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Abstract. We study dynamical properties of digital representations of the Gaussian
integers. We are mostly concerned with a specific cocycle defined by the sum-of-digits
function sb with respect to the base b representation of Z[i]. This is used to derive
uniform distribution results for the double sequence z 7→ {αsb(z)} for irrational α and z

in large circles and other domains.

1. Introduction

The statistical properties of representations of integers with respect to a given base
sequence is a classical area of investigation and there exists a vast literature on this topic.
The first works on this subject have dealt with systems of numeration of the integers with
respect to a fixed integer basis. The sum-of-digits function related to this representation
of the integers plays a special role here, because of its many structural properties and also
because of the diversity of the methods used for its investigation. See for example [3, 5, 6,
9, 10, 12, 20, 38]. These investigations have been progressively extended to more general
numeration systems given by strictly increasing sequences of integers, especially solutions
of linear recurrences [4, 13, 15]. On the other hand the analogous studies for systems of
numeration in number fields is more recent. After the arithmetic works [22, 23, 27] which
describe the possible canonical radix number systems in the orders of number fields, studies
of the statistical properties were started recently [14, 37].

In this paper the sum-of-digits function will also be our principal object of study. We will
investigate its properties from the point of view of ergodic theory as it was done in [13, 31].
In order to describe the essential ideas without having to introduce too much terminology,
we have restricted this work to canonical number systems in the Gaussian integers. These
were characterized in [23] as given by the bases b = −a ± i, with a ∈ N \ {0}. These
numeration systems lead to a natural Z2-action on a compact group K(b). The interest
of this study is not the construction of these groups as projective limits of finite groups,
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but the construction of Z2-cocycles from the associated sum-of-digits function sb, whose
ergodic properties are studied in detail.

Section 2 provides the ergodic machinery used later. Essentially, this is K. Schmidt’s
[35] characterization of ergodic extensions of a cocycle. The Z2-actions T under consid-
eration are uniquely ergodic, but not continuous, which poses the question of identifying
the generic points in order to make the results applicable to prove uniform distribution of
related sequences. This problem is solved by an extension of a result in [30] obtained for
skew products of sufficiently regular transformations. Finally, we have used an immediate
extension of theorems of Helson [16] to establish the pure character of the spectrum of the
dynamical system associated with the sum-of-digits function.

Section 3 describes the dynamical system associated with a complex basis b for the
Gaussian integers Z[i] and shows the unique ergodicity of the cylindric extension TΣ given
by the cocycle Σ associated to the sum-of-digits function sb (cf. (3.5) for the definition

of Σ). For an arbitrary character ψ ∈ Ẑ we consider the compact group K(b) × Gψ

with Gψ = ψ(Z) equipped with its Haar measure. We introduce the skew product T
Σψ
g :

(x, ξ) 7→ (x+ g, ξΣψ(g, x)) on K(b)×Gψ with Σψ = ψ ◦Σ and prove that the spectrum of
the dynamical system is purely singular continuous (or purely discrete for a finite number
of characters) in the orthocomplement of the Z2-action T . These spectral properties are
quite similar to those observed in the case of the sum-of-digits functions in Cantor scales
(see e. g. [34]).

One consequence of the unique ergodicity of TΣψ is the uniform distribution modulo 1
of the double-sequence z 7→ {αsb(z)} (for irrational α) (z ∈ Z[i]) in the following sense:

lim
N→∞

1

πN
#
{
z ∈ Z[i] | |z|2 < N, {αsb(z)} ∈ J

}
= |J |

for all intervals J ⊂ [0, 1[ ({x} denotes the fractional part of x).
In section 4 we study the distribution of the double sequence z 7→ (arg(z), {αsb(z)}) in

]− π, π]× [0, 1[ for z in large circles by the use of classical methods from analytic number
theory. Here we also obtain estimates for the discrepancy of this sequence depending on
the approximation type of α.

2. Cocycles and Ergodic Transformation Groups

In this section we recall classical definitions and properties from ergodic theory; we refer
the reader to the book of K. Schmidt [35] for the omitted proofs and more details on the
subject.

2.1. G-cocycles. In the sequel (X,B) will be a standard Borel space (i.e. B is the Borel
σ-algebra of a metrizable and locally compact topology on X). Let µ be a Borel probability
measure on (X,B). Let G denote a countable group with identity e. An action TG (or
simply T ) of G on (X,B, µ) is given by a homomorphism

T : g 7→ Tg ∈ Aut(X,B, µ),
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where Aut(X,B, µ) denotes the group of automorphisms of (X,B, µ) (equipped with the
weak topology of Halmos).

Let A be an Abelian locally compact metrizable group (the group law will be written
additively).

Definition 1. A T -cocycle (or simply a cocycle, if the underlying action T is fixed) is a
Borel map

a : G×X → A

such that

(i) a(gh, x) = a(g, Thx) + a(h, x) µ− a.e.

(ii) µ

(⋃

g∈G

({x | Tgx = x} ∩ {x | a(g, x) 6= 0})
)

= 0.

We usually assume that T is aperiodic, i.e. µ({x | ∃g 6= e, Tgx = x}) = 0. In this case
condition (ii) has to be replaced by

(ii′) µ ({x | a(e, x) 6= 0}) = 0.

Definition 2. A cocycle a(·, ·) is called a T -coboundary if there exists a Borel map c :
X → A, such that

a(g, x) = c(Tgx)− c(x) µ− a.e.

It is called trivial, if it is the sum of a T -coboundary and a function, which only depends
on g.

2.2. Examples.

Example 1. G = Z, Tn = T n for some aperiodic T ∈ Aut(X,B, µ). For any Borel map
f : X → A we associate the cocycle

af (n, x) =

n−1∑

k=0

f ◦ T k(x)for n > 00for n = 0−
−1∑

k=n

f ◦ T k(x)for n < 0.

Example 2. G = Z2, X = K(b), the b-compactification of Z[i] with b = −a + i, a ∈ N∗

(see Section 3):

T(n,m) : x 7→ x+ n+ im

sb(n+ im) = b-ary sum of digits of n+ im (cf. (3.2)).

Σ ((n,m), x) = lim
r + is→ x
in K(b)

r + is ∈ Z[i]

(sb(n+ r + i(m+ s))− sb(r + is))

(except for x in a set D with µ(D) = 0).
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2.3. Essential Values of a Cocycle. We assume that the action T is ergodic on (X,B, µ),
i.e.

∀B ∈ B, ∀ g ∈ G : TgB = B =⇒ µ(B)µ(X \B) = 0.

We fix a cocycle a : G × X → A. If A is not compact, let Ā = A ∪ {∞}, the one point
compactification of A and set a +∞ =∞ for all a ∈ Ā.
Definition 3. α ∈ Ā is said to be an essential value of a if for every neighbourhood N(α)
of α in Ā and for every B ∈ B with µ(B) > 0,

(2.1) µ

(⋃

g∈G

(
B ∩ T−1

g (B) ∩ {x | a(g, x) ∈ N(α)}
)
)
> 0.

Let

Ē(a) = {α ∈ Ā | α is an essential value of a}
E(a) = Ē(a) ∩ A.

We have the following properties:

(1) If b : G×X → A is a coboundary then Ē(a+ b) = Ē(a) and E(a+ b) = E(a).
(2) E(a) is a closed subgroup of A.
(3) a is a coboundary ⇔ Ē(a) = {0}.

2.4. The Skew Product T a. We assume that (X,B, µ) is non-atomic. Let hA be the
Haar measure on A. If A is compact, hA will be normalized by hA(A) = 1. If A is discrete,
hA will be normalized by hA({0}) = 1 or by hA({0}) = 1

#A
, if A is finite. Let

X̃ = (X × A,B ⊗ BA, µ⊗ hA),
where BA is the Borel σ-algebra of A. We define a G-action T a on X̃ by

T ag (x, α) = (Tgx, α + a(g, x)).

Clearly, T ag ∈ Aut(X̃). The action T a is called the skew product of T with respect to a.

If a′ = a + b, where b is a coboundary, then T a ≃ T a
′

. More explicitly, if b(g, x) =
c(Tgx)− c(x), the conjugate automorphism is given by

Φc : X × A→ X × A
(x, α) 7→ (x, α + c(x)).

Let I be the set of T a-invariant elements in B ⊗ BA and put

I(a) = {β ∈ A | µ⊗ hA(τβB △ B) = 0 for every B ∈ I}
where τβ : X ×A→ X × A is given by

τβ(x, α) = (x, α + β).

Theorem 1. (K. Schmidt [35], Theorem 5.2) Let T be an ergodic action on (X,B, µ) which
is assumed to be non-atomic. Then for any cocycle a : G×X → A:

I(a) = E(a).
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Remark 1. We may define I(a) as follows

I(a) = {β ∈ A | ∀f ∈ L∞(µ⊗ hA) : (∀g ∈ G : f ◦ T ag = f ⇒ f ◦ τβ = f)}.

Corollary 1. If T is ergodic:

T a is ergodic ⇔ E(a) = A.

2.5. Functional equations and ergodicity. In this section we assume that A is com-
pact.

Theorem 2. Assume that T is an ergodic action of G on on the probability space (X,B, µ).
Then the following are equivalent:

(i) T a is ergodic for µ⊗ hA
(ii) ∀χ ∈ Â, χ 6≡ 1 the functional equation

(2.2) ∀g ∈ G : F (x) = χ(a(g, x))F (Tg(x)) µ− a.e.

has no measurable solution F , except the trivial one F ≡ 0.

Remark 2. The proof of Theorem 2 is classical for an ergodic Z-action, (see [33] and also
[11] and [39]). The extension to a more general action is straight forward and left to the
reader, we only point out the Hilbert decomposition

(2.3) L2(X ×A, µ⊗ hA) =
⊕

χ∈Â

L2(X, µ)⊗ χ as a Hilbert orthogonal sum.

Remark 3. For ψ ∈ Â the action T a induces a unitary group representation

g 7→ U
aψ
g

U
aψ
g (f) = (ψ ◦ a)(g, ·)f ◦ Tg(·)(2.4)

on the summands in the orthogonal decomposition (2.3). These were introduced in the proof
of Theorem 2 and will be used later in the discussion of the spectrum of the action T a.

2.6. Generic points. In this section we assume that G = Zd and X a compact metric
space. The action T is said to be continuous if Tg is a homeomorphism of X for every
g ∈ G.

For an integer N ≥ 1 we set

(2.5) ∆N = {(g1, . . . , gd) ∈ Zd | 0 ≤ gi < N, i = 1, . . . , d}.

Definition 4. Let T be a continuous Zd-action on (X, µ). A point x ∈ X is said to be
(T, µ)-generic if

(2.6) ∀f ∈ C(X) : lim
N→∞

1

Nd

∑

g∈∆N

f ◦ Tg(x) =
∫

X

f dµ.
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We may extend this definition and instead of the family {∆N , N = 1, 2, . . .} consider
any family Q = {QN , N = 1, 2, . . .} of subsets QN ⊂ Zd which satisfies the following
assumptions:

(i) QN ⊂ QN+1 for N ≥ 1

(ii) #QN > 0(2.7)

(iii)
#(QN △ (g +QN ))

#QN

→ 0, ∀g ∈ Zd

For the family {∆N} we have a multidimensional individual ergodic theorem due to
Tempel’man (cf. [28], p.205). This theorem implies that (T, µ)-generic points exist. If in
addition T is uniquely ergodic, all points are (T, µ)-generic. The theorem remains valid for
any family Q satisfying the above mentioned assumptions.

We need to extend the notion of generic points to the case where T is µ-continuous, that
is to say, for any g ∈ G there exists an Eg ⊂ X such that µ(Eg) = 0 and Tg is continuous
at any point of X \ Eg.

For a µ-continuous function f : X → C we denote by D(f) its set of discontinuity points,
which has by assumption µ(D(f)) = 0. If T is µ-continuous then f ◦Tg is also µ-continuous.
We denote by Rµ(X) the space of bounded µ-continuous functions f : X → C.

Lemma 1. Assume that T is µ-continuous and let x ∈ X such that there exists J ⊂ N, J
infinite, and a Borel measure λ on X, absolutely continuous with respect to µ, such that

(2.8) ∀f ∈ C(X), lim
N →∞
N ∈ J

1

Nd

∑

g∈∆N

f ◦ Tg(x) =
∫

X

f dλ

then Rµ(X) ⊂ Rλ(X) and

(2.9) ∀f ∈ Rλ(X), lim
N →∞
N ∈ J

1

Nd

∑

g∈∆N

f ◦ Tg(x) =
∫

X

f dλ.

Moreover, λ is T -invariant.

Proof. Since f 7→ f ◦Tg are positive operators, standard arguments easily show (2.9). Since
{∆N} satisfies property (iii) and T is λ-continuous, we have for any f ∈ Rλ

∫

X

f dλ =

∫

X

f ◦ Tg dλ

for any g ∈ G. �

Definition 5. If T is µ-continuous, a point x ∈ X is said to be (T, µ)-generic if (2.9)
holds with J = N and λ = µ.

The above lemma shows that generic points for µ-continuous actions exist.
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Theorem 3. Assume that TZd acts µ-continuously on (X,B, µ), X a compact metric space,
and let a : Zd×X → A be a µ-continuous A-valued cocycle with A compact. Assume further
that T a is ergodic for µ⊗ hA. If x is (T, µ)-generic, then for all α ∈ A, the point (x, α) is
(T a, µ⊗ hA)-generic.
Remark 4. (1) Since T a is ergodic, µ ⊗ hA-almost all points (x, α) are (T a, µ ⊗ hA)-

generic and then it is easy to see that if (x, α) is (T a, µ⊗ hA)-generic, then (x, β)
is (T a, µ⊗ hA)-generic for all β.

(2) The theorem was proved in the one-dimensional case in [30] (see also [2]).

Proof. We assume that x is a (T, µ)-generic point but there exists an α ∈ A such that
(x, α) is not (T a, µ⊗hA)-generic. Then there exists J ⊂ N, J infinite, and a Borel measure
λ on X ×A such that

∀F ∈ Rλ(X × A), lim
N∈J

1

Nd

∑

g∈∆N

F ◦ T ag (x, α) =
∫

X×A

F dλ

and

∃χ ∈ Â, χ 6≡ 1, ∃f ∈ CR(X),

∫

X×A

f ⊗ χ dλ 6= 0 =

∫

X×A

f ⊗ χ d(µ⊗ hA).

In particular, for all φ ∈ Rλ(X) = {φ | φ⊗ 1A ∈ Rλ(X ×A)} we have

(2.10) lim
N∈J

1

Nd

∑

g∈∆N

φ⊗ χ(T ag (x, α)) =
∫

X×A

φ⊗ χ dλ.

Clearly λ projects on µ and Rµ(X) = Rλ(X). Moreover, for any g ∈ Zd, the set of
discontinuous points of T ag is contained in a set of the form E ′

g × A where µ(E ′
g) = 0.

Therefore T a is λ-continuous. This implies from (2.10) that λ is T a-invariant.
Letting L : L2(X, µ)→ C be the continuous linear form defined by L(f) =

∫
X×A

f⊗χ dλ,
there exists an F ∈ L2(X, µ), F 6= 0, such that L(·) = 〈 · |F 〉. Since λ is T a-invariant, one
has for all f ∈ L2(X, µ):

∀ g ∈ G : L(Uaχ
g f) = L(f),

where U
aχ
g : L2(X, µ) → L2(X, µ) is defined by (2.4). Moreover the space Rµ(X) is

everywhere dense in L2(X, µ). Hence we get also 〈Uaχ
g f |F 〉 = 〈f |F 〉 for any f ∈ L2(X, µ),

so that

∀ g ∈ G : (Uaχ
g )∗F = F

which implies that F is invariant under the unitary operator U
aχ̄
g i.e.,

F ◦ Tg = χ̄(a(g, x))F (x) µ− a.e.

This contradicts the ergodicity of T a by Theorem 2. �

Corollary 2. Under the hypotheses of Theorem 3, if the action TZd is uniquely ergodic,
then T a is uniquely ergodic.
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2.7. Purity of the spectrum. We now consider the special case where X is a compact
abelian metrizable group and T acts by translation. In other words, T is given by a group
homomorphism θ : G→ X such that Tgx = x+ θ(g).

As above we have the restriction of the T a-action to each component of the Hilbert sum
(2.3) given by

Uaχ
g f = χ(a(g, ·))f ◦ Tg(·).

In particular, we have a Weyl commutation relation

(2.11) Uaχ
g Mγ = ψ(θ(g))MγU

aχ
g ,

where γ is any character on X and Mγ is the operation of multiplication by γ:

Mγf(·) = γ(·)f(·) on L2(X, µ).

The following two theorems are straightforward generalizations of Theorems 3, 4 and 5
in [16]:

Theorem 4. Let X be a compact Abelian group and the actions T and T a defined as above.
Assume that the orbit of 0 (the neutral element of X) under T is dense (T is therefore

ergodic). Then for any χ ∈ Â the spectral measure of the G-action g 7→ U
aχ
g on L2(X, µ)

is either purely Lebesgue, or purely singular-continuous, or purely discrete with respect to
the Haar measure hĜ on Ĝ. Moreover, the spectral multiplicity is uniform.

Theorem 5. A cocycle a is trivial, if and only if for any χ ∈ Â the spectral measure of
the G-action U

aχ
g is (purely) discrete.

3. Dynamics related to complex bases

In this section we will study properties of digital expansions of integers in number fields.
For any order O in a number field K a base b ∈ O and a set of digits D ⊂ O define a
system of numeration, if every element z ∈ O can be written uniquely as a sum

(3.1) z =

L∑

ℓ=0

εℓb
ℓ, with εℓ ∈ D.

If D is restricted to be the set {0, 1, . . . , |N(b)|−1}, the number system is called a canonical
number system; here N denotes the norm of the field extension K ⊃ Q. For the question
of existence of canonical number systems we refer to [23, 26, 27]. In the case of quadratic
number fields the bases of canonical number systems could be characterized completely in
[21, 22]. For the Gaussian integers the bases of canonical number systems are given by
b = −a± i for a ∈ N \ {0} (cf. also [25]). Here we will restrict ourselves to this case.

If z is given by (3.1) we define the sum-of-digits function of z by

(3.2) sb(z) =
L∑

ℓ=0

εℓ.
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3.1. Generalities about the b-compactification of Z[i]. For b = −a+ i we imitate the
construction of a-adic integers (cf. [17])

(3.3) K(b) = lim←−
n

Z[i]/(bn).

There is a natural identification of this projective limit to the compact product space
{0, 1, . . . , a2}N endowed with the following group law: for two sequences x = (x0, x1, . . .)
and y = (y0, y1, . . .) in K(b) we define a sequence z = (z0, z1, . . .) as follows. Write x0+y0 =
t1b+z0 with z0 ∈ {0, . . . , a2} and t1 ∈ Z[i]. Suppose now that z0, z1, . . . , zk−1 and t1, . . . , tk
have been defined inductively; then zk ∈ {0, . . . , a2} is given by xk + yk + tk = tk+1b+ zk.
We write x + y for z. The proof of the group axioms and continuity for this operation
follows the same lines as the proof for a-adic integers (cf. [17]).

The Gaussian integers can be isomorphically embedded into K(b) via the b-ary digital
expansion. K(b) can also be viewed as the closure of the set of all b-ary digital expansions of
Gaussian integers in the product space {0, 1, . . . , a2}N equipped with the product topology
of the discrete spaces. The action T of Z[i] on K(b) is given as the continuation of addition
by g ∈ Z[i]. We write Tm+inx = T(m,n)x = x+m+ in. We use the notation e(x) = e2πix.

Lemma 2. The characters of K(b) are given by

γ(x) = e

(
ℜ
(
z

bk

k−1∑

j=0

xjb
j

))

for k ≥ 1 and z ∈ Z[i] (defined up to congruence modulo (bk)).

Proof. Every character γ of K(b) is determined by its restriction γ′ to Z[i]. By the definition
of K(b) (3.3) this restriction has to be trivial on a subgroup of Z[i] of the form bkZ[i] for
some integer k. Thus we have

γ′(n+ im) = e

(
ℜ
(
z(m+ in)

bk

))

for a Gaussian integer z and this proves the lemma. �

We identify the dual group of K(b) with the discrete subgroup

Γ(b) =
{
u =

z

bk
| k ∈ N, 0 ≤ ℜu,ℑu < 1, z ∈ Z[i]

}

of the two-dimensional torus; we write u(γ) for the point in T2 identified with γ. For a

given point u = z/bk ∈ Γ(b) we set γu(x) = e(ℜ(u
∑k−1

j=0 xjb
j)).

Using the shift σ on K(b) (viewed as the product space
∏∞

k=0{0, . . . , a2}) we can write

(3.4) Tbk(x0x1 . . .) = x0x1 . . . xk−1T1(σ
k(x0x1 . . .)),

where the element on the right hand side is formed by concatenation of x0 . . . , xk−1 and
T1(σ

k(x0x1 . . .)). Furthermore, σ preserves the Haar measure on K(b).
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We set if the limit exists

(3.5) Σ(m+ in, x) = Σ((m,n), x) = lim
z ∈ Z[i]
z → x

(sb(z +m+ ni)− sb(z)),

where sb denotes, as in the introduction, the b-ary sum-of-digits function (see (3.2)). For

ψ ∈ Ẑ we set Σψ = ψ ◦ Σ.
Proposition 1. Σ is µ-continuous, where µ denotes the Haar measure on K(b).
Proof. At first we investigate where the limit in the definition of Σ exists. As in [14] this
can be studied using the properties of the “addition automaton” (a transducer automaton,
cf. [8]). Figure 1 shows the automaton which produces the digital expansion of z + 1 from
the digital expansion of z, if the initial state is chosen as P . A sequence of digits (ε0, ε1, . . .)
is mapped to another sequence of digits η0, η1, . . .) according to the following rules:

(1) start in the indicated initial state and let k = 0.
(2) read εk and move along the vertex of the graph marked with εk | δ.
(3) let ηk = δ and increase k by 1. Then go to 2.

The digital expansion of z − a − i is produced, if the initial state is chosen R; the initial
states −P and −R correspond to the inverse operations (cf. [14]). We note here, that the
states of the automaton correspond to the possible “carries” tk (in the discussion at the
beginning of this paragraph) for y = (1, 0, 0, . . .).

Thus addition of any complex integer m + ni can be performed by applying a suitable
finite sequence of additions of ±1 and ±(a + i) thus defining a new addition automaton,
which contains Figure 1 as a subgraph and all paths followed in the computation of z+m+ni
end up in this subgraph.

The only possibility for the limit (3.5) not to exist is that the path corresponding to
the digits of x does not end in one of the two terminal states •. Since all the digits are
reproduced after a terminal state is reached, the difference of the sum-of-digits functions is
produced before hitting •. Thus the preimages of the limit (where it exists) can be written
as a union of cylinder sets, and therefore the function defined by the limit is continuous
where the limit exists.

We now study the set of points x, where the limit does not exist for the addition of
±1 and ±(a + i). These points correspond to paths in the graph, which do not reach a
terminal state. In order to bound the measure of the set of those points we count Pn, the
number of paths of length n in the graph with the two terminal states removed. This can
be described by the entries of the n-th power of the matrix
(
010000002a00(a− 1)2(a− 1)2 + 1002a− 100002a− 100(a− 1)2 + 1(a− 1)2002a00000010

)

whose characteristic polynomial is given by

(λ2 + 2aλ+ a2 + 1)(λ− 1)(λ3 − (2a− 1)λ2 − (a− 1)2λ− a2 − 1).

It can be easily seen that the root of largest modulus comes from the last factor and it
satisfies |λ| < (1 +

√
2)a for a ≥ 2 and |λ| <

√
3 for a = 1. Thus the number of paths Pn
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P R

Q

-Q

-R -P

a   02

0  a2

0  1.   ..   ..   .
a-1  a2 2

0   2a.    ..    ..    .
a-2a   a2 2

2a   0.      ..      ..      .
a    a-2a2 2

1    0.     ..     ..     .
a   a-12 2

a-2a+2   0.          ..          ..          .
a         2a-2

2

2

0     a-2a+2.      ..      ..      .
2a-2  a2

2

0     (a-1).        ..        ..        .
2a-1    a

2

2

2a-1    0.        ..        ..        .
a     (a-1)2 2

0      2a-1.        ..        ..        .
(a-1)    a2 2

(a-1)   0.       ..       ..       .
a      2a-12

2

Figure 1. The addition automaton

satisfies
Pn = O

(
(1 +

√
2)nan

)
for a ≥ 2O

(√
3
n
)
for a = 1.

Since the total number of digital sequences of length n is (a2 + 1)n this implies that the
set of points x, where the limit does not exist, has measure 0 (this set can be written as a
countable intersection of cylinder sets whose measure tends to 0). �

The next lemma is an immediate consequence of (3.4).

Lemma 3. Where Σ is defined, the following equation holds

Σ(bk, x) = Σ(1, σkx).

3.2. Ergodicity of TΣ. We compute the set E(Σ) of essential values of Σ.

Lemma 4. Let k be a non-negative integer and x = (ε0, ε1, . . .) ∈ K(b).
(1) if εk < a2 then Σ(bk, x) = 1
(2) if (εk, εk+1, εk+2) = (a2, a2, a2) then Σ(bk, x) = −(a+ 1)2.

Proof. For the first part we just observe that the digit by digit addition of bk and xN =
(ε0, ε1, . . . , εN , 0, 0, . . .) gives a valid element of K(b) and sb(b

k + xN) − sb(xN) = 1 for
N > k.

For the second statement we use the automaton in Figure 1 to observe that digits
(εk, εk+1, εk+2) = (a2, a2, a2) produce digits (0, a2 − 2a, a2 − 1) after addition of xN and bk

(again for N > k), which yields sb(b
k + xN )− sb(xN ) = −(a + 1)2. �

Theorem 6. E(Σ) = Z.
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Proof. Since E(Σ) is a group it is enough to show that 1 ∈ E(Σ).
Let B = Cε0ε1...εk be a cylinder set. Choose L ≥ k and define

BL = {x ∈ B | εL+1 > 0}.

Then

x ∈ B ∩ T−bL+1BL ⇔ x = (ε0, ε1, . . . , εk, xk+1, xk+2, . . .) with xL+1 < a2.

For such an x we have Σ(bL+1, x) = 1 by Lemma 4, and

(3.6) µ (B ∩ T−bL+1BL) ≥
a2

a2 + 1
µ(B),

from which we deduce that

(3.7) µ


 ⋃

g∈Z[i]

B ∩ T−gB ∩ {x | Σ(g, x) = ℓ}


 ≥ a2

a2 + 1
µ(B).

Inequality (3.7) can be easily extended to countable unions of cylinder sets, hence to open
sets and then to Borel sets. This proves that 1 ∈ E(Σ). �

Corollary 3. The action TΣ is ergodic.

Corollary 4. For any character ψ ∈ Ẑ the action TΣψ on K(b) × Gψ is ergodic (Gψ =

ψ(Z)).

Proof. By the definition of the set of essential values, ψ(E(Σ)) ⊂ E(ψ ◦Σ). Since E(ψ ◦Σ)
is closed, it is equal to Gψ = ψ(E(Σ)) = ψ(Z). �

We are now going to study the spectral properties of the action TΣψ which we will denote
shortly by T ψ; in the following we will always identify (m,n) and (m + ni) as well as Z2

and Z[i]. Furthermore, we will write Uψ
g for the operators U

Σψ
g defined by (2.4).

The following Lemma has several consequences.

Lemma 5.

µ ({x ∈ K(b) | sb(x+ 1)− sb(x) = 1}) = (a+ 1)2

(a+ 1)2 + 1
(3.8)

µ
({
x ∈ K(b) | sb(x+ 1)− sb(x) = −(a + 1)2

})
=

1

(a + 1)2 + 1
.

Proof. As in the proof of Proposition 1 we make use of the automaton in Figure 1; it can
be easily seen by tracing paths from the initial state to the two terminal states •, that
the upper left terminal state corresponds to sb(x+ 1)− sb(x) = 1 and the lower right one
corresponds to sb(x+ 1)− sb(x) = −(a + 1)2. The lemma follows by a simple application
of finite Markov chains. �
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We introduce I(ψ) =
∫
K(b)

ψ(Σ(1, x))µ(dx). Then Lemma 5 yields

(3.9) I(ψ) =
(a+ 1)2ζ + ζ−(a+1)2

(a+ 1)2 + 1
6= 0

with ζ = ψ(1).

Lemma 6. For different characters ψ1 and ψ2 inˆ
ZthevaluesI(ψ1) and I(ψ2) are different.

Proof. We set ζ1 = ψ1(1) and ζ2 = ψ2(1) and suppose that I(ψ1) = I(ψ2). Then rewriting
this last equation yields

(a+ 1)2 = ζ
1−(a+1)2

1 + ζ
2−(a+1)2

1 ζ−1
2 + · · ·+ ζ

1−(a+1)2

2 ,

from which we conclude by a simple convexity argument that ζk1 ζ
ℓ
2 = 1 for k+ℓ = (a+1)2−1.

This implies that ζ1 = ζ2 and consequently equality of the characters. �

Theorem 7. For all f and g in L2(K(b), µ) we have

(3.10) lim
k→∞

〈
Uψ

bk
f, g
〉
= I(ψ)〈f, g〉.

Proof. Clearly, it suffices to proof the result only for characters γ1 and γ2. By Lemma 2
these depend only on a finite number of coordinates, say the first n. We take k > n and
compute using Lemma 3

〈
Uψ

bk
f, g
〉

=

∫

K(b)

ψ(Σ(bk, x))γ1(Tbkx)γ̄2(x)µ(dx)

=

∫

K(b)

ψ(Σ(1, σkx))γ1(b
k)γ1(x)γ̄2(x)µ(dx)

= γ1(b
k)

∫

K(b)

ψ(Σ(1, σkx))µ(dx)

∫

K(b)

γ1(x)γ̄2(x)µ(dx).

The last equality holds because the arguments of the γ’s depend only on the first n coor-
dinates and the argument of ψ only on the rest. Finally, γ1(b

k) = 1. �

In the following let χg(x+ iy) = e(ℜ(xḡ)) (g ∈ Z[i]) be a character of T2.

Corollary 5. For every f ∈ L2(K(b), µ) and every ϕ ∈ L2(T2, νf ) we have

(3.11) lim
k→∞

∫

T2

ϕ(x)χbk(x) νf (dx) = I(ψ)

∫

T2

ϕ(x) νf (dx),

where νf denotes the spectral measure associated with f under the unitary representation
g 7→ Uψ

g (cf. [1]) defined by

(3.12) 〈Uψ
g f, f〉 =

∫

T2

χg(x) νf (dx).



14 P. J. GRABNER AND P. LIARDET

Proof. It suffices to prove (3.11) for the characters of T2. Then we have by (3.12)∫

T2

χg(x)χbk(x) νf(dx) = 〈Uψ

g+bk
f, f〉 = 〈Uψ

bk
Uψ
g f, f〉,

from which we conclude (3.11) using (3.10) and (3.12). �

Remark 5. Corollary 5 implies Theorem 7; just take φ ≡ 1.

Remark 6. Property (3.10) means that the unitary representation Uψ is weakly ξ-mixing
with ξ = I(ψ). This notation was introduced for ergodic transformations in [24], where
skew products of rotations on the circle are presented as examples with ξ = −1.
Theorem 8. The spectral measure of the unitary representation Uψ is singular with respect
to the Haar-Lebesgue measure λ. Moreover, if Ra denotes the group of the (a2+2a+2)-nd
roots of unity, we have:

(i) if ψ(1) 6∈ Ra, then the spectral measure of Uψ is purely singular continuous,
(ii) if ψ(1) ∈ Ra, then χb : g 7→ ψ(sb(g)) is a character of Z[i] and the spectral measure

of Uψ is discrete; in this case T ψ : K(b)× Ra 7→ K(b)×Ra is given by

T ψg (x, ζ) = (x+ g, ζχb(g)).

Proof. By Theorems 4, 7 and (3.9) the spectral measures are singular with respect to the
Haar-Lebesgue measure on the two-torus T2. It remains to characterize the cases where
the spectrum is discrete. In this case the representation Uψ has an eigenfunction (and
by Theorem 4 this property is characteristic for this case). Suppose now that there is a
measurable function f : K(b)→ C and a character η = e(ℜ(z·)) of Z[i] such that

(3.13) Uψ
g f = η(g)f, µ− a.e.

for all g ∈ Z[i]. In particular |f | ◦ Tg = |f | and thus ergodicity allows to choose |f | = 1.
From (3.13) we derive

(3.14)
〈
Uψ

bk
f, f
〉
= η(bk)〈f, f〉 = η(bk).

Theorem 7 yields

lim
k→∞

〈
Uψ

bk
f, f
〉
= I(ψ).

This and (3.14) imply

(3.15) lim
k→∞

η(bk) = I(ψ)

and consequently |I(ψ)| = 1. This together with (3.9) yields ψ(1) = ψ(1)−(a+1)2 , which is
equivalent to ψ(1) ∈ Ra.

For the following we set ψ(1) = e( ℓ
a2+2a+2

). In order to prove the remaining assertions of

(ii) we need the following lemma, which can be read off immediately from the automaton
in Figure 1.

Lemma 7. For two Gaussian integers g and h we have

(3.16) sb(g + h) ≡ sb(g) + sb(h) mod (a + 1)2 + 1
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As an immediate consequence of this lemma χb = ψ ◦ sb is a character of Z[i] and more
precisely

χb(z) = e

(
ℜ
(
ℓ(1− (a+ 1)i)

a2 + 2a+ 2
z

))
,

which can be easily seen by inserting z = 1 and z = b. This implies also that the cocycle
Σψ is trivial and given by

Σψ(g, x) = χb(g),

which finishes the proof of (ii) and (i). �

Theorem 9. If ψ1 and ψ2 are different characters of Z, then the two representations Uψ1

and Uψ2 have mutually singular spectral measures.

Proof. This result is classical for Z-actions. We give a short proof of this more general
result for the reader’s convenience. For f1, f2 ∈ L2(K(b), µ) denote νf1 and ν ′f2 the spectral
measures associated to the two representations Uψ1 and Uψ2 , respectively. Assume now,
that νf1 and ν ′f2 are not mutually singular. Then there exists a Borel probability measure

τ on T2 absolutely continuous with respect to both νf1 and ν ′f2 , and let ρ and ρ′ denote

the respective densities. Then (3.11) implies that τ̂ (bk) =
∫
K(b)

χbk(x)ρ(x) νf1(dx) tends to

I(ψ1). Similarly, we have τ̂ (bk) =
∫
K(b)

χbk(x)ρ
′(x) ν ′f2(dx), which implies limk τ̂(b

k) = I(ψ2)

and therefore I(ψ1) = I(ψ2). Now Lemma 6 implies that ψ1 = ψ2. �

We now consider the orthogonal decomposition (2.3) (with A = Gψ) and let σχ =

νfχ (for χ ∈ Ĝψ and fχ ∈ L2(K(b), µ)) a probability measure of maximal spectral type
for the representation Uχ◦ψ determined by the restriction of T ψ to L2(K(b), µ) ⊗ χ. By
Theorem 9 the measures σχ are mutually singular so that the spectral type of T ψ is given by
a probability measure νM =

∑
χ∈Ĝψ

aχνfχ obtained by choosing aχ > 0 with
∑

χ∈Ĝψ
aχ = 1.

The Weyl commutation relation (2.11) shows that for every f ∈ L2(K(b), µ) and every
character γ of K(b) the spectral measure of Mγ(f) is obtained by translating the one of
f by the translation x 7→ x + u(γ) on T2. This shows that the spectral type of Uχ◦ψ

is invariant under the action of Γ(b) (the dual of K(b)) on T2 by translation. We show
that this action is ergodic on (T2, σχ). Suppose that B is a Borel set invariant (σχ-a.e.)
under the action of Γ(b) and let HB be the set of functions f ∈ L2(K(b), µ) of spectral
measure νf (associated to the representation Uχ◦ψ) such that νf (B) = 0. Clearly, HB is a
closed subspace of L2(K(b), µ), invariant under Uχ◦ψ. Moreover, the invariance property
of B under Γ(b) implies the invariance of HB under Mγ, for any character γ of K(b); it
is therefore either equal to L2(K(b), µ), which implies σχ(B) = 0 or to {0}, which implies
σχ(B) = 1. Finally, we note that (3.11) implies that the spectral measures σχ for χ 6= 1 are
mutually singular to every probability measure τ on T2 with limk τ̂ (b

k) = 0. This property
is preserved in the case χ = 1.

We collect these facts in a theorem.

Theorem 10. The spectral type of T ψ is singular and mutually singular with respect to all
measures τ on T2 such that limk τ̂ (b

k) = 0. For every measure σχ of the spectral type of
Uχ◦ψ the action of the dual Γ(b) of K(b) on T2 is ergodic and non-singular.
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4. Distribution with Respect to the Argument

In this section we study uniform distribution of the sequence (arg z, {αsb(z)}) in
]− π, π]× [0, 1[. We will prove the following theorem.

Theorem 11. Let α be an irrational number, then the sequence (arg z, {αsb(z)}) is uni-
formly distributed, in the following sense:

lim
N→∞

1

πN
#{|z|2 < N | arg z ∈ I, {αsb(z)} ∈ J} =

1

2π
|I| · |J |

for all intervals I ⊂]− π, π] and J ⊂ [0, 1[.

Proof. We first study the corresponding Weyl sum

(4.1) SN(h, k) =
∑

|z|2<N

e(hαsb(z))χk(z),

where χk(z) denotes the Hecke character exp(ik arg z). Asymptotic information on SN(h, k)
is encoded in the analytic behaviour of the Dirichlet series

(4.2) ζ(s) =
∑

z∈Z[i]\{0}

e(hαsb(z))χk(z)

|z|2s ,

which is absolutely convergent for ℜs > 1.
We split the range of summation according to the last digit and use sb(ℓ+bz) = sb(z)+ℓ

to obtain

(4.3) ζ(s) =

a2∑

ℓ=1

e(hαℓ)

ℓ2s
+
χk(b)

|b|2s
a2∑

ℓ=0

e(hαℓ)
∑

z∈Z[i]\{0}

e(hαsb(z))χk(z +
ℓ
b
)

∣∣z + ℓ
b

∣∣2s .

We observe that for s = σ + it

∣∣χk
(
z + ℓ

b

)
− χk(z)

∣∣ ≤ min

(
2,

2|k||b|
|z|

)
(4.4)

∣∣∣∣ 1

|z+ ℓ
b |2s
− 1

|z|2s

∣∣∣∣ ≤ 1

|z|2σ min

(
2,

2|t||b|
|z|

)
.(4.5)

In order to find an analytic continuation and a growth estimate for ζ(s) we compare the
last sum in (4.3) with ζ(s):

Fℓ(s) =
∑

z∈Z[i]\{0}

e(hαsb(z))

(
χk
(
z + ℓ

b

)
∣∣z + ℓ

b

∣∣2s −
χk(z)

|z|2s

)

=
∑

z∈Z[i]\{0}

e(hαsb(z))

[
χk
(
z + ℓ

b

)
− χk(z)∣∣z + ℓ
b

∣∣2s + χk(z)

(
1∣∣z + ℓ
b

∣∣2s −
1

|z|2s

)]
.

Inserting (4.4) into the last sum yields that Fℓ(s) is holomorphic in ℜs > 1
2
. For 1

2
<

σ < 1 we have by splitting the range of summation at |k| for the first summand and at |t|
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for the second summand

|Fℓ(σ + it)| ≤
∑

z

( |b|
|z|2σ min

(
2,

2|k||b|
|z|

)
+

1

|z|2σ min

(
2,

2|t||b|
|z|

))
(4.6)

= Ob,σ
(
|k|1−σ + |t|1−σ

)
.(4.7)

Inserting ζ(s) + Fℓ(s) for the last summand in (4.3) we obtain

ζ(s) =

(
1− χk(b)

|b|2s
a2∑

ℓ=0

e(hαℓ)

)−1(
a2∑

ℓ=1

e(hαℓ)

ℓ2s
+
χk(b)

|b|2s
a2∑

ℓ=1

e(hαℓ)Fℓ(s)

)
,

where the second factor is holomorphic in ℜs > 1
2
. Thus the only possible poles of ζ(s) are

in the points where the denominator vanishes. These points lie on a vertical line.
In order to study the behaviour of SN(h, k) we introduce the sums

TN =
∑

|z|2<N

e(hαsb(z))χk(z)

(
1− |z|

2

N

)
=

1

2πi

2+i∞∫

2−i∞

ζ(s)
ds

s(s+ 1)
,

where the last equality holds by the Mellin-Perron summation formula (cf. [36], Chap-
ter II.2). Shifting the line of integration to ℜs = 3

4
and taking the residues at the possible

poles into account we obtain (notice that the remaining integral converges by the growth
estimate (4.6)

(4.8) TN = Ob
(
|k| 14N 3

4

)
if there were no polesOb

(
|k|1−βNβ

)
if there were poles,

where β = log |
∑a2

ℓ=0 e(hαℓ)|/ log(a2 + 1). Notice that by a trivial estimate

(4.9) β ≤ log(a2 + 1− 2π‖hα‖2)
log(a2 + 1)

≤ 1− 2π‖hα‖2
(a2 + 1) log(a2 + 1)

where ‖x‖ denotes the distance to the nearest integer. We define β(h) = max(β, 3
4
).

Finally, we have to retrieve the behaviour of SN(h, k) from the behaviour of TN . For

this purpose we let t = 1 + k
1−β(h)

2 N− 1−β(h)
2 for k = o(N) and compute the difference of

TN =
∑

|z|2<N

(
1− |z|

2

N

)
χk(z)e(hαsb(z)) = O

(
k1−β(h)Nβ(h)

)

tTtN =
∑

|z|2<tN

(
t− |z|

2

N

)
χk(z)e(hαsb(z)) = O

(
k1−β(h)Nβ(h)

)

to obtain

SN(h, k) =
∑

|z|2<N

χk(z)e(hαsb(z)) =(4.10)

tTtN − TN
t− 1

− 1

t− 1

∑

N≤|z|2<tN

(
t− |z|

2

N

)
χk(z)e(hαsb(z)) = O

(
k

1−β(h)
2 N

β(h)+1
2

)
,
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where we have used that the summand in the second sum can be estimated by (t− 1) and
the number of points in the area N ≤ |z|2 < tN is O(N(t− 1)). From (4.10) we conclude

that SN (h,k)
N
→ 0 for any fixed h and k, which by Weyl’s criterion (cf. [29]) proves uniform

distribution. �

In fact it is easy to derive an estimate for the discrepancy of the sequence from (4.10).
The discrepancy is defined as the deviation from uniformity:

DN = DN (arg z, {αsb(z)}) =

sup
I,J

∣∣∣∣
1

πN
#
{
|z|2 < N | arg z ∈ I, {αsb(z)} ∈ J

}
− 1

2π
|I| · |J |

∣∣∣∣ ,

where I and J run over all subintervals of ]− π, π] and [0, 1[, respectively.

Corollary 6. Let α be of approximation type η, i.e. ‖hα‖hη+ε ≥ C(α, ε) for every ε > 0.
Then we have for the discrepancy of the sequence (arg z, {αsb(z)})

DN ≤
C(a, α, ε)

(logN)
1
2η

−ε
.

Proof. Since the proof runs along the same lines as the proof of Theorem 2 in [15], we
only give a sketch here. Inserting (4.10) into the classical Erdős-Turán-Koksma inequality
(cf. [7], [29]) yields

DN ≪
1

H
+

H∑

h,k=1

1

hk
k

1−β(h)
2 N− 1−β(h)

2 +

H∑

h=1

1

h
N− 1−β(h)

2 +

H∑

k=1

1

k

k√
N

(the last estimate is the classical estimate for the sum of the Hecke character in a large
circle, cf; [18, 19, 32]). We first perform the sum over k in the first sum and use that
β(h) ≥ 3

4
and (4.9) to obtain

DN ≪
1

H
+H

1
8

H∑

h=1

1

h
exp

(
− π‖hα‖2
(a2 + 1) log(a2 + 1)

logN

)

(the remaining sums are easily seen to be of smaller order of magnitude). Using the lower
estimate for ‖hα‖ and summing up yields

DN ≪
1

H
+H

1
8 logH exp(−D(a, α, ε)H−2η−2ε logN),

which gives the desired estimate for H = [(logN)
1

2η+2ε
−ε]. �

Remark 7. Corollary 6 could also be formulated as a quantitative version of the multidi-
mensional ergodic theorem for the family of sets QI given by

QN = {z ∈ Z[i] | |z|2 < N, arg z ∈ I}
(cf. (2.7)).
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