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Abstract. We extend a result of J. Alexander and D. Zagier on the Garsia entropy of the
Erdős measure. Our investigation heavily relies on methods from combinatorics on words.
Furthermore, we introduce a new singular measure related to the Farey tree.

1. Introduction

This paper is devoted to the investigation of multiplicities of representations and related
combinatorial and probabilistic questions for a special class of linear numeration systems.
Non-uniqueness of radix expansions was extensively studied by Pál Erdős and his coauthors,
see for instance [14].

We will study numeration systems given by a linear recurring base sequence

Gn+m = Gn+m−1 + · · ·+Gn for n ≥ 0(1.1)

Gk = Gk−1 + · · ·+G0 + 1 for 0 ≤ k < m.(1.2)

Any positive integer n can be represented in a digital expansion

(1.3) n =

L
∑

ℓ=0

δℓ(n)Gℓ

with digits δℓ{0, 1} for 0 ≤ ℓ ≤ L, where the digits are computed by the greedy algorithm:
there is a unique integer L such that GL ≤ n < GL+1. Then n can be written as n =
δLGL + nL with 0 ≤ nL < GL and by iterating this procedure with nL the expansion (1.3)
is obtained. An extensive description of digital expansions with respect to linear recurring
base sequences is given in [15, 19, 20, 21]. In [19], especially dynamical properties of such
expansions are investigated. The corresponding shift transformation is the classical β-shift
investigated by A. Rényi and W. Parry [33, 35].

Recurrence (1.1) has the property that its dominating characteristic root β > 1 satisfying

βm = βm−1 + · · ·+ β + 1 m ≥ 2
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is a PV-number, i. e. β is an algebraic integer all of whose conjugates lie inside the unit
circle. This is a particular case of a classical result of A. Brauer [3] on polynomials with
decreasing coefficients.

In the present paper we will deal with questions related to the investigation of the distri-
bution µβ,b of sums of the form

∞
∑

n=1

δnβ
−n,

where δn are independent identically b-distributed random variables taking values in the set
{0, 1, . . . , ⌈β⌉ − 1}. Certainly, this distribution is obtained as an infinite convolution of the
measures b(βndx), where b is a probability measure on the set of digits. For instance β = 2
and b({0}) = b({1}) = 1

2
yields the Lebesgue measure, and β = 3 and b({0}) = b({2}) = 1

2
describes the classical Cantor measure. By a theorem of Jessen and Wintner [24] µβ,b is
either atomic, or purely singular, or absolutely continuous. P. Erdős [12] proved that for

β = 1+
√
5

2
, the golden ratio, and b({0}) = b({1}) = 1

2
, the uniform distribution, µβ,b is purely

singular. A year later [13] he proved that there is a γ > 1 such that for almost all β < γ the
measure µβ,b, for b the uniform distribution, is absolutely continuous; B. Solomyak [40] has
proved that one can take γ = 2, which is clearly best possible. We refer to the survey [34]
for further details and more recent developments. In [6] functional equations satisfied by the
density function are investigated. In a recent paper Lalley [28] considered digit distributions
b with b({0}) = p and b({1}) = 1 − p (0 < p < 1). In this case he proved for 1 < β < 2 a
PV-number that µβ,b is again purely singular.

In our instance b is the equidistribution on the digit set {0, 1}; we denote the corresponding
measure by µβ. From the classical proof of Erdős [12] it follows that µβ is purely singular
whenever β is a PV-number [37]. Garsia [17] introduced a new concept in the study of µβ,
which is now called Garsia entropy. He considered the finite convolutions b(βdx) ∗ b(β2dx) ∗
· · · ∗ b(βNdx). Let Gβ

N be the support of this atomic measure which assigns weight p(x) to
a point x, and define the Garsia entropy by

(1.4) H(Gβ
N) = −

∑

x∈Gβ

N

p(x) log2 p(x).

Then set

(1.5) Hβ = lim
N→∞

H(Gβ
N)

N log2 β
.

Garsia proved that Hβ < 1 implies that µβ is purely singular (for β < 2). Furthermore,
he observed that Hβ < 1 for any PV-number β; however, his arguments do not yield the
numerical value of Hβ.

Alexander and Zagier [1] found a constructive approach in the case of the golden ratio

β = 1+
√
5

2
, which leads to sharp bounds for Hβ in that case. In their proof they make

use of a graph-theoretic encoding of the different representations of a given number. The
corresponding graph is called the Fibonacci graph. We remark here that Garsia’s entropy
is the entropy of the random walk on this graph in the sense of Avez [2], Kăımanovich
and Vershik [25]. By the procedure studied in [1] this graph can be reduced in a well
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defined manner to the so called Euclidean tree. This is the complete binary tree with each
node associated a pair (a, b) of labels in the following way: the root is labelled (2, 1) and,
inductively, given a node at level n labelled with (a, b) its two successors at level n + 1 are
labelled (a + b, a) resp. (a + b, b). Thus this tree corresponds to the subtractive Euclidean
algorithm.

In Section 2 of the present paper we extend this constructive approach to the dominating
characteristic root β = βm ∈ (1, 2) of the so-called m-bonacci recurrence (1.1) satisfying

(1.6) βm = βm−1 + · · ·+ β + 1.

The associated m-bonacci graph is a planar graph whose combinatorial structure turns
out to be considerably more complicated than in the special instance m = 2 discussed above.
Therefore our discussion will avoid this graph theoretic description and will mainly use the
language of 0,1-sequences. We make use of well-suited generating functions and the method
of Guibas and Odlyzko for counting 0,1-strings with forbidden subwords (cf. [22]).

Our main result is the following theorem, which will be proved in Section 2.

Theorem 1. Let e(k, i) denote the number of steps in the subtractive Euclidean algorithm
applied to the pair (k, i) (i. e. e(i, i) = 0 and e(k + i, i) = e(k, i) + 1). Let furthermore

(1.7) κn =
∑

0<i<k
gcd(k,i)=1
e(k,i)=n

k log2 k

and

(1.8) T(x) = 1− 1

2

(

1− 3x

1− x

)2 ∞
∑

n=1

κnx
n.

If β = βm is the PV-number fulfilling βm = βm−1 + · · ·+ β + 1, then the constant Hβm
in

the asymptotic leading term of the Garsia entropy (cf. (1.5)) is given by

(1.9) Hβm
=

1

log2 βm
T(2−m).

In Section 3 a measure related to Minkowski’s singular function is defined. This measure
is used later to derive precise error bounds for the numerical values of the entropy.

In Section 4 estimates for the numerical values of Hβm
are deduced from this theorem.

Section 5 is devoted to the discussion of connections between the Euclidean tree and the
Farey tree and related singular measures, see also [27]. This gives interesting connections
to Minkowski’s ?(x)-function. We furthermore refer to other arithmetically defined singular
functions, such as Takagi’s function, which can be used for describing digital sum problems
such as (5.1).

2. Proof of the Theorem

We start with the remark that because of (1.6) and the fundamental observations of
A. Rényi and W. Parry [33, 35] in general a given real number will have several radix
expansions in base β = βm, which are encoded by 0,1-sequences. In the following we call
two finite 0,1-sequences of equal length N ≥ 0 equivalent, if they represent the same number
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in base β. The size of the corresponding equivalence classes will be called frequency in this
paper. We will use the notation ϕ(w) for the frequency of an equivalence class represented
by a word w ∈ {0, 1}∗. Let FN (k) denote the number of classes of 0,1-sequences of length

N with frequency k. Since the weights in the definition of H(Gβ
N) (cf. (1.4)) are 2−N times

the frequencies, we have

(2.1) H(Gβ
N) = −

∞
∑

k=1

kFN(k)2
−N log2

k

2N
= N −

∞
∑

k=1

kFN(k)2
−N log2 k.

For convenience we introduce the generating functions of the multiplicities FN (k)

(2.2)

fk(x) =
∞
∑

N=0

FN(k)x
N ,

Φ(x, s) =
∞
∑

k=1

ksfk(x).

We observe that

(2.3)

Φ(x, 1) =
∞
∑

N=0

2NxN =
1

1− 2x
,

∂Φ(x, s)

∂s

∣

∣

∣

∣

s=1

=
∑

k≥1
N≥1

kFN(k)(log k)x
N .

Therefore the generating function of the quantities (2.1) is given by

(2.4) H(x) =

∞
∑

N=0

H(Gβ
N)x

N =
x

(1− x)2
− 1

log 2

∂Φ(x/2, s)

∂s

∣

∣

∣

∣

s=1

.

In order to analyze the functions fk(x) we investigate the structure of the equivalence
classes of 0,1-words in detail. Observe that two strings are equivalent, if they can be trans-
formed into each other by a finite number of replacements of the subblock 01(m) by 10(m)

and vice versa. We call these blocks the characteristic blocks. The class of a 0,1-string,
which ends with either of these two blocks, is called relational.

Remark 1. Note that ϕ(δ1 . . . δn−1δn) = ϕ(δ1 . . . δn−1), δi ∈ {0, 1}, if and only if δ1. . . δn−1δn
is not in a relational class. Furthermore, for a relational class w with representatives w10
and w21 the frequency satisfies ϕ(w) = ϕ(w1) + ϕ(w2).

We denote all (possibly empty) sequences, which do not contain the subblocks 0(m) resp.
1(m), m-free. Note that all classes of 0,1-strings of frequency ≥ 2 can be generated from the
relational classes by appending an m-free 0,1-string. Furthermore, the classes of frequency
1 are generated by appending an m-free string to any of the sequences from (0(m))∗ =
{ε, 0(m), 0(2m), . . .} resp. (1(m))∗ (where ε denotes the empty string).
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The generating function of m-free strings can be computed immediately by the method
of Guibas and Odlyzko (cf. [22, 30]) to be

(2.5) S(x) =
1− xm

1− 2x+ xm
.

With this notation we have (by the preceding paragraph)

(2.6) f1(x) =
1 + xm

1− xm
S(x) =

1 + xm

1− 2x+ xm
,

and

(2.7) fk(x) = S(x)rk(x), k ≥ 2,

where rk(x) denotes the generating function of all strings in relational classes of frequency
k.

We proceed by analyzing the relational classes in further detail. For each relational class
there is a unique “shortest relational prefix”, i. e. a relational class whose representatives
are prefixes of elements of the given class and whose length is minimal with respect to this
property. These are exactly the relational classes of frequency 2.

In the following we will make use of a simple observation:

Remark 2. Every relational class has a representative of the form 0 . . . 0(m) or 1 . . . 1(m)

except for the class of strings equivalent to 01(m) and 10(m). Similarly, it has a representative
of the form 1 . . . 0(m) or 0 . . . 1(m).

The generating function of all shortest relational prefixes can be determined as follows:
each of these classes has a representative of the form 0∗w, with w = 01 . . . 0(m) or 1∗w with
w = 10 . . . 1(m), where w does not contain the subblocks 0(m) and 1(m) (except for the end);
furthermore, 01(m) is a shortest relational prefix. But we have to take care of the fact that
among those strings there are also strings that do not correspond to a shortest relational
prefix, namely the strings of the form 0∗w, with w = 01 . . . 0(m−1)10(m), and the strings
1∗w with w = 10 . . . 1(m−1)01(m). The latter strings are in bijective correspondence with
the strings 01 . . . 0(m)1(m) and 10 . . . 1(m)0(m) by using the replacement rule 10(m) 7→ 01(m).
In order to count all words as described above, we introduce the generating function of all
m-free strings, which begin and end with the same digit, Se(x); similarly, we define Sd(x)
as the generating function of m-free strings with different digits at the beginning and the
end. Then we have

1 + Se(x) + Sd(x) = S(x) and Sd(x) = Se(s)(x+ x2 + · · ·+ xm−1)

and by inserting the second equation into the first one

(2.8)
1− xm

1− x
Se(x) + 1 = S(x).

All strings of the form 01 . . . 0(m) and 10 . . . 1(m) can be obtained by adding one digit at the
beginning and m digits at the end of a string counted by Se(x). Furthermore, by the above
mentioned bijection, removing all strings of the form 01 . . . 0(m−1)10(m) and 10 . . . 1(m−1)01(m)
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amounts a factor of (1−xm) in the generating function, and adding 0∗ or 1∗ in the beginning
a further 1

1−x
-factor. Thus by (2.8)

xm+1 1− xm

1− x
Se(x) + xm+1 = xm+1S(x)

is the generating function of all shortest relational prefixes, where the +xm+1-term corre-
sponds to the string 01(m).

Observe that the deletion of the shortest relational prefix is an invariant (shift) operation
on the set of strings. Thus we have

(2.9) fk(x) = S(x)rk(x) = S(x)2lk(x),

where lk(x) is the generating function of all relational classes of frequency k having a repre-
sentative of the form w = 10(m)w′. In the following we will give a more detailed description
of these words.

Remark 3. For every such relational class we can find a representative of the form

10(m)e1z1e2z2 . . . zs−1es

where eℓ ∈ {0(m), 1(m)}∗ and zℓ is a word starting with 0 and ending with 10(m) but not with
0(m−1)10(m) resp. a word starting with 1 and ending with 01(m) but not with 1(m−1)01(m)

resp. the word 10(m) (and m-free except for the explicitly mentioned occurrences).

Now we have to take care of the frequency of a word w = 10(m)e1z1e2z2 . . . es. For this
purpose we write zℓ = z′ℓvℓ with vℓ ∈ {10(m), 01(m)}, so that

(2.10) w = (10(m)e1)z
′
1(v1e2)z

′
2 . . . z

′
s−1(vs−1es).

Observe that the intermediate subblocks z′i cannot be altered by the replacement rule
01(m) ↔ 10(m) and are therefore unique. Thus the representatives for the classes of the
subblocks 10(m)ei can be chosen independently. Altogether we have (v0 = 10(m))

(2.11) ϕ((10(m)e1)z
′
1(v1e2)z

′
2 . . . z

′
s−1(vs−1es)) =

s
∏

ℓ=1

ϕ(vℓ−1eℓ).

In order to compute the frequencies ϕ(vℓ−1eℓ) for eℓ ∈ {0(m), 1(m)}∗ we write eℓ =
η1η2 . . . ηn, where ηj ∈ {0(m), 1(m)}. We introduce two auxiliary functions ϕ1 and ϕ2 de-
fined by

(2.12)

ϕ1(vη1η2 . . . ηn) = ϕ1(vη1 . . . ηn−1) + ϕ2(vη1 . . . ηn−1),

ϕ2(vη1η2 . . . ηn) =

{

ϕ1(vη1 . . . ηn−1) for ηn−1 6= ηn
ϕ2(vη1 . . . ηn−1) for ηn−1 = ηn,

ϕ1(v) = 1, ϕ2(v) = 1

for v ∈ {01(m), 10(m)}. Then
(2.13) ϕ(vη1η2 . . . ηn) = ϕ1(vη1η2 . . . ηn) + ϕ2(vη1η2 . . . ηn).

This follows from the fact that for a given representative of a relational class w there exist
two words w1, w2 ∈ {0, 1}∗ such that w10 and w21 are equivalent to w. The frequency ϕ(w)
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is clearly given by the sum of the frequencies of the words w1 and w2 by Remark 1. In
order to compute these frequencies, we have to find w1 and w2: without loss of generality
let us consider a word w = 10(m)η1 . . . ηn with ηi ∈ {0(m), 1(m)} and ηn = 0(m). Assume
furthermore that ηn−k−1 6= ηn−k = ηn−k+1 = · · · = ηn. Then w1 and w2 are given by
w1 = 10(m)η1 . . . ηn−10

(m−1) and w2 = 10(m)η1 . . . ηn−k−2(1
(m−1)0)(k+1)1(m−1), where w2 can be

found by repeated application of the replacement rule 10(m) 7→ 01(m) (because of symmetry
for ηn = 1(m) the same transformations can be made with interchanging 0 and 1). The
frequency of w1 is equal to the frequency of 10(m)η1 . . . ηn−1 and the frequency of w2 is equal
to the frequency of 10(m)η1 . . . ηn−k−2, since by Remark 1 we have

ϕ(10(m)η1 . . . ηn−k−2(1
(m−1)0)(k−2)1(m−1)) = ϕ(10(m)η1 . . . ηn−k−2(1

(m−1)0)(k−3)1(m−1)) =

· · · = ϕ(10(m)η1 . . . ηn−k−21
(m−1)) = ϕ(10(m)η1 . . . ηn−k−2).

By the definition of ϕ1 (2.12) ϕ1(w) = ϕ(w1). Furthermore, for k = 0 in the above argument
we have ϕ(w2) = ϕ(10(m)η1 . . . ηn−2) = ϕ1(10

(m)η1 . . . ηn−1). If k > 0, which is ηn−1 = ηn, we
have ϕ(w2) = ϕ(10(m)η1 . . . ηn−k−2); since by Remark 1 this implies that none of the words
η1 . . . ηn−ℓ−2 for ℓ = 0, . . . , k is relational, we have

ϕ(w2) = ϕ(10(m)η1 . . . ηn−k−2) = ϕ1(10
(m)η1 . . . ηn−k−1) =

ϕ2(10
(m)η1 . . . ηn−k) = · · · = ϕ2(10

(m)η1 . . . ηn−1).

By the above construction a labelled complete binary tree can be defined as follows:
every node at level ℓ ≥ 0 can be represented by a string of length ℓ: η1 . . . ηℓ, and the two
successors are given by η1 . . . ηℓ0

(m) and η1 . . . ηℓ1
(m). Every node e is labelled by the pair

(ϕ1(ve), ϕ2(ve)). By the rules given in (2.12) the two successors of a node labelled with a
pair (a, b) has successors labelled with (a+ b, a) and (a+ b, b). From this rule it is clear that
the labels satisfy gcd(a, b) = 1. Thus, starting with root labelled (1, 1) at level 0, the labels
of the nodes in the ℓ-th level of this tree are all pairs (a, b) with gcd(a, b) = 1 which need ℓ
steps of the subtractive Euclidean algorithm to compute the gcd. In this way we define for
any coprime a and b a function by setting e(a, b) = ℓ. This tree is called Euclidean tree.

Now we encode the above combinatorial descriptions in generating functions. Let αk(x)
denote the generating functions of all strings vδ1 . . . δn corresponding to nodes with frequency
k ≥ 2 in the Euclidean tree (obviously, n has to be a multiple of m). This function is given
by

(2.14) αk(x) = xm+1
∑

0<i<k/2
gcd(k,i)=1

xme(k−i,i) =
∑

0<i<k
gcd(k,i)=1

x1+me(k,i), k ≥ 2,

where the factor xm+1 corresponds to the prefix v above.
The generating function g(x) for the words z′i can be determined as follows: first observe

that xm+1g(x) is the generating function of the words zi. The zi are formed from all m-free
strings which begin and end with the same digit ε by adding between 1 and m−1 digits 1−ε
in the beginning and m digits 1−ε in the end. This gives the generating function (x+ · · ·+
xm−1)Se(x)x

m. Then we have to remove all strings ending with 0(m−1)10(m) or 1(m−1)01(m);
furthermore, we have to add the string 10(m) and subtract the strings 0(m−1)10(m) and
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1(m−1)01(m), which are produced additionally by the above procedure. This gives for the
generating function

xm+1g(x) = (x+ · · ·+ xm−1)Se(x)x
m + xm+1 − 2x2m

and using (2.8)

(2.15) g(x) =
1− 2xm−1 + xm

1− 2x+ xm
= (1− xm−1)S(x)− xm−1.

By (2.11) the generating function lk(x) satisfies the recurrence relation

(2.16)

lk(x) =
∑

d|k
d6=1,k

αd(x)l k
d
(x)g(x) + αk(x), k ≥ 2

l1(x) = 1.

We introduce the following Dirichlet generating functions

(2.17)

A(x, s) =
∞
∑

k=2

ksαk(x)g(x)

L(x, s) = 1 +
∞
∑

k=2

kslk(x)g(x).

Because of (2.16) we have

(2.18) L(x, s) =
1

1−A(x, s)
.

Alternatively, the last relation can be obtained by observing that L is the generating function
of the “sequence construction” (cf. [38]) applied to the set {10(m)ez′} where e and z are as
in (2.10).

In order to evaluate H(x) in (2.4) we need ∂Φ
∂s
. By (2.9), (2.17), and (2.18) we have

(2.19)

∂Φ

∂s
(x, 1) =

S(x)2

g(x)

∂L

∂s
(x, 1)

=
S(x)2

g(x)

1

(1−A(x, 1))2
∂A

∂s
(x, 1)

=
S(x)2

g(x)
L(x, 1)2

∂A

∂s
(x, 1).

Now we use (2.3):

1

1− 2x
= Φ(x, 1) = f1(x) +

S(x)2

g(x)
(L(x, 1)− 1) .
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Inserting for S(x), g(x) and f1(x) we obtain

(2.20)

S(x)L(x, 1) =
g(x)

S(x)

1

1− 2x
− g(x)

S(x)
f1(x) + S(x)

=
1− 3xm

(1− xm)(1− 2x)
.

Using (2.20) we obtain from (2.19)

∂Φ

∂s
(x, 1) =

(1− 3xm)2

(1− xm)2(1− 2x)2
1

g(x)

∂A

∂s
(x, 1)

=
(1− 3xm)2

(1− xm)2(1− 2x)2
a(x),

where (by (2.14))

a(x) =
∑

0<i<k
gcd(k,i)=1

x1+me(k,i)k log2 k =
∞
∑

N=1

κNx
mN+1.

Inserting the last result in (2.4) yields the theorem.

3. A singular measure related to Minkowski’s function

In order to give precise estimates for the κn’s we study the sequence ν1 = κ1 = 2,
ν2 = κ2−6κ1 = 6 log2 3−12, νn+2 = 9κn−6κn+1+κn+2 for n ≥ 1, which are the coefficients
of the function (1 − 3x)2

∑∞
n=1 κnx

n. For the computation of the νn we look at the local
structure of the Euclidean tree:

(a,b)

n-1

n

n+1

n+2

e (a,b)

(a-b,b)

(a,a-b)

(a+b,a) (a+b,b) (2a-b,a) (2a-b,a-b)

(2a+b,a+b) (2a+b,a) (a+2b,a+b) (a+2b,b) (3a-b,2a-b) (3a-b,a) (3a-2b,a-b) (3a-2b,2a-b)
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We collect the “boxed” terms in the above picture to obtain

νn+2 =
∑

0<b<a
e(a,b)=n
gcd(a,b)=1

af

(

b

a

)

with

f(x) = x log2

(

(2− x)6(2 + x)(1 + 2x)2

(3− 2x)2(3− x)(1 + x)6

)

+ log2

(

(3− 2x)3(3− x)3(2 + x)2(1 + 2x)

(2− x)12(1 + x)6

)

.

Thus νn can be written as an integral with respect to a linear combination of point measures:

νn+2 = 3n
∫ 1

0

f(x) dFn(x),

where
Fn(t) = 3−n

∑

0<b<a
e(a,b)=n
gcd(a,b)=1

b
a
<t

a.

The normalizing factor 3−n is chosen in order to obtain weak convergence of Fn. For the
proof of this fact we need an auxiliary sequence of distribution functions

Gn(t) = 3−n
∑

0<b<a
e(a,b)=n
gcd(a,b)=1

b
a
<t

b.

Now it is easy to see that

(3.1)

Fn+1(t) =
1

3

(

Fn

(

t

1− t

)

+Gn

(

t

1− t

))

Gn+1(t) =
1

3
Gn

(

t

1− t

) for t ≤ 1

2

and

(3.2)

Fn+1(t) = 2− 1

3

(

Fn

(

1− t

t
+ 0

)

+ Gn

(

1− t

t
+ 0

))

Gn+1(t) = 1− 1

3
Fn

(

1− t

t
+ 0

) for t >
1

2
;

the initial distributions are given by

F0(t) =

{

0 for t ≤ 1
2

2 for t > 1
2

G0(t) =

{

0 for t ≤ 1
2

1 for t > 1
2
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Using the matrices

MA =
1

3

(

1 1
0 1

)

MB =
1

3

(

1 1
1 0

)

,

writing ~Fn(t) = (Fn(t), Gn(t))
T and ~v = (2, 1)T this can be rewritten as

(3.3) ~Fn+1(t) =

{

MA
~Fn(

t
1−t

) for t ≤ 1
2

~v −MB
~Fn(

1−t
t

+ 0) for t > 1
2
.

Notice that this recurrence is rather similar to the functional equation of Minkowski’s ?(x)-
function:

?(x) =

{

1
2
?
(

x
1−x

)

for x ≤ 1
2

1− 1
2
?
(

1−x
x

)

for x > 1
2
.

Now similar arguments as those used in [36] to obtain an exact formula for ?(x) in terms

of the continued fraction expansion of x can be used to obtain an expression for ~Fn(t). Let
0 < t < 1 be given by its continued fraction expansion t = [a1, a2, . . .] and let k and ℓ be

given by a1 + · · ·+ ak + ℓ = n with 0 ≤ ℓ < ak+1. Then ~Fn(t) can be computed from (3.3)

(3.4)
~Fn([a1, a2, . . .]) =

k
∑

m=1

(−1)m−1Ma1−1
A MBM

a2−1
A MB · · ·Mam−1

A ~v

+ (−1)kMa1−1
A MB · · ·Mak−1

A MBM
ℓ
A
~F0([ak+1 − ℓ, ak+2, . . .]).

We note now that the matrix product can be given in terms of the convergents of t:

Ma1−1
A MBM

a2−1
A MB · · ·Mam−1

A = 3−(a1+···+am−1)

(

qm−1 qm − qm−1

pm−1 pm − pm−1

)

.

Furthermore, the last summand is non-zero only if ak+1 − ℓ = 1. Thus we obtain

Fn([a1, a2, . . .]) =

k
∑

m=1

(−1)m−13−(a1+···+am−1)(qm + qm−1)

+ (−1)k3−(a1+···+ak+1−1)(qk+1 + qk)δℓ,ak+1−1

Gn([a1, a2, . . .]) =

k
∑

m=1

(−1)m−13−(a1+···+am−1)(pm + pm−1)

+ (−1)k3−(a1+···+ak+1−1)(pk+1 + pk)δℓ,ak+1−1.

Now we define

(3.5)

F ([a1, a2, . . .]) =
∞
∑

k=1

(−1)k−13−(a1+···+ak−1)(qk + qk−1) q0 = 1

G([a1, a2, . . .]) =
∞
∑

k=1

(−1)k−13−(a1+···+ak−1)(pk + pk−1) p0 = 0;
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these series are easily seen to converge, since pk, qk < ϑa1+···+ak (ϑ = 1+
√
5

2
, cf. [36]). Fur-

thermore, these functions are continuous, which can be proved along the same lines as the
continuity of ?(x). Finally, dG(x) = xdF (x) by definition.

In [1], formula (3.4), the following rigorous bounds for the µn = 1
2
(κn+1 − 3κn) are

established

(3.6) log2
3

2
<

µn

3n−1
<

2

3
.

The integral

(3.7)

∫ 1

0

f(x) dF (x)

has to be 0, since otherwise 3−nνn would have a nonzero limit, which would imply that κn

would be of order of magnitude n23n; this contradicts (3.6).
Using the fact that the integral (3.7) vanishes we derive

(3.8) 3−nνn+2 =

∫ 1

0

f(x) dFn(x) =

∫ 1

0

(F (x)− Fn(x)) df(x).

From the rate of convergence of the series (3.5) it is clear that

|F (x)− Fn(x)| = O
((

1 +
√
5

6

)n)

;

in the following we will work out a much better bound which also answers a question posed
in [1] p. 133: “There is no reason to expect them (the coefficients) to be positive and
decreasing to zero, although the table indicates that they are. We can prove only that λn

(the Taylor coefficients of T (x) in (1.8)) is O((4
3
)
n
2 )).”

We study the centralized moments of the distributions Fn:

(3.9) m(k)
n =

∫ 1

0

(

x− 1

2

)k

dFn(x) = 3−n
∑

0<b<a
(a,b)=1
e(a,b)=n

a

(

b

a
− 1

2

)k

;

it is clear from our previous knowledge on the functions Fn that m
(0)
n = 2, m

(2k+1)
n = 0 for

all n ≥ 0, and m
(2k)
0 = 0 for k ≥ 1. Thus it suffices to study the even moments.

In order to get precise information on the rate of convergence of the m
(2k)
n ’s for n → ∞

we derive a recurrence formula for these moments. Since a pair (a, b) at level n produces
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two pairs (a+ b, a) and (a + b, b) at level n + 1, we have the following recursion

(3.10)

m
(2k)
n+1 = 3−n−1

∑

0<b<a
(a,b)=1
e(a,b)=n

(a+ b)

(

(

a

a+ b
− 1

2

)2k

+

(

b

a+ b
− 1

2

)2k
)

= 3−n−1
∑

0<b<a
(a,b)=1
e(a,b)=n

a

(

3

2
+

(

b

a
− 1

2

))

(

(

a

a+ b
− 1

2

)2k

+

(

b

a+ b
− 1

2

)2k
)

.

Now we expand the summand into its Taylor series around 1
2
to obtain (for k ≥ 1)

(3.11) m
(2k)
n+1 = 2 · 6−2k +

∞
∑

ℓ=1

b
(2k)
2ℓ m(2ℓ)

n

with

(3.12) b
(2k)
2ℓ = 2−2k

(

2

3

)2ℓ 2k
∑

r=0

(

2k

r

)(

2ℓ+ r − 2

2k − 2

)

3−r.

Now the computation of the moments m
(2k)
n can be viewed as an iteration of a linear map

with positive coefficients. In order to make this sensible we have to introduce the space on
which the iteration has to be performed:

(3.13)
ℓ̃∞ =

{

(x(2), x(4), . . .) | sup
k

|x(2k)|22k < ∞
}

‖(x(2), x(4), . . .)‖ = sup
k

|x(2k)|22k.

A simple computation shows that

22k
∞
∑

t=1

b
(2k)
2t 2−2t =

1

3
− 3−2k,

which implies that the norm of the linear operator defined by b
(2k)
2ℓ is 1

3
. Furthermore, by

positivity of this operator, the sequences m
(2k)
n are monotonically increasing to the moments

of dF which we denote by m(2k). Using the error estimate in Banach’s fixed point theorem
we obtain

0 ≤ m(2k) −m(2k)
n ≤ 2−2k3−n−1.

We use the Taylor expansion of f(x) around x = 1
2
:

f(x) = log2
409600000

387420489
− 8

5 log 2

(

x− 1

2

)2

+
∞
∑

k=2

f2k

(

x− 1

2

)2k

with f2k > 0 for k ≥ 2.
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Putting everything together 3−nνn can be bounded:

− 0.00151 . . . · 3−n =
f(0)− f(1

2
)− 1

4
f2

3
3−n

= log2
409600000

387420489
m(0) +

8

5 log 2
m(2) +

∞
∑

k=2

f2k
(

m(2k) − 2−2k3−n−1
)

≤
∫ 1

0

f(x) dFn(x)

≤ log2
409600000

387420489
m(0) − 8

5 log 2

(

m(2) − 1

12
3−n

)

+

∞
∑

k=2

f2km
(2k) =

2

15 log 2
3−n.

Therefore we have

(3.14) −0.00151 . . . · ≤ νn ≤ 2

15 log 2
= 0.192359 . . . for n ≥ 3.

4. Bounds for the Entropy

The function T(x) introduced in (1.8) was extensively studied in section 4 of [1]. In
particular it follows from these studies that the constant Hβm

may be expressed as

Hβm
log2 βm = 1− 1

2

(

1− 3 · 2−m

1− 2−m

)2 ∞
∑

n=1

κn2
−mn(4.1)

= 1− 1− 3 · 2−m

(1− 2−m)2

∞
∑

n=1

µn2
−mn(4.2)

= 1− 1

(1− 2−m)2

∞
∑

n=1

νn2
−mn,(4.3)

where µn = 1
2
(κn − 3κn−1).

If (4.3) is truncated after N terms, the error EN,m can bounded using (3.14)

−0.00151 · 2−m(N+1)

(1− 2−m)3
≤ EN,m ≤ 1

15 log 2

2−m(N+1)

(1− 2−m)3
.

By computing 26 coefficients κn the following table of numerical values forHβm
(2 ≤ m ≤ 13)

can be established.
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m Hβm

2 0.995713126685555
3 0.980409319534731
4 0.986926474333800
5 0.992585300274171
6 0.996032591584967
7 0.997937445507094
8 0.998944915449832
9 0.999465368055570
10 0.999730606878347
11 0.999864704467762
12 0.999932181983893
13 0.999966043207405
14 0.999983008336978
15 0.999991500519328

It is clear from (4.1) and the fact that

βm = 2−m2−m +O(2−m)

thatHβm
→ 1 (exponentially) form → ∞. This reflects the observation that the dependence

between digits becomes weaker for larger values of m.

5. Concluding Remarks

In this section we want to indicate some further problems of arithmetical and dynamical
nature concerning linear numeration systems. The first kind of such problems is related
to the asymptotic behaviour of digital sums. The summatory function of the sum-of-digits
function and even more generally completely G-additive functions are studied in a series
of papers (cf. [20, 21, 9, 10, 11, 7, 8]). Note that a G-additive function is an arithmetic
function satisfying the equation

f

(

K
∑

k=0

δkGk

)

=

K
∑

k=0

f(δkGk),

whereas an arithmetic function is called completely G-additive, if it satisfies

f

(

K
∑

k=0

δkGk

)

=

K
∑

k=0

f(δk).

For instance, numeration systems generated by substitutions over finite alphabets are
studied in [10]. It is shown there that for a given completely G-additive function f the
following asymptotic formula holds

(5.1)
∑

n<N

f(n)k = CN(logN)k +

k
∑

ℓ=1

N(logN)k−ℓFℓ,k(logN) + o(N),
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where Fℓ,k denote continuous periodic functions. For the special case of the summatory
function of the sum-of-digits with respect to the Fibonacci expansion (i.e. Gn+2 = Gn+1+Gn,
G0 = 1, G1 = 2) such a result is due to Coquet and van den Bosch [5]. More general
expansions in connection with formal languages and substitutions were investigated in [16,
29, 23].

In the case of binary and more generally q-adic radix expansions the moments of the
sum-of-digits function were studied in [4]. However, the continuity of the corresponding
fluctuation functions Fℓ,k in (5.1) remained an open problem for k ≥ 3 until it could be
proved in the special case k = 3 in [18] and in general in [31, 32]. The proof of continuity
in the general case is based on a new approach using Takagi’s singular function related to
the so-called binomial measure (cf. [41]).

A singular function corresponding to the subtractive Euclidean algorithm is the Minkowski
?(x)-function. This function is defined by an invariant measure related to the map

x 7→
{

x
1+x

for 0 ≤ x ≤ 1
2

1
1+x

for 1
2
< x ≤ 1.

We note here that based on (3.5) a general class of related functions can be introduced. An
important tool for the study of these functions is the Farey-tree which is a graph of the
same structure as the Euclidean tree; the only difference being that the nodes of a fixed
level are permuted. For detailed information we refer to [27, 42, 43]. In particular, various
dynamical properties of the above shift map are investigated. For classical papers in this
direction we refer to [26, 36].

In a remarkable recent paper N. Sidorov and A. Vershik [39] studied the Erdős measure
with the help of a dynamic approach including the investigation of various properties of the

so called golden shift related to the Fibonacci number system (β = 1+
√
5

2
). They consider

Σ = {0, 1}N (equipped with the infinite product λ′ of the uniform distribution on the factors)
and independent random variables Ek : Σ → {0, 1}, the k-th projections. They define a
map L′ : Σ → [0, 1] given by

L′(ε1, ε2, . . .) =
∞
∑

k=1

εkβ
−k−1.

Let X ⊂ Σ denote the shift-invariant subspace

X = {(ε1, ε2, . . .) | ∀k ≥ 1(εk, εk+1, . . . , εk+m−1) <lex (a0, . . . , am−1)}
with respect to the one-sided shift τ(ε1, ε2, . . .) = (ε2, ε3, . . .). Furthermore, they consider
the map L : X → [0, 1] defined by L(ε1, ε2, . . .) =

∑∞
k=1 εkβ

−k and set T = LτL−1. It is easy
to see that T (x) = {βx}, and this transformation on [0, 1] is known as the β-shift, cf. [33].
Parry has found the unique T -invariant measure π which is equivalent to Lebesgue measure.
Observe that λ′ is τ -invariant on Σ and L−1(π) is τ -invariant on X . In these terms the
Erdős measure µβ can be written as L′(λ′). Now using the normalization mapping Σ → X ,
which identifies distinct digital representations of one number, an application of the ergodic
theorem proves that the Erdős measure is singular with respect to Lebesgue measure. For
more details in the we refer to [39]. It would be very interesting to extend this approach to
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more general linear numeration systems. However, it seems that specific properties of the
golden ratio influence the method significantly.

Acknowledgement. We are indebted to two anonymous referees for many valuable
remarks concerning the presentation of the paper.
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and related problems. Mh. Math., 126:215–261, 1998.
[40] B. Solomyak. On the random series

∑
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