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Abstract. We discuss an optimal method for the computation of linear combinations
of elements of Abelian groups, which uses signed digit expansions. This has applications
in elliptic curve cryptography. We compute the expected number of operations asymp-
totically (including a periodically oscillating second order term) and prove a central limit
theorem. Apart from the usual right-to-left (i.e., least significant digit first) approach we
also discuss a left-to-right computation of the expansions. This exhibits fractal structures
that are studied in some detail.

1. Introduction

In several well-known cryptosystems the essential operation is the computation of multi-
ples and linear combinations in an Abelian group law. We discuss the second operation in
a context, where subtraction and addition are equally costly. The most prominent example
for this situation is the group law on an elliptic curve.

The standard method to compute a multiple nP is the binary method, see [16]. It uses
the operations double and add P . If one writes n in binary notation, the ones correspond to
these addition operations. In our context the subtraction of P is not more costly than the
addition of P . This leads to the concept of redundant expansions. Now, the possible digits
are {0,±1}, and −1 corresponds to a subtraction of P , see, e.g., [12]. The representation is
no longer unique, and the goal is to find a representation with as many zeros as possible,
in order to have low complexity. This “Canonical Sparse Form” was independently dis-
covered by many authors, and we refer to [11] for a historic account. It is sometimes called
nonadjacent form (NAF), since it may be characterized by the fact that from two adjacent
digits at least one must be a zero. Only about 1

3
of the digits are non-zero in contrast to

1
2

in ordinary binary expansion. The number of non-zero digits in the NAF of n is called
the Hamming weight of n.

In [13] Solinas discusses the problem of computing mP + nQ. Instead of computing
mP and nQ separately, one can proceed as follows. An approach using unsigned digit
expansions would use the doubling operations and occasional additions of P , Q, or P +Q.

Date: January 30, 2003.
2000 Mathematics Subject Classification. Primary: 11A63; Secondary: 28A80 94A60.
Key words and phrases. Elliptic curve cryptography, joint sparse form, signed digit expansions, fractals.
† This author is supported by the START-project Y96-MAT of the Austrian Science Fund.
‡ This author is supported by the grant S8307-MAT of the Austrian Science Fund.
∗ This author is supported by the grant NRF 2053748 of the South African National Research

Foundation.
1



2 P. J. GRABNER, C. HEUBERGER, AND H. PRODINGER

Now, in instances where subtractions are no obstacles, one can allow additions of P , Q,
−P , −Q, P + Q, P − Q, −P + Q, and −P − Q. If one has an expansion with digits
{0,±1}, for both numbers m and n, then a 1

1
corresponds to an addition of P +Q, a −1

0
to

an addition of −P , etc. To keep the complexity low, the goal is to create as many double
zeros 0

0
in the joint expansion as possible. Solinas found a canonical joint expansion, called

Joint Sparse Form, which has about 1
2

of the double digits being a double zero 0
0
. Again,

the number of double digits different from 0
0

is called the joint Hamming weight. This
Joint Sparse Form has minimal joint Hamming weight among all joint expansions of two
numbers m

n
.

In this paper, we want to gain a better understanding of the Joint Sparse Form. We
start by considering another joint representation that we call Simple Joint Sparse Form.
It has always the same Hamming weight as the Joint Sparse Form (even more: the double
zeros are in the same positions). As the name suggests, this form is simpler, and created
in a less elaborate way than the Joint Sparse Form. In Section 2 we give an algorithm for
its computation and characterize it in a syntactic way. Since the joint Hamming weight is
the same, we use the Simple Joint Sparse Form exclusively throughout this paper.

In Section 3, we are interested in geometric and topological properties of the Simple Joint
Sparse Form. We construct a transducer with 9 (essential) states that produces the Simple
Joint Sparse Form from the binary expansions of two numbers x and y. Now each of these
9 states corresponds to a certain area in the unit square, and we thus find a decomposition
of the unit square into 9 regions of fractal type. It can be seen in Figure 2 as any of the four
subsquares (ignore the different hatchings for the moment). It is proved that these regions
are connected; their respective areas are computed, as well as the Hausdorff dimension of
the boundaries (= 1.21 . . . ). Pairs of numbers on the boundaries have usually two different
representations, but eight numbers have even three! The coordinates of these eight points
are computed.

The regions correspond to digits, and a fortiori to the Hamming weight of a pair
of numbers m, n. Five regions contribute one to the Hamming weight h(m,n), while
the remaining four (of total area 1

2
) contribute zero to it. In Section 4 we prove that

∑

m,n<N h(m,n) ∼ N2

2
log2N . Intuitively, that is not surprising, since there are about

N2 log2N possible positions, and about half of them are non-zero. The obtained formula
is more precise, as it exhibits a periodic oscillation of order N 2, and an error term that de-
pends on the Hausdorff dimension mentioned before. Such a periodicity phenomenon is not
uncommon in digit counting problems. Our approach follows the elegant and elementary
method of Delange [5].

Section 5 exhibits a central limit theorem for the Hamming weight h(m,n). It uses
the analytic machinery developed in [10]. With these methods, asymptotic expansions for
expectation and variance can also be achieved, but the oscillating term mentioned before
would be less explicit in this way.

The last Section 6 briefly discusses higher dimensions. Solinas [13] remarks that a
generalization would require a higher-order analogue of the Joint Sparse Form. The lack of
such an analogue is also regretted by Avanzi [1]. While it might be less obvious to obtain
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such a higher dimensional Joint Sparse Form, based on the description given by Solinas,
it is completely natural when starting from the ideas of the Simple Joint Sparse Form,
introduced and studied in the present paper. And, indeed, we get an algorithm for it, show
that it has minimal Hamming weight, and characterize it syntactically. The NAF has at
least a zero in two consecutive digits, and the (Simple) Joint Sparse Form at least a double
zero in three consecutive double digits. Now the d-dimensional Simple Joint Sparse Form
guarantees a multiple zero among any consecutive d+ 1 multiple digits.

2. Sparse Forms

2.1. Joint Sparse Form. Solinas [13] calls an expansion
(

x`

y`
· · · x0

y0

)

of integers x

y
their

Joint Sparse Form, if

Of any three consecutive positions, at least one is a double zero,(2.1)

Adjacent terms do not have opposite signs, i.e., xjxj+1 6= −1 and yjyj+1 6= −1,(2.2)

If xjxj+1 6= 0, then yj+1 = ±1 and yj = 0,(2.3)

If yjyj+1 6= 0, then xj+1 = ±1 and xj = 0.(2.4)

He proves the following result:

Theorem 1 (Solinas). Every pair of integers x

y
has a unique Joint Sparse Form. This

Joint Sparse Form minimizes the joint Hamming weight amongst all joint expansions of x

y
.

Solinas also gives an algorithm to compute the Joint Sparse Form for given integers or
for given binary expansions as input. His algorithm also accepts reduced signed binary
expansions, where reduced means that (2.2) is satisfied. We note that Solinas’ Algorithm
has to know x and y modulo 8 to calculate the least significant pair of digits of the Joint
Sparse Form, which means a look-ahead of two positions. The algorithm can be described
by a transducer which translates a reduced signed binary expansion into the Joint Sparse
Form from right to left.

2.2. Simple Joint Sparse Form. We describe a simple procedure to obtain a joint ex-
pansion of low weight; it will turn out that this form has the same (i.e., minimal) Hamming
weight as the Joint Sparse Form.

The key observation is that an odd integer can be represented as x = (x` . . . x1x0) with
digits xj ∈ {0,±1} where the parity of x1 can be prescribed by replacing x0 by −x0 if
necessary.

We are given two integers x and y. If both are even, then we have no choice and have to
output 0

0
. If both numbers are odd, we choose x0

y0
appropriately so that both, (x − x0)/2

and (y− y0)/2 are even, so that a 0
0

will be written the next step. If, say, x is odd and y is
even, then we choose x0 in such a way that (x − x0)/2 ≡ (y − 0)/2 (mod 2). This either
leads to 0

0
immediately in the next step or in the following step. This procedure generates

a pair 0
0

after at most 3 steps. It is summarized in Algorithm 1.
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Algorithm 1 Simple Joint Sparse Form

Input: x and y integers
Output:

(

x`

y`
· · · x0

y0

)

Simple Joint Sparse Form
j ← 0
while x 6= 0 or y 6= 0 do

xj ← x mod 2, yj ← y mod 2
if
(

xj

yj

)

=
(

1
1

)

then

if (x− xj)/2 ≡ 1 (mod 2) then

xj ← −xj

end if

if (y − yj)/2 ≡ 1 (mod 2) then

yj ← −yj

end if

else if xj 6= yj then

if (x− xj)/2 6≡ (y − yj)/2 (mod 2) then

xj ← −xj, yj ← −yj

end if

end if

x← (x− xj)/2, y ← (y − yj)/2
j ← j + 1

end while

It is clear that Algorithm 1 yields a joint expansion
(

x`

y`
· · · x0

y0

)

which satisfies the follow-
ing syntactical rules:

If |xj| 6= |yj| , then |xj+1| = |yj+1| ,(2.5)

If |xj| = |yj| = 1, then xj+1 = yj+1 = 0.(2.6)

We call any joint expansion of x and y with digits {0,±1}, which satisfies these two rules a
Simple Joint Sparse Form of x and y. Surprisingly, it turns out that these rules are strong
enough to determine a unique joint expansion.

Theorem 2. Let x and y be integers. Then there is a unique (up to leading 0
0
) joint

expansion
(

x`

y`
· · · x0

y0

)

with digits 0, ±1 which satisfies the rules (2.5) and (2.6).

Furthermore, the Simple Joint Sparse Form has the same joint Hamming weight as the
Joint Sparse Form. Therefore, its joint Hamming weight is minimal amongst all joint
expansions.

Proof. The existence is proved by Algorithm 1.

Assume that
(

x`

y`
· · · x0

y0

)

and
(

x′

`

y′

`

· · · x′

0

y′

0

)

represent the same pair of integers x

y
. Without

loss of generality, min{|x| , |y|} is minimal among all pairs of integers with at least two

expansions. Then minimality ensures that
(

x0

y0

)

6=
(

x′

0
y′

0

)

. Without loss of generality, x0 =

−x′0 6= 0. This implies x1 6≡ x′1 (mod 2). If 2 | y, then y0 = y′0 = 0, and (2.5) implies
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x1 ≡ y1 ≡ y′1 ≡ x′1 (mod 2), a contradiction. Therefore, 2 - y. Then (2.6) yields
(

x1

y1

)

=
(

0
0

)

and
(

x′

1
y′

1

)

=
(

0
0

)

. This is a contradiction to x1 6≡ x′1 (mod 2).

We already observed that (2.5) and (2.6) imply (2.1). It is clear that (2.3) and (2.4)
are fulfilled also. However in general, (2.2) is not satisfied by a Simple Joint Sparse Form.
Nevertheless, if xj+1xj = −1, our rules (2.5) and (2.6) imply that |yj+1| = 1 and yj = 0.
Therefore, replacing xj+1xj by 0xj+1 does not change the joint Hamming weight. A finite
number of these simple operations transforms a Simple Joint Sparse Form into the Joint
Sparse Form without changing the position (and therefore their number) of 0

0
. Minimality

follows from the minimality of the Joint Sparse Form. �

We emphasize that the computation needs information modulo 4 only. It is therefore no
more a surprise that it can be realized by a transducer with look-ahead of one only. This
motivates the epitheton simple. We now construct this transducer which reads the binary
expansion of x

y
from right to left and outputs their Simple Joint Sparse Form. Although

in principle, we could admit arbitrary signed expansions as input, we refrain from doing
so since this would lead to an automaton with 26 states. At any stage, the following
information has to be available: the previously read pair of digits and the current pair of
digits and information about a possible carry, since a 1 may have been replaced by −1.
Since the carry is added to the previously read pair anyway, we represent states by the
sum of the previously read pair and the pair of carries. This yields 9 states representing
{0, 1, 2} × {0, 1, 2}. From some initial state, there is an edge into the appropriate state
which reads the first pair of digits but does not output anything. It is understood that
we read some leading pairs of zeros until no further carries are left, i.e., we reach state 0

0
.

We attach integer labels to states in a more or less arbitrary fashion since we will consider
adjacency matrices. The correspondence between these labels and the pairs of carries plus
digits is as follows:

label 1 2 3 4 5 6 7 8 9

state 0
0

1
1

2
2

1
0

2
0

2
1

0
1

0
2

1
2

The resulting transducer is shown in Figure 1.

3. The Geometry of the Simple Joint Sparse Form

The aim of this section is to understand the Simple Joint Sparse Form from left to
right. We are interested to “know” in which state we are after k steps. Figure 2 shows the
situation for k = 11 and all pairs of integers 0 ≤ x, y ≤ 212 − 1.

Figure 2 suggests that there is an underlying fractal structure. This structure will be
studied in this section. We will prove

Theorem 3. There exist 9 disjoint open connected subsets of [0, 1]2, A1, . . . , A9, such that
the pair of digits (xk, yk) of the simple Joint Sparse Form of the pair of integers (x, y)
can be computed from the index i for which ({x2−k−1}, {y2−k−1}) ∈ Ai and the pair of
digits (ξk+1, ηk+1) in the (classical) binary expansion of (x, y). The union of the sets Ai

has Lebesgue measure 1, and their boundaries have Hausdorff-dimension 1.2107605332 . . ..
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Figure 1. Automaton for calculating the Simple Joint Sparse Form from
the binary expansion from right to left. The symbol ε denotes the empty
word.

Furthermore, the index i decides on the Hamming weight of the output, and the measure
of the union of those Ai, which yield positive Hamming weight, equals 1

2
.

It is clear that the k-th state when reading x

y
in their classical binary expansions

x =
J
∑

j=0

ξj2
j, y =

J
∑

j=0

ηj2
j
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1 1

4 4

5 5

7 72 26 6

8 8

9 9

3 3

1 1

4 4

5 5

7 72 26 6

8 8

9 9

3 3

x10 0 0 0 1 −1 1 1 −1 −1
y10 0 1 −1 0 0 1 −1 1 −1

color

Figure 2. 11th state and output digits x10

y10
when reading all pairs of integers

up to 212 − 1.
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depends on the k least significant digits, i.e., x

y
mod 2k only. The output digits (xk−1, yk−1)

in the Simple Joint Sparse Form

x =

J+2
∑

j=0

xj2
j, y =

J+2
∑

j=0

yj2
j

depend on the k + 1 least significant digits, or equivalently, on the k-th state and on
(ξk, ηk). Since the state is the interesting information to be found, we renormalize pairs of
integers less than 2k by dividing through 2k, which yields points in the unit square. The
above mentioned fractal would then result from letting k tend to infinity. In order to prove
convergence we define functions Φk on pairs of words of digits {0, 1} of length k as follows

Φk

(

δ1
ε1

δ2
ε2
· · · δk

εk

)

=

(

δ1
ε1

δ2
ε2
· · · δk

εk

)

· {1, . . . , 9},

where the expression on the right means application of the pair of words to all states of
the automaton in Figure 1. Thus the image of Φk is a set of states. Furthermore,

Φk+1

(

δ1
ε1

δ2
ε2
· · · δk+1

εk+1

)

⊆ Φk

(

δ1
ε1

δ2
ε2
· · · δk

εk

)

,

which implies existence of the limit

(3.1) Φ

(

δ1
ε1

δ2
ε2
· · ·
)

= lim
k→∞

Φk

(

δ1
ε1

δ2
ε2
· · · δk

εk

)

.

The function Φ defined on ({0, 1} × {0, 1})
�

is continuous in all points which have a
singleton image.

Remark. In the above description the sequence Φk is calculated by the automaton in Fig-
ure 1 by reading digits from right to left. Certainly, it would be more desirable to have
a description of Φk in terms of the digits in “natural” order, i.e., from left to right. This
is indeed possible: We construct an automaton with set of states (a subset of) the set
{1, . . . , 9}{1,...,9}. The transition from state g by the pair of digits δ

ε
will be denoted by

g �
(

δ

ε

)

in order to avoid any confusion. It is given by
(

g �
(

δ

ε

))

(i) := g

((

δ

ε

)

· i
)

.

The initial state is the identity map. It turns out that 750 states are actually reached. If

we reach a constant map g(i) = j after reading
(

δ1
ε1
· · · δk

εk

)

, we have Φ
(

δ1
ε1
· · · δk

εk
· · ·
)

= {j}.
We now want to prove that Φ descends to a function on [0, 1]2 by

Φ

(

∞
∑

n=1

δn2−n,

∞
∑

n=1

εn2
−n

)

= Φ

(

δ1
ε1

δ2
ε2
· · ·
)

.

For this purpose we note the simple facts that

(3.2)

(

δ

ε

δ

ε

)

· {1, . . . , 9} is a singleton (δ, ε ∈ {0, 1})
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and

(3.3)

(

δ

0

δ

1

)k

· i =

(

δ

0

δ

1

)2

· i (δ, ε ∈ {0, 1})

for all k ≥ 2 and all i ∈ {1, . . . , 9}. In order to prove that

Φk+`

(

δ1
ε1

· · · δk
εk

1

εk+1

0

εk+2

0

εk+3

· · · 0

εk+`

)

= Φk+`

(

δ1
ε1

· · · δk
εk

0

εk+1

1

εk+2

1

εk+3

· · · 1

εk+`

)

for ` ≥ 9 it is sufficient by (3.2) and (3.3) to check
(

1

ε1

0

ε2
· · · 0

ε9

)

· {1, . . . , 9} =

(

0

ε1

1

ε2
· · · 1

ε9

)

· {1, . . . , 9}

for all choices of (ε1, . . . , ε9). The same proof applies if the first and second coordinate are
interchanged. Thus Φ is well-defined on [0, 1]2 and continuous in all points which have a
singleton image.

We want to describe the sets

Aj = {(x, y) ∈ [0, 1]2 | Φ(x, y) = {j}},
Vj = {(x, y) ∈ [0, 1]2 | j ∈ Φ(x, y)}

topologically. The sets Aj are open by the continuity properties of Φ. For a point (x, y) ∈ Vj

and any k the suffix after k digits of the digital expansions of (x, y) can be altered to (x̃, ỹ)
so that Φ(x̃, ỹ) = {j}. This implies Aj ⊆ Vj ⊆ Aj. On the other hand for a point
(x, y) /∈ Vj by a similar argument a neighbourhood of this point is in the complement of

Vj. Thus Vj = Aj.
Any neighbourhood of a point (x, y) with {i, j} ⊆ Φ(x, y) contains points (x′, y′) ∈ Ai

and (x′′, y′′) ∈ Aj by the above arguments. This implies that (x, y) ∈ ∂Vj and int(Vj) ⊆
Aj ⊆ Vj, which yields int(Vj) = Aj.

We now want to characterize the sets Aj and Vj in the language of graph directed sets
as introduced in [8]. For this purpose we introduce the maps

fδ,ε(x, y) =

(

x + δ

2
,
y + ε

2

)

.

It is clear from the definition that

(3.4) Φ(fδ,ε(x, y)) =

(

δ

ε

)

· Φ(x, y).

Equation (3.4) leads us to the definition

(3.5) F (S1, . . . , S9) = (F1(S1, . . . , S9), . . . , F9(S1, . . . , S9)),

where

Fi(S1, . . . , S9) =
⋃

j,δ,ε
i=(δ,ε)·j

fδ,ε(Sj),
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where Sk ⊆ [0, 1]2. Since F acts as a contraction on the compact subsets of [0, 1]2, there
exist unique compact sets K1, . . . , K9, such that F (K1, . . . , K9) = (K1, . . . , K9). These
sets can be obtained as the limits of iterates of F of any 9-tuple of compact sets. From
(3.4) we conclude that

Fi(A1, . . . , A9) ⊆ Ai,(3.6)

Fi(V1, . . . , V9) = Vi(3.7)

and therefore Vi = Ki for i = 1, . . . , 9.
Next we want to prove that the sets Aj are connected. We introduce the open sets

Oj = int

(

⋃

Φ4( δ1
ε1

··· δ4
ε4

)={j}

(

δ1
2

+ · · ·+ δ4
16
,
ε1

2
+ · · ·+ ε4

16

)

+

[

0,
1

16

]2
)

.

O1

O2

O3

O4

O5

O6O7

O8

O9

Figure 3. Left: the sets Oi.
Right: The dark gray areas represent the left image after one application of
the functions fδ,ε.

These sets are shown in the left image of Figure 3. The sets Oj are connected and

Oj ⊂ Vj.

The right image in Figure 3 shows that

Oi ∩ Fi(O1, . . . , O9) 6= ∅ and therefore Oi ∪ Fi(O1, . . . , O9) is connected.

From this it follows by induction that the sets

Bi =

∞
⋃

`=0

(

F `(O1, . . . , O9)
)

i
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are connected. Furthermore, Bi is a dense open subset of Vi, since

(V1, . . . , V9) = lim
k→∞

F k(O1, . . . , O9).

Therefore the sets Ai = int(Vi) are connected.
In the following we want to study intersections of two or three sets Vj. Clearly, we have

for pairwise distinct i, j, k

(3.8)
V{i,j} := Vi ∩ Vj =

{

(x, y) ∈ [0, 1]2 | {i, j} ⊆ Φ(x, y)
}

,

V{i,j,k} := Vi ∩ Vj ∩ Vk =
{

(x, y) ∈ [0, 1]2 | {i, j, k} ⊆ Φ(x, y)
}

.

These sets can be generated by the automata in Figure 4 and Figure 5. These automata
have the two (resp. 3) element subsets of {1, . . . , 9} as their states (only those which
correspond to non-empty intersections are drawn) and the obvious transition functions. In
order to generate a point in V{i,j} we start in the state labeled with i, j and follow the arcs
in the reverse direction. The triple intersections are singleton sets, which will be called
“three country borders”:
{(

1

5
,
2

5

)}

= V{1,2,7},

{(

1

5
,
3

5

)}

= V{2,7,8},

{(

2

5
,
1

5

)}

= V{1,2,4},

{(

2

5
,
4

5

)}

= V{2,8,9},

{(

3

5
,
1

5

)}

= V{2,4,5},

{(

3

5
,
4

5

)}

= V{2,3,9},

{(

4

5
,
2

5

)}

= V{2,5,6},

{(

4

5
,
3

5

)}

= V{2,3,6}.

Now, we want to compute the measures of the sets Vi and the Hausdorff-dimension of
∂Vi. It is an immediate consequence of the definition that

9
⋃

i=1

Vi = [0, 1]2.

Furthermore, from (3.7) we can conclude

(3.9) λ(Vi) ≤
1

4

∑

j,δ,ε
(δ,ε)·j=i

λ(Vj).

Summing these inequalities for j = 1, . . . , 9 we obtain

9
∑

j=1

λ(Vi) ≤
9
∑

j=1

λ(Vi),

which implies that equality has to hold in (3.9) for all j = 1, . . . , 9. Since

λ(Vi) =
1

4

(

∑

j,δ,ε
(δ,ε)·j=i

λ(Vj)−
∑

j<k,δ1,δ2,ε1,ε2

(δ1,ε1)·j=i
(δ2,ε2)·k=i

λ(Vj ∩ Vk) + triple intersections

)

,
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2, 32, 5

2, 81, 2

1, 7

1, 4 8, 9

5, 6

7, 8

3, 6

4, 5 3, 9

2, 4

2, 7

2, 9

2, 6

0
0

0

1

1

0

0
1

0

0

1

1

1
0

0

0

1

1

1
1

0

1

1

0

0

1

10

10

0

1

11

0

0

1

1

00

0

0

11

1

0

01

00

1

1

01

1

0

1
1

0
1

1
1

1
0

1
0

0
0

0
1

0
0

Figure 4. The automaton generating the points in the sets V{i,j}.

2, 7, 82, 4, 51, 2, 7

2, 3, 9

1, 2, 4

2, 3, 62, 8, 9 2, 5, 6

1111

1

0

1

0

0

1

0

1

00 00

Figure 5. The automaton generating the “three country borders” V{i,j,k}.
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and we know that the triple intersections consist of single points only, we can conclude
that λ(Vj ∩ Vk) = 0 for j 6= k, and therefore the boundaries of the sets Vj have measure 0.
Furthermore, we have

∑

i λ(Vi) = 1, which yields

λ(V1) = λ(V3) = λ(V5) = λ(V8) =
1

8
, λ(V4) = λ(V6) = λ(V7) = λ(V9) =

1

16
, λ(V2) =

1

4
.

For computing the Hausdorff-dimension of the boundaries of the sets Vj we notice that
the sets V{i,j} defined in (3.8) satisfy the relation

(3.10) V{i,j} =
⋃

δ,ε,{k,`}
(δ,ε)·{k,`}={i,j}

fδ,ε(V{k,`}).

This observation brings us in the context of graph directed sets as introduced in [8]. The
box-dimension can be computed from the dominating eigenvalue of the adjacency matrix
of the “boundary automaton” given in Figure 4. This eigenvalue is the positive root λ of
the equation

(3.11) x3 − 2x2 + x− 4 = 0.

This yields

(3.12) dimB(∂Aj) = α =
log λ

log 2
= 1.2107605332885233950 . . . .

For technical reasons we introduce the set V10 = ∂[0, 1]2. Then the open sets

A{i,j} =
{

(x, y) ∈ int(Vi ∪ Vj) | ∀k ∈ {1, . . . , 10} \ {i, j} : d((x, y), V{i,j}) < d((x, y), Vk)
}

satisfy

(3.13)
⋃

δ,ε,{k,`}
(δ,ε)·{k,`}={i,j}

fδ,ε(A{k,`}) ⊆ A{i,j}

with the union being disjoint. This is the open set condition which by [7, Theorem 9.2]
implies that the Hausdorff-dimension of V{i,j} equals its box-dimension. Thus we have

(3.14) dimH(∂Aj) =
logλ

log 2
= 1.2107605332885233950 . . . .

Figure 2 exhibits a rotational structure which has not been discussed yet. This is a
natural property of the underlying problem on elliptic curves: since there is a symmetry
in the algorithm described in the introduction between the pairs of points (P,Q) and
(P + Q,P − Q) the map (x, y) 7→ (x + y, x− y) should preserve the structure of the sets
Ai. We will prove now that this is indeed the case. For this purpose we introduce the map
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T : (x, y) 7→ (x+ y mod 1, x− y mod 1). This map satisfies

T (A2) ⊆ A1 ∪ A3 ∪ A5 ∪ A8,(3.15)

T (A4 ∪ A6 ∪ A7 ∪ A9) ⊆ A2,

T ((A1 ∩ f00(A2)) ∪ (A3 ∩ f11(A2)) ∪ (A5 ∩ f10(A2)) ∪ (A8 ∩ f01(A2))) ⊆ A4 ∪ A6 ∪ A7 ∪ A9,

T ((A1 \ f00(A2)) ∪ (A3 \ f11(A2)) ∪ (A5 \ f10(A2)) ∪ (A8 \ f01(A2))) ⊆ A1 ∪ A3 ∪ A5 ∪ A8.

Adding or subtracting two numbers given in their Simple Joint Sparse Form is digit-wise
addition (or subtraction) and subsequent correction by the rule (0,±2) 7→ (±1, 0) by (2.6).
We demonstrate relation (3.15); the proof of the other relations is similar: let (x, y) be
given in its Simple Joint Sparse Form. The condition (x, y) ∈ A2 is equivalent to

x

y
=

(

0

0

.

.

1

1

δ

ε

∗
∗ · · ·

)

(in Simple Joint Sparse Form!),

since 2 is the unique state which produces two non-zero digits as output (cf. Figure 2).
Since δε = 0 we have

x + y

x− y =

(

1

0

.

.

0

0

∗
∗ · · ·

)

(in Simple Joint Sparse Form).

Therefore, T (x, y) ∈ Ai for a state i, which produces the output 0
0
, i.e., i ∈ {1, 3, 5, 8}.

4. Geometric Approach for Estimating the Joint Hamming Weight

In this section we give a derivation for an asymptotic formula for the mean of the
Hamming weight of the Joint Sparse Form. The proof follows the ideas used by H. Delange
in [5].

Theorem 4. The Hamming weight of the Joint Sparse Form of two positive integers sat-
isfies the following asymptotic formula

(4.1) S(N) =
∑

m,n<N

h(m,n) =
N2

2
log2N +N2ψ1(log2N) +O(Nα),

where ψ1 is a continuous periodic function of period 1 and α is given by (3.12).

Proof. Theorem 3 states that the contribution of the pair of digits (xk, yk) to the Hamming
weight of the Joint Sparse Form of the pair (m,n) equals

�
H

({ m

2k+1

}

,
{ n

2k+1

})

, where H = int(V2 ∪ V4 ∪ V6 ∪ V7 ∪ V9).

Notice that λ2(H) = 1
2
. It follows immediately that

(4.2) S(N) =

K
∑

k=0

∑

m,n<N

�
H

({ m

2k+1

}

,
{ n

2k+1

})

=

K
∑

k=0

∑

m,n<N

�
Hk

({ m

2k+1

}

,
{ n

2k+1

})
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9.5 10 10.5 11

0.62

0.64

0.66

0.68

0.72

0.74

Figure 6. Plot of S(N)/N 2 − 1
2
log2N over log2N for N = 512, . . . , 2048.

with K = blog2Nc + 2 and

(4.3) Hk =
⋃

(m,n)∈2k+1H∩ � 2

[m2−k−1, (m+ 1)2−k−1)× [n2−k−1, (n+ 1)2−k−1).

This enables us to rewrite the sum as an integral

(4.4) S(N) =

K
∑

k=0

∫∫

[0,N ]2

�
Hk

({ m

2k+1

}

,
{ n

2k+1

})

dmdn.

Setting t = N2−K ∈ [1
4
, 1

2
), substituting m = 2Kx and n = 2Ky in the integrals, and

reversing the order of summation yields

S(N) = 4K

K
∑

k=0

∫∫

[0,t]2

�
HK−k

({

2k−1x
}

,
{

2k−1y
})

dx dy.

We rewrite this as

(4.5) S(N) =
1

2
(K + 1)(t2K)2 + 4K

K
∑

k=0

∫∫

[0,t]2

(

�
H

({

2k−1x
}

,
{

2k−1y
})

− 1

2

)

dx dy

+ 4K

K
∑

k=0

∫∫

[0,t]2

( �
HK−k

− �
H

) ({

2k−1x
}

,
{

2k−1y
})

dx dy.

We remark that t is a rational number with denominator 2K and therefore the integral
∫∫

[0,t]2

(

�
H

({

2k−1x
}

,
{

2k−1y
})

− 1

2

)

dx dy = 0 for k > K,
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since λ2(H) = 1
2
. Thus we can extend the second summand in (4.5) to an infinite sum

without changing its value. It is natural to define the continuous function

Ψ(t) =
∞
∑

k=0

∫∫

[0,t]2

(

�
H

({

2k−1x
}

,
{

2k−1y
})

− 1

2

)

dx dy.

Simple computations yield Ψ( 1
4
) = − 1

16
and Ψ(1

2
) = −1

8
.

We now treat the third summand in (4.5). For this purpose we have to estimate the
integral

(4.6)

∫∫

[0,t]2

(
�

H`
− �

H)
({

2k−1x
}

,
{

2k−1y
})

dx dy

=

∫∫

[0,2−k+1b2k−1tc]2

(
�

H`
− �

H)
({

2k−1x
}

,
{

2k−1y
})

dx dy +

∫∫

[0,t]2\[0,2−k+1b2k−1tc]2

· · · dx dy.

We set

β` =

∫∫

[0,1]2

(
�

H`
− �

H) (x, y) dx dy

and remark that by the definition of the box dimension and the arguments given in Section 3
we have β` = O((λ/4)`), where λ is given by (3.11). Thus the first integral in (4.6) equals
β`(2

−k+1b2k−1tc)2; the second integral is O((λ/4)`2−k), since it can be written as a sum over
O(2k) integrals over squares of side-length 2−k+1, and each integral gives a contribution of
O((λ/4)`).

Summing up we obtain

(4.7) S(N) =
N2

2
(K+1)+4KΨ(t)+4K

K
∑

k=0

(b2k−1tc
2k−1

)2

βK−k+4K

K
∑

k=0

O
(

(

λ

4

)K−k

2−k

)

.

Rewriting this and observing that the last summand is O(λK) = O(Nα) we obtain

(4.8) S(N) =
N2

2
(K + 1) + 4KΨ(t) + 4Kt2

K
∑

k=0

βK−k

− 2 · 4Kt

K
∑

k=0

{2k−1t}
2k−1

βK−k + 4K

K
∑

k=0

{2k−1t}2
4k

βK−k +O(Nα)

=
N2

2
(K + 1) + 4KΨ(t) +N2

∞
∑

k=0

βk +O(Nα),
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where we have used that βk = O((λ/4)k). Inserting K = log2N − {log2N}+ 2 and using
t = 2{log2 N}−2 we obtain
(4.9)

S(N) =
N2

2
log2N +N2

(

3

2
− 1

2
{log2N}+ 42−{log2 N}Ψ

(

2{log2 N}−2
)

+

∞
∑

k=0

βk

)

+O(Nα).

We notice here that a simple computation involving the adjacency matrix of the automaton
in Figure 1 proves that

∞
∑

k=0

βk =
3

16
.

The function

ψ1(x) =
27

16
− 1

2
{x}+ 42−{x}Ψ

(

2{x}−2
)

is a periodic function with period 1, which is trivially continuous in [0, 1). Furthermore,
ψ1(0) = limx→1− ψ1(x) = 11

16
. Thus the theorem is proved. �

5. Exponential sums and Central Limit Theorem

In this section we will prove a central limit theorem for the Hamming weight of the Joint
Sparse Form.

Theorem 5. The following equation holds uniformly for all x ∈ R and any ε > 0
(5.1)

1

N2
#

{

m,n < N | h(m,n)− 1
2
log2N

1
4

√

log2N
< x

}

=
1√
2π

∫ x

−∞

e−
t2

2 dt+O
(

(logN)−
1
6
+ε
)

.

The automaton for calculating the Simple Joint Sparse Form given in Figure 1 can also
be used to compute the Hamming weight of the representation (simply map any output
different from 0

0
to 1). Furthermore, the Hamming weight which results from a transition

from i to j depends on i only, cf. Figure 2. Therefore, there is no look-ahead needed for
calculating the Hamming weight.

For the proof of Theorem 5 we use exponential sums. For this purpose we calculate

f(m,n) = eith(m,n)

in terms of the binary digits of m and n. For each pair of digits (δ, ε) we define a matrix
Mδ,ε in the following way: its (k, `)-th entry equals eith, if the automaton reads (δ, ε) and
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writes h while going from state k to state ` and 0 otherwise (z = eit)

M0,0 =









1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 z 0 0 0 0 0
0 z 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 z 0 0
0 z 0 0 0 0 0 0 0









, M0,1 =









0 0 0 0 0 0 z 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 z
0 z 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0









,

M1,0 =









0 0 0 z 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 z 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 z 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0









, M1,1 =









0 z 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
0 0 0 0 0 z 0 0 0
0 0 1 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 z
0 0 1 0 0 0 0 0 0









.

Then it is an immediate consequence of the definition of the matrices Mδ,ε that

(5.2) f(m,n) = ~vT

L
∏

`=0

Mm`,n`
M2

0,0~v,

for

m =
L
∑

`=0

m`2
`, n =

L
∑

`=0

n`2
`

and
~vT = (1, 0, 0, 0, 0, 0, 0, 0, 0).

The factor M 2
0,0 adds two leading 0s to the expansions of m and n to output the possible

carries that could still occur.
The function f(m,n) can be expressed in terms of the “bivariate 2-multiplicative matrix

function” (cf. [2])

(5.3) M(m,n) =

L
∏

`=0

Mm`,n`
.

We recall here that a (scalar) function ϕ is 2-multiplicative (cf. [4]), if

ϕ

(

L
∑

`=0

ε`2
`

)

=

L
∏

`=0

ϕ(ε`).

We now study the summatory functions

E(N) =
∑

m,n<N

eith(m,n),

F (N) =
∑

m,n<N

M(m,n).

The function F satisfies the relations

F (2N) =

1
∑

δ,ε=0

∑

2m+δ<2N
2n+ε<2N

M(2m + δ, 2n+ ε) =

1
∑

δ,ε=0

Mδ,εF (N)
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and

F (2N + 1) =

1
∑

δ,ε=0

∑

2m+δ<2N+1
2n+ε<2N+1

M(2m + δ, 2n + ε)

=

1
∑

δ,ε=0

Mδ,εF (N) +
∑

n<2N

M(2N, n) +
∑

m<2N

M(m, 2N) +M(2N, 2N).

Setting A =
∑1

δ,ε=0Mδ,ε and

(5.4) G1(N) =
∑

n<N

M(N, n), G2(N) =
∑

m<N

M(m,N)

we can rewrite this as

(5.5)
F (2N) = AF (N)

F (2N + 1) = AF (N) +B1,0G1(N) +B2,0G2(N) +M0,0M(N,N),

where B1,0 = M0,0 +M0,1 and B2,0 = M0,0 +M1,0.
The functions G1 and G2 satisfy the recurrence relations

(5.6)
Gi(2N) = Bi,0Gi(N)

Gi(2N + 1) = Bi,1Gi(N) + CiM(N,N)
i = 1, 2,

where B1,1 = M1,0 +M1,1, B2,1 = M0,1 +M1,1, C1 = M1,0, and C2 = M0,1. Iterating (5.6)
yields

(5.7) Gi

(

L
∑

`=0

ε`2
`

)

=
L
∑

`=0

ε`

`−1
∏

j=0

Bi,εj
Ci

L
∏

j=`+1

Mεj ,εj
.

Inserting (5.7) into (5.5) and iterating yields F (N) = F0(N) + F1(N) + F2(N) with
(i = 1, 2)

(5.8)

F0

(

L
∑

`=0

ε`2
`

)

=
L
∑

`=0

ε`A
`M0,0

L
∏

p=`+1

Mεp,εp
,

Fi

(

L
∑

`=0

ε`2
`

)

=
L
∑

`=0

ε`A
`Bi,0

L
∑

j=`+1

εj

j−1
∏

k=`+1

Bi,εk
Ci

L
∏

k=j+1

Mεk,εk
.

The matrices Mδ,ε only have eigenvalues 0 and 1. The matrices Bi,ε have the character-
istic polynomial

x6 (x− 1)
(

x2 − x− 2eit
)

,

where the roots of the last factor are less than 2 in modulus. The characteristic polynomial
of the matrix A is

x (x− 1)
(

x2 − x− 2eit
)2 (

x3 − x2 − 8eitx− 16e2it
)

.
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The dominating eigenvalue λ(t) is a root of the fourth factor and has the following Taylor
expansion around t = 0

(5.9) λ(t) = 4 + 2it− 5t2

8
− 25it3

192
+

131t4

6144
+O(t5),

furthermore, |λ(t)| ≤ 4. We will denote the modulus of the second largest eigenvalue by
β(t). Numerical studies show that 2 = β(0) ≤ β(t) ≤ β(π) = 3.04276 . . ..

Since the arguments follow the same lines as in [10], we only give a sketch of the
proof. We split the sums in (5.8) into the contribution which comes from the domi-
nating eigenvalue and a remainder term, which originates from the other eigenvalues. Let
T−1AT = diag(λ(t), . . .) be the diagonalization of A and Λ = T diag(λ(t)−1, 0, . . . , 0)T−1.
We define

(5.10)

Ψ0 ((x0, x1, . . .)) =

∞
∑

`=0

x`Λ
`M0,0

`−1
∐

p=0

Mxp,xp

Ψi ((x0, x1, . . .)) =

∞
∑

`=0

x`Λ
`Bi,0

`−1
∑

j=0

xj

`−1
∐

k=j+1

Bi,xk
Ci

j−1
∐

k=0

Mxk ,xk
,

where
∐b

j=a zj = zbzb−1 · · · za. Furthermore, we set Ψ = ~vT (Ψ0 + Ψ1 + Ψ2)M
2
0,0~v. The

function Ψ is continuous on the infinite product space {0, 1}
�

0 . Using this notation we can
write

E(N) = λ(t)log2 Nλ(t)−{log2 N}Ψ((εL, εL−1, . . . , ε0, 0
(∞))) +O(N logN).

Since E(N + 1) − E(N) = O(N) by definition, Ψ descends to a continuous function on
[1, 2] by a general argument given in [14]. See also [9].

Thus we have for |t| = o(log− 1
3 N)

(5.11)
∑

m,n<N

eith(m,n) = N2+ it
2 log 2

− t2

32 log 2
+O(t3)ψ(t, log2N) +O

(

N log2 β(t)
)

for the continuous periodic function ψ(t, log2N) = λ(t)−{log2 N}Ψ(2{log2 N}). Differentiation
with respect to t and inserting t = 0 yields a second proof for Theorem 4 (the justification
that this procedure really exhibits the asymptotic expansion uses the same argument as
given in [2]). We notice here that this “analytic” approach gives better error terms than
the “geometric” approach in Section 3. Nevertheless, we included the geometric proof,
since it gives more insight.

Differentiating twice yields

∑

m,n<N

h(m,n)2 =
1

4
N2 log2

2N +
1

16
N2 log2N +N2(log2N)ψ1(log2N) +N2ψ2(log2N)

+O(N logN),
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where ψ1 and ψ2 are continuous periodic functions related to the derivatives of ψ(t, ·).
From this we compute the “variance”

1

N2

∑

m,n<N

h(m,n)2 −
(

1

N2

∑

m,n<N

h(m,n)

)2

=
1

16
log2N + ψ2(log2N)− ψ2

1(log2N) + o(1).

We now use a procedure which is totally similar to the proof of the central limit theorem
[10, Theorem 3]. From (5.11) we derive

(5.12)
1

N2

∑

m,n<N

exp

(

it
h(m,n)− 1

2
log2N

1
4

√

log2N

)

= e−
t2

2

(

1 +O(|t|3 log− 1
2 N)

)

.

An application of the Berry-Esseen inequality (cf. [3, 6, 15]) to (5.12) yields (5.1).

6. Higher Dimensions

It is now natural to ask whether it is possible to extend the notion of Joint Sparse Form
to higher dimensions. In this section we will generalize the syntactic results obtained in
Section 2.2. It is clear that the other methods have such a generalization, too.

Let x(1), . . . , x(d) be integers, d ≥ 1. A joint expansion of x(1), . . . , x(d) is a matrix

(x
(k)
j )1≤k≤d

0≤j≤`

with entries 0, ±1 such that x(k) =
∑`

j=0 x
(k)
j 2j for 1 ≤ k ≤ d. Its joint

Hamming weight is the number of 0 ≤ j ≤ ` such that there is a 1 ≤ k ≤ d with x
(k)
j 6= 0.

We want to find a joint expansion of the given integers with minimum joint Hamming
weight.

We will now describe a method for transforming a joint expansion into a minimal joint

expansion. For a joint expansion X = (x
(k)
j ), we set

Aj(X) := {1 ≤ k ≤ d | x(k)
j 6= 0}.

Let now X be a given joint expansion of x(1), . . . , x(d). If A0(X) = ∅, there is no choice, and

the column of zeros is written. If A1(X) ⊆ A0(X), we replace x
(k)
0 by −x(k)

0 for k ∈ A1(X),
which yields a new joint expansion X ′ with A1(X

′) = ∅, i.e., the next column will be a
zero column. However, if A1(X) \ A0(X) 6= ∅, it is impossible to have a zero column in

the first two steps. Therefore, we replace x
(k)
0 by −x(k)

0 for all k ∈ A0(X) \ A1(X). This
new expansion X ′ has A1(X

′) = A1(X) ∪ A0(X), which is good since it may allow a zero
column in the third step. This procedure is summarized in Algorithm 2.

It is clear that Algorithm 2 yields a joint expansion X which satisfies the following
syntactical rule:

(6.1) Aj+1(X) % Aj(X) or Aj+1(X) = ∅, j ≥ 0.

We call any joint expansion of x(1), . . . , x(d) which satisfies this rule a Simple Joint Sparse
Form of x(1), . . . , x(d). It is clear that this notion is a generalization of the non-adjacent
form (for d = 1) and the Simple Joint Sparse Form for d = 2.
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Algorithm 2 d-dimensional Simple Joint Sparse Form

Input: x(1), . . . , x(d) integers

Output: (x
(k)
j )1≤k≤d

0≤j≤`

Simple Joint Sparse Form of x(1), . . . , x(d)

j ← 0
A0 ← {k | x(k) odd}
while ∃k : x(k) 6= 0 do

x
(k)
j ← x(k) mod 2, 1 ≤ k ≤ d

Aj+1 ← {k | (x(k) − x(k)
j )/2 ≡ 1 (mod 2)}

if Aj+1 ⊆ Aj then

for all k ∈ Aj+1 do

x
(k)
j ← −x

(k)
j

end for

Aj+1 ← ∅
else

for all k ∈ Aj \Aj+1 do

x
(k)
j ← −x(k)

j

end for

Aj+1 ← Aj ∪ Aj+1

end if

x(k) ← (x(k) − x(k)
j )/2, 1 ≤ k ≤ d

j ← j + 1
end while

Theorem 6. Let d ≥ 1 and x(1), . . . , x(d) be integers. Then there is a unique joint
expansion which satisfies (6.1).

Furthermore, the joint Hamming weight of the Simple Joint Sparse Form is minimal
amongst all joint expansions.

Proof. The existence of the Simple Joint Sparse Form is proved by Algorithm (6.1).

We now prove uniqueness. Let X = (x
(k)
j )1≤k≤d

0≤j≤`

and Y = (y
(k)
j )1≤k≤d

0≤j≤`

be Simple Joint

Sparse Forms of the same integers x(1), . . . , x(d). Without loss of generality, we may assume

that there is a 1 ≤ k ≤ d such that x
(k)
0 6= y

(k)
0 . Since 2x

(k)
1 +x

(k)
0 ≡ 2y

(k)
1 +y

(k)
0 (mod 4), we

get x
(k)
1 6≡ y

(k)
1 (mod 2). Without loss of generality, we assume x

(k)
1 = ±1. Since A1(X) 6= ∅,

there is a k′ ∈ A1(X)\A0(X) by (6.1). We have x
(k′)
0 = y

(k′)
0 = 0 and x

(k′)
1 ≡ y

(k′)
1 (mod 2).

Therefore, A1(Y ) 6= ∅, which implies by (6.1) that k ∈ A0(Y ) $ A1(Y ), hence y
(k)
1 6= 0, a

contradiction.
We now prove minimality. Let X be a joint expansion of x(1), . . . , x(d) of minimal

Hamming weight. For j ≥ 0 we set hj(X) := 1 if Aj(X) 6= ∅ and hj(X) := 0 otherwise.
for j ≥ 0. Without loss of generality, we may assume that (h0(X), h1(X), . . . ) is lexi-
cographically minimal amongst all minimal joint expansions. Moreover, we may assume
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that
Aj+1(X) ⊇ Aj(X) or Aj+1 = ∅, j ≥ 0.

This may be achieved by replacing (x
(k)
j+1, x

(k)
j ) = (0, x

(k)
j ) by (x′j+1

(k), x′j
(k)) = (x

(k)
j ,−x(k)

j )
where necessary.

Assume now that ∅ 6= Aj(X) = Aj+1(X). Let m = min{i ≥ j : Ai(X) = ∅} and set

m(k) = min{i ≥ j : x
(k)
i 6= x

(k)
j } for k ∈ Aj(X). By definition, j + 1 ≤ m(k) ≤ m. We

now replace
(

x
(k)

m(k) , . . . , x
(k)
j

)

by
(

(x
(k)

m(k) + x
(k)
j ), 0, . . . , 0,−x(k)

j

)

for k ∈ Aj(X) and call
the new expansion X ′. By construction, it is a joint expansion (with digits 0,±1). For

any k ∈ Aj(X), we have x′
(k)
j+1 = 0: If m(k) > j + 1, this is clear, if m(k) = j + 1, we

have x
(k)
j+1 = −x(k)

j and therefore x′
(k)
j+1 = x

(k)
j+1 + x

(k)
j = 0. This implies Aj+1(X

′) = ∅.
On the other hand, by minimality of X, we have Am(X ′) 6= ∅. Thus we have constructed
an expansion of the same joint Hamming weight which has smaller (h0(X

′), h1(X
′), . . . ), a

contradiction to our assumptions on X. Therefore, X is the Simple Joint Sparse Form. �
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