < d extremal

configurations are asymptotically equidistributed.

We remark that Theorem 3 may also be proved using general prin-
ciples from potential theory and the Cramer-Wold theorem, see [7],
which says that a probability measure on Euclidean space is uniquely
determined by its values it takes on half spaces, see [7]. This is mainly
because the energy integral given by (1.7) is finite in this case with
value

Γ((d+ 1)/2)Γ(d− s)

Γ(d− s/2))Γ(d− s+ 1)
.

For s ≥ d, (1.7) diverges for every measure ν which means that the
nearest neighbor interactions in (1.4) are dominating. For s = d, we
are able to present:

Theorem 4. Let d ≥ 2 and ZN a collection of d extremal points on

Sd. Then for every continuous function f on Sd satisfying (1.11) we

have

(1.15) |R(f, ZN)| ≤
C∗

f√
logN

where C∗
f := max {C ′

d||f ||2, 6dCf}, where C ′
d could be chosen as

C ′
d =

Γ(d+1
2
)

√
πΓ(d

2
)

(

log π + ψ

(

d

2

)

− 2 log 2 + γ

)

with ψ(x) =
Γ′(x)

Γ(x)
and γ = −ψ(1).

Moreover,

(1.16) DN(ZN) ≤ O
(

1√
logN

)

.

In particular, d extremal points are asymptotically equidistributed
with rate 1√

logN
. We note that the asymptotic equidistribution of d

extremal points (without rate of convergence) was recently shown in
an indirect way by Götz and Saff in [14].
We close this section with:

Remark 4. It seems intuitively clear that for s > d extremal points
should be asymptotically equidistributed as well. To understand this,
define

δ(ZN) := inf
i 6=j

||xi − xj ||; δN := sup
ZN⊂Sd

δ(ZN).

The determination of δN is called Tammes problem or the Spherical

packing problem, see [6]. It asks to maximize the smallest distance
amongst N points on Sd. Fixing N and allowing s→ ∞, the minimal
energy problem s > d reduces to the best packing problem.
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The remainder of this paper is devoted to the proofs of Theorems 1,
2, and 4. These are contained in Sections 2 and 3 below.

2. Numerical integration

In this section, we present the proofs of Theorems 1 and 2. In what
follows, for x ∈ R and n ≥ 1,

(x)n :=
n−1
∏

k=0

(x+ k) =
Γ(x+ n)

Γ(x)
, (x)0 = 1

will denote Pochhammer’s shifted factorial.
We begin with Lemma 1 which is of independent interest.

Lemma 1. The energy integral given by (1.7) is minimized uniquely

by the normalized surface measure µ.

The essential ideas behind Lemma 1 are well known, see [24]. We
provide a short independent proof.

Proof. From [36], it follows that (b) in Definition 1 implies that (1.7) is
always nonnegative. Moreover, it follows from the orthogonality rela-
tions of the Legendre polynomials Pn and the positivity of the Fourier
coefficients of g that for the surface measure µ the value of the energy
is 0. Here we also use the basic rule, see [23]:

(2.1)

∫

Sd

g(〈x, x0〉)dµ(x) = γd

∫ 1

−1

g(t)(1− t2)d/2−1dt

where x0 ∈ Sd is some fixed point and

(2.2) γd :=
Γ
(

d+1
2

)

√
πΓ

(

d
2

) .

Thus it remains to prove that the measure µ is unique. Assume that ν
is a Borel probability measure that yields zero energy. Then we have

(2.3)

∫

Sd

∫

Sd

Pn(〈x, y〉)dν(x)dν(y) = 0

for all n ≥ 1. We recall the Funk-Hecke addition formula for spherical
harmonics, see [2, Section 9.8]:

(2.4)

∫

Sd

Pn(〈x, η〉)Pn(〈y, η〉)dµ(η) =
1

Z(d, n)
Pn(〈x, y〉)

where

(2.5) Z(d, n) :=
2n+ d− 1

n + d− 1

(

n+ d− 1

d− 1

)
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was defined in the statement of Theorem 1. Applying (2.3) and (2.4)
gives

∫

Sd

(
∫

Sd

Pn(〈x, η〉)dν(η)
)2

dµ(x) = 0

which implies that
∫

Sd

Pn(〈x, η〉)dν(η)

vanishes µ-almost everywhere. As x is free, we may choose a finite
index J set and a collection of points xj ∈ Sd, j ∈ J such that

P
(d)
n (〈xj , η〉) form a basis of the spherical harmonics of order n, see

[29]. A standard approximation argument using the Stone-Weierstraß
theorem then shows that

∫

Sd

f(x)dν(x) =

∫

Sd

f(x)dµ(x)

for all f ∈ C(Sd). This completes the proof of Lemma 1. �

Next we need:

Lemma 2. Let g be admissible and 0 < δ ≤ δ0 then

(2.6)
1

N2

N
∑

i,j=1

g(〈xi, xj〉 − δ) ≤ E(g, ZN) +
1

N
g(1− δ).

Proof. This follows by using the fact that g is increasing and collecting
the terms with i = j into the second term on the right hand side of
(2.6). �

We are now ready for:

Proof of Theorem 1. We will make use of spherical harmonics and we
refer the reader to [29] for the details. Especially, we will make use of
the fact that there are exactly Z(d, n) linearly independent spherical
harmonics of order n. Furthermore, we use the Funk-Hecke formula
given by (2.3). Since f is a polynomial of degree at most n, we may
represent it as a linear combination of spherical harmonics of order at
most n:

(2.7) f(x) =
n

∑

k=0

Yk(x),

where

Yk(x) =
Z(d, k)

ωd

∫

Sd

f(η)P
(d)
k (〈x, η〉)dσ(η).
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Observe that

(2.8) ‖f‖2 =
n

∑

k=0

‖Yk‖2 .

Then the error of integration can be written as

(2.9) −R(f, ZN ) =
n

∑

k=1

Z(d, k)

ωd

∫

Sd

Yk(η)Qk(η)dσ(η),

where Qn(η) is given by

(2.10) Qn(η) = Qn(η, ZN) =
1

N

N
∑

j=1

P (d)
n (〈η, xj〉).

We now insert b−1
k bk into (2.9) and apply the Cauchy-Schwarz inequal-

ity to obtain
(2.11)

|R(f, ZN)|2 ≤
1

ω2
d

∫

Sd

n
∑

k=1

Z(d, k)2

b2k
|Yk(η)|2 dσ(η)

∫

Sd

n
∑

k=1

b2k |Qk(η)|2 dσ(η).

It is a consequence of (2.4) that

∫

Sd

|Qk(η)|2 dσ(η) =
ωd

Z(d, k)

N
∑

i,j=1

Pk(〈xi, xj〉).

Furthermore, we choose bk = (ak(δ)Z(d, k))
1

2 (k ≥ 1), use (2.8) and a
simple estimate for the first factor in (2.11) and extend the finite sum
in the second factor in (2.11) to obtain
(2.12)

|R(f, ZN)|2 ≤
1

ωd
max
1≤k≤n

Z(d, k)

ak(δ)
‖f‖2

[

1

N2

N
∑

i,j=1

g(〈xi, xj〉 − δ)− a0(δ)

]

.

By Lemma 2.2, we obtain the required estimate. �

Next we present:

Proof of Theorem 2. The key to the proof is an approximation kernel
due to Newman and Shapiro, see [30] and [17, Theorem 1]. For the
given m ≥ 1, let

(2.13) Km(t) := am

(

P d
m+1(t)

t− αm+1

)2

, t ∈ (−1, 1)
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where αm+1 is the largest zero of P d
m+1 and am is chosen such that

(2.14)

∫

Sd

Km(〈x, y〉)dµ(x) = 1, y ∈ Sd.

Note that Km is a polynomial of degree 2m. Set

(2.15) fm(x) :=

∫

Sd

f(y)Km(〈x, y〉)dµ(y), x ∈ Sd.

Then applying Theorem 1 with fm and using the triangle inequality
gives:

|R(f, ZN)| ≤ ‖f − fm‖∞ +(2.16)

+ max
1≤k≤2m

(

Z(d, k)

ωdak(δ)

)
1

2

‖fm‖2
(

E(g, ZN) +
1

N
g(1− δ)− a0(δ)

)
1

2

.

Now we observe in view of (2.13) that ‖fm‖2 ≤ ‖f‖2. Moreover, using
the definitions (2.13), (2.14) and well known lower bounds for αm+1,
see [37, pg 331], gives that

||f − fm||∞ ≤ 6dCf

m
.

These two later observations together with (2.16) give the theorem. �

3. Asymptotic equidistribution of s extremal

configurations

In this section we present the proofs of Theorems 3 and 4. To this
end, we will need to investigate the classical energy functionals as stud-
ied in [23]. We recall that these correspond to the following choices for
the admissible function g:

g(t) =
1

2α(1− t)α
for the energy corresponding to the potential

1

r2α
.

First we will need to compute the Gegenbauer coefficients for the func-
tions g(t − δ) in these cases. Throughout this section we will denote
λ = d−1

2
. We use

(3.1) (1 + δ − t)−α = (1 + δ)−α
∞
∑

n=0

(

n+ α− 1

n

)

tn

(1 + δ)n

and [27, pg 227]

(3.2) tn = 2−nn!

⌊n

2
⌋

∑

m=0

n + λ− 2m

m!(λ)n+1−m

Cλ
n−2m(t).
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Inserting (3.2) into (3.1) and changing the order of summation yields

2−α(1 + δ − t)−α(3.3)

= (1 + δ)−α
∞
∑

k=0

(α)k
(λ)k2k+α(1 + δ)k

×

×2F1

(

α+ k

2
,
α + k + 1

2
;λ+ k + 1;

1

(1 + δ)2

)

Cλ
k (t)

=

∞
∑

k=0

aαk (δ)P
(d)
k (t).

with

ak(δ) =
(α)k(d− 1)k

(d−1
2
)kk!2k+α(1 + δ)k+α

×(3.4)

×2F1

(

α + k

2
,
α + k + 1

2
;
d+ 1

2
+ k;

1

(1 + δ)2

)

,

where 2F1 denotes the basic hypergeometric function. Alternatively,
this expansion could be derived by computing the according Fourier

integrals. The coefficients of P
(d)
k in this expansion are positive and

decreasing functions of δ.
We also need the following inequality for the hypergeometric func-

tion, which was derived in [1]. For α = λ+ 1
2
= d

2

2F1

(

α + k

2
,
α + k + 1

2
;λ+ k + 1; x

)

≥

2α+k−1Γ(α + k + 1
2
)√

πΓ(α + k)

(

log
1

1− x
− 2ψ(k + α) + 4 log 2− 2γ

)

≥(3.5)

2α+k−1Γ(α + k + 1
2
)√

πΓ(α + k)
log

1

(α + k)2(1− x)
,

where ψ(x) = Γ′(x)
Γ(x)

denotes the digamma function and γ = −ψ(1) is the
Euler-Mascheroni constant. Furthermore, we have used the estimate
ψ(x) ≤ log x.
We are now able to present the

Proof of Theorems 3 and 4. We estimate the second term on the right
hand side of (1.12) first. Let ZN be a minimal energy point set for the
g-energy with g(t) = 1

(2−2t)
d
2

. From [23] it is known that

E(g, ZN) ≤
1

d
γd logN + Cd
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with γd given by (2.2) (notice that our definition of energy is twice
the energy defined in [23]). The best value for the constant Cd is still
unknown. From the computations in [23] it follows that Cd ≤ γd log π.
From (3.4) and (3.5) we know that

ak(δ) ≥ γd
Z(d, k)

(1 + δ)k+
d

2

log
1

2(k + d
2
)2δ

and

a0(δ) ≥
γd
2

(

log
1

δ
− 2ψ

(

d

2

)

+ 4 log 2− 2γ

)

.

We now assume that N ≥ (m + d/2)d. Inserting δ = N− 2

d into (1.12)
yields

(3.6) E(g, ZN) +
1

N
g(1− δ)− a0(δ) ≤ C ′

d

and therefore

|R(f, ZN)| ≤
12dCf

m
+ C ′

d

‖f‖2
√

2
d
logN − 2 log(m+ d

2
)

with C ′
d = Cd+γd(ψ(d/2)−2 log 2+γ). We now choosem := [

√
logN ]+

1 to obtain (1.15). Finally (1.16) follows using (1.10), (3.6) and [4,
Theorem 1]. �

References

[1] G. D. Anderson, R. W. Barnard, K. C. Richards, M. K. Vamanamurthy, and
M. Vuorinen, Inequalities for zero-balanced hypergeometric functions, Trans.
Amer. Math. Soc. 347 (1995), 1713–1723.

[2] G. Andrews, R. Askey, and R. Roy, Special functions, Encyclopedia of Math-
ematics and Its Applications, vol. 71, Cambridge University Press, 1999.

[3] V. V. Andrievskii and H.-P. Blatt, Discrepancy of signed measures and poly-
nomial approximation, Springer-Verlag, New York, 2002.

[4] V. V. Andrievskii, H.-P. Blatt, and M. Götz, Discrepancy estimates on the
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