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1. Introduction

1.1. Historical remarks

The importance of functional and functional-differential equations with rescaling is being increas-
ingly recognised in the last decades, as is their relevance to a wide range of application areas.
Such equations – functional and functional-differential, linear and nonlinear – appear as adequate
tools in a number of phenomena that display some kind of self-similarity. It is next to impossible
to describe all recent activities in this area. For general references and bibliography we refer the
reader to survey papers by Derfel and co-authors [1, 6, 7].

One of the best known examples of equations with rescaling is the celebrated pantograph
equation:

y′(z) = ay(λz) + by(z). (1.1)

This equation was introduced by Ockendon & Tayler [20] as a mathematical model of the overhead
current collection system on an electric locomotive. (The term ‘pantograph equation’ was coined by
Iserles [13].) This equation and its ramifications have emerged in a striking range of applications,
including number theory [18], astrophysics [3], queues & risk theory [10], stochastic games [9],
quantum theory [23], population dynamics [12], and graph theory [21]. The common feature of all
such examples is some self-similarity of the system under study.

In 1972, Morris, Feldstein and Bowen [19] studied functional-differential equations (FDE) of
the form:

y′(z) =
∑̀
k=1

aky(λkz) (1.2)

with 1 > λ` > λ`−1 > · · · > λ1 > 0, a1, . . . , a` ∈ C. They were able to obtain deep results about
the existence, uniqueness, and asymptotic behaviour of solutions of (1.2) in the complex plane C.
(For more about FDE in the complex plane see also [8].)
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Among other things, Morris et al. [19] gave a detailed analysis of (1.1) in the special case
a = −1, b = 0, i.e.,

y′(z) = −y(λz) (1.3)

In particular, they proved that (1.1), supplemented by the initial condition

y(0) = 1 (1.4)

has the unique solution

y(z) =

∞∑
n=0

(−1)nλ
n(n−1)

2
zn

n!
. (1.5)

Moreover, y(z) is an entire function of order zero, and it has infinitely many positive zeros, but
no other zeros in the complex plane. The entire function (1.5) is sometimes called the deformed
exponential function (see Sokal [22]).

A number of conjectures on the zeros 0 < t0 < t1 < t2 . . . of (1.5) have been made by
Morris, Feldstein and Bowen [19] and by Iserles [13]. In particular, Morris, Feldstein and Bowen
conjectured that

lim
n→∞

tn+1/tn = 1/λ := q (1.6)

Also, in what follows we shall use the notation q := 1/λ > 1.
It is notable that in 1973, independently of [19], Robinson, in his paper on counting of acyclic

digraphs [21], derived the same FDE as (1.3) and conjectured

tn = (n+ 1)qn + o(qn), (1.7)

Clearly, (1.7) is stronger than (1.6). In 2000, Langley [15] resolved Morris’s et al. conjecture by
proving that

tn = nqn−1(γ + o(1)), (1.8)

where γ is a positive constant. In 2005, Grabner and Steinsky [11], independently of [15], proved
a weaker form of Robinson’s conjecture: namely, there exists k0 such that

tk0+k = (k + 1)qk + o(qk/k(1−ε), (1.9)

for all ε > 0.
Recently, Zhang [24] proved that γ = 1 in (1.8) and, moreover,

tn = nqn−1(1 + ψ(λ)n−2 + o(n−2)), (1.10)

where ψ(q) is the generating function of the sum-of-divisors function σ(k). Also, he derived an
asymptotic formula for the oscillation amplitude An of y(x), i.e., An = |y(qtn)|.
1.2. Main results

All aforementioned results were concerned with the analytic function (1.5), which is the unique
solution of the Cauchy problem (1.3)–(1.4). In contrast to this, in the present paper we deal with all
solutions of (1.3), not necessarily also satisfying (1.4), but rather defined on an arbitrary half-line.

The following natural definition is commonly accepted in the theory of functional-differential
equations:

Definition 1.1. If x0 is a real number, then a real or complex function y(x), defined and continuous
for x ≥ λx0, is said to be a solution of (1.3) for x ≥ x0, if it satisfies (1.3) for all x ≥ x0.

Thus, instead of the Cauchy problem for ODE, we have an initial value problem for FDE of
retarded type (i.e., 0 < λ < 1): for an arbitrary initial function ϕ defined on [λx0, x0], a solution
of the initial value problem is a function y(x) defined and continuous for x ≥ λx0, which satisfies
(1.3) and the initial condition:

y(x) = ϕ(x), x ∈ [λx0, x0]. (1.11)

Thus, the general solution of FDEs normally consists of an infinite family of solutions, depending
on an arbitrary function.

Evidently, any function that is continuous in [λx0, x0] can be continued uniquely to a solution
for x ≥ x0, and it makes sense to discuss the asymptotic behaviour of all solutions as x→∞.
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The aim of this paper is to show that the above stated asymptotic behaviour of zeros is true
not only for the analytic solution (1.5), but for all solutions of (1.3).

Namely, in Section 3, below, we prove that for every solution y(x) of (1.3), the following
asymptotic formula for zeros tn is valid:

tn = nqn−1

(
γ +O

(
log n

n

))
(1.12)

It is worth noting that all solutions of (1.3), except for (1.5), are non-analytic ones at z = 0, but
(1.12) remains true for all of them.

In summary, we can say that the asymptotic behaviour (1.12) is an intrinsic property of the
equation (1.3) itself, and only the constant γ in (1.12) depends on the specific solution.

Our second objective (see Section 2) is an asymptotic analysis of the solutions of (1.3).
In Section 2.1 we derive an asymptotic formula of the de Bruijn, Kato and McLeod type by

a method different from [2] and [14].
Furthermore, in Section 2.2 we give a brief summary of related results from [4] and [5] for

general FDE of higher order with several scaling factors

y(m)(x) =
∑̀
j=0

m−1∑
k=0

ajky
(k)(αjt+ βj), (1.13)

where all αj are less than 1 in modulus i.e. |αj | < 1.
Throughout the paper we denote the by log(z) the natural logarithm. as it is accepted in

complex analysis. Also, for complex argument z by log(z) we mean the principal branch of the
complex logarithm.

2. Asymptotic behaviour of analytic solutions

2.1. Asymptotic behaviour of the solution of FDE y′(z) = −y(λz)

We first observe that the equation
y′(z) = ay(λz) (2.1)

can be simplified to
g′(z) = −g(λz); (2.2)

i.e. every solution of (2.1) can be written as y(z) = g(−az) for a solution g of (2.2).
We start with an ansatz as a power series

g(z) =

∞∑
n=0

gnz
n,

which gives the recursion
(n+ 1)gn+1 = −λngn.

From this we obtain

g(z) =

∞∑
n=0

(−1)nλ(n2) z
n

n!
, (2.3)

if we assume g0 = 1.
In order to study the asymptotic behaviour of g(z) for large z, we transform (2.3) into an

integral representation inspired by the inversion formula for the Mellin transform

g(z) =
1

2πi

∫
H

Γ(s)λ(−s2 )z−s ds =
1

2πi

∫
H

π

sin(πs)

λ(−s2 )z−s

Γ(1− s) ds, (2.4)

g(−z) =
1

2πi

∫
H
π cot(πs)

λ(−s2 )z−s

Γ(1− s) ds, (2.5)

where H is a contour encircling the negative real axis counterclockwise, like the Hankel-contour
used in the theory of the Γ-function (see Figure 1). We will use the representation (2.4) for deriving
an asymptotic formula for g(z) for | arg(z)| ≤ π − ε (for ε > 0), whereas (2.5) will be used for the
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asymptotic of g(z) for | arg(−z)| ≤ π− ε. These representations can be proved by residue calculus
and taking care of the growth order of the integrand along the contour. In the case λ = 1

2 a similar
representation was used in [11]. A similar integral representation is given in [2].

ℜ(s)

ℑ(s)

i

−i

0−1−2

H
σ(x)

σ(x)− 2π
log λ

i+ |x|ασ(x)− 2π
log λ

i− |x|α

σ(x) + 2π
log λ

i+ |x|ασ(x) + 2π
log λ

i− |x|α

Figure 1. The contour of integration H

Similarly, the representation

g(z) =
1

2πi

 ∞−i∫
−∞−i

−
∞+i∫
−∞+i

Γ(s)λ(−s2 )z−s ds

can be shown. Here the contour of integration is deformed into two horizontal lines above and
below the real axis.

Theorem 2.1. Let g be the entire solution of (2.2) with g(0) = 1. Then for ε > 0 and | arg(z)| ≤
π − ε and z →∞ the asymptotic expansion

g(z) ∼ CzA log(z)B exp

(
− 1

2 log λ
(log(z)− log(log(z)))

2

)
×H

(
1

log λ
(log(z)− log(log(z)))− 1

2
+

log(− log λ)

log λ

)
(2.6)

holds, where the periodic function H of period 2 is given by the Fourier series

H(x) =

√
2π

− log λ

∑
k∈Z

e
(2k+1)2π2

2 log λ eπi(2k+1)x, (2.7)

and

A =
1

2
− 1

log λ
− log(− log λ)

log λ

B =
log(− log λ)

log λ
− 1

C = exp

(
1

2
− log λ

8
+ log(− log λ)− log(− log λ)

log λ
− (log(− log λ))2

2 log λ
− 1

2
log(2π)

)
.

(2.8)

Remark 2.1. This theorem extends the real asymptotic of all solutions on R+ given in [14] to the
complex asymptotic of the entire solution in an angular region avoiding the negative real axis.
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Theorem 2.2. Let g be the entire solution of (2.2) with g(0) = 1. Then for ε > 0 and | arg(−z)| ≤
π − ε and z →∞ the asymptotic expansion

g(−z) ∼ CzA log(−z)B exp

(
− 1

2 log λ
(log(−z)− log(log(−z)))2

)
×K

(
1

log λ
(log(−z)− log(log(−z)))− 1

2
+

log(− log λ)

log λ

)
(2.9)

holds, where the periodic function K of period 1 is given by the Fourier series

K(x) =

√
2π

− log λ

∑
k∈Z

e
2k2π2

log λ e2πikx, (2.10)

and A, B, and C are given by (2.8).

Proof of Theorem 2.1. We apply a saddle point approximation combined with residue calculus to
the second integral representation given in (2.4). For this purpose, we consider

λ(−s2 )z−s

Γ(1− s) = exp

(
s(s+ 1)

2
log λ− s log(z)− log(−s)− log(Γ(−s))

)
. (2.11)

We find the saddle point as the stationary point of the argument of the exponential:(
s+

1

2

)
log λ− x− 1

s
+ ψ(−s) = 0, (2.12)

where ψ = Γ′

Γ ; for simplicity, we set x = log(z). From [17] we infer

ψ(−s) = log(−s) +
1

2s
+O

(
1

s2

)
,

valid for | arg(−s)| ≤ π− ε for ε > 0. This shows that (2.12) has a unique solution σ(x) satisfying

σ(x) =
1

log λ
(x− log(x))− 1

2
+

log(− log λ)

log λ
+O(log(x)/x), (2.13)

which lies close to the negative real axis; notice that the imaginary part of σ(x) is bounded by
π

| log λ| . Around s = σ(x) we have the following approximation

s(s+ 1)

2
log λ− sx− log(s)− log(Γ(−s))

=
σ(x)(σ(x) + 1)

2
log λ− xσ(x)− log(−σ(x))− log(Γ(−σ(x)))

+
1

2

(
log λ+

1

σ(x)2
− ψ′(−σ(x))

)
(s− σ(x))

2
+O

(
x−2(s− σ(x))3

)
(2.14)

for s− σ(x) = O(xα) for α < 2
3 .

Inserting the approximation (2.14) into the integral representation (2.4) (and splitting the
range of integration into |s− σ(x)| ≤ xα and |s− σ(x)| ≥ xα) yields

g(z) =
λ(−σ(x)2 )

Γ(1− σ(x))
e−xσ(x) 1

2πi

∮
Rx

exp

(
1

2
(s− σ(x))2 log λ

)
π

sin(πs)
ds
(
1 +O(x2α−1)

)
+

1

2πi

∫
R′x

Γ(s)λ(−s2 )z−s ds, (2.15)

if we choose α < 1
2 . Here Rx denotes the positively oriented rectangle with corners σ(x)±|x|α± 2πi

log λ

and R′x denotes the remaining part of the dashed contour in Figure 1.
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The first integral in (2.15) can be evaluated by residue calculus

1

2πi

∮
Rx

exp

(
1

2
(s− σ(x))2 log λ

)
π

sin(πs)
ds

=
∑
n∈Z

|n−σ(x)|<|x|α

(−1)ne
1
2 (n−σ(x))2 log λ =

∑
n∈Z

(−1)ne
1
2 (n−σ(x))2 log λ +O

(
e

1
2 |x|

2α log λ
)
. (2.16)

This series represents a continuous periodic function of period 2, whose Fourier coefficients can be
computed by a variant of Poisson’s summation formula

H(y) =
∑
n∈Z

(−1)ne
1
2 (n−y)2 log λ =

√
2π√− log λ

∑
k∈Z

e
(2k+1)2π2

2 log λ eiπ(2k+1)y. (2.17)

For estimating the remaining integral over R′x in (2.15), we use the estimates (cf. [17])

|Γ(t± iC)| ≤
√

2π(t2 + C2)
1
2 (t− 1

2 )e−
πC
2 + 1

6C

|Γ(−t± iC)| ≤ π

|C| cosh(πC)
1
2 Γ(t)

valid for t ≥ 1 and C > 0.

Inserting the asymptotic information about σ(x) from (2.13) into (2.11) and using Stirling’s
formula for the Γ-function yields

λ(−σ(x)2 )e−xσ(x)

Γ(1− σ(x))
= CeAxxB exp

(
− 1

2 log λ
(x− log(x))2

)
,

with A, B, and C as given in (2.8). �

Proof of Theorem 2.2. For the proof of (2.9) we use the integral representation (2.5) and argue
along the same lines as in the proof of Theorem 2.1. The only technical difference is that the
residues of π cot(πs) are all equal to 1, which avoids the sign change occurring in (2.16). �

2.2. FDE of higher order with compressed arguments

In this section we consider the general FDE with rescaling

y(m)(x) =
∑̀
j=0

m−1∑
k=0

ajky
(k)(αjt+ βj), (2.18)

where ajk ∈ C and αj , βj ∈ R. From here on we consider, solutions of (2.18) defined on the whole
real line R, when there exists at least one βj 6= 0, and possibly defined on a half-line R+, or R−,
when all βj = 0.

For such equations, it is hard to expect the existence of an asymptotic formula similar to
(2.6). However, we can derive sharp estimates from above and below for solutions of (2.18).

Below, we give a brief summary of the related results from [4] and [5].

Denote:

α = min
0≤j≤`

|αj |, A = max
0≤j≤`

|αj |. (2.19)

and assume that A < 1. Then:

(i) Every solution y(x) of (2.18) is an analytic function, that can be extended as an entire
function y(z) of order zero in C.

(ii) Every solution of (2.18) satisfies the estimate

|y(z)| ≤ C exp{γ log2(1 + |z|)}, z ∈ C, (2.20)

for some C > 0, and

γ > m/(2| logA|) (2.21)
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(iii) Every solution of (2.18) is unbounded on any ray emanating from the origin z = 0 (as it is
an entire function of order zero). In particular, every solution is unbounded on R+ and R−.

This result cannot be strengthened in general due to the existence of polynomial solu-
tions. It was proved in [4] and [5] that:

(iv) A necessary and sufficient condition for the existence of polynomial solutions of (2.18) is
that: ∑̀

j=0

aj0α
n
j = 0 (2.22)

for some n ∈ N.
Under the assumption that (2.18) has no polynomial solutions, and βj = 0 for all j, one

can prove a result stronger than (iii). Roughly speaking, every nontrivial solution of (2.18)
grows as |z| → ∞ faster than exp{γ log2 |z|} for some γ > 0. More precisely:

(v) Every solution of (2.18), which at least on one ray emanating from the origin satisfies (2.20)
for some C > 0, and

γ < 1/(2| logα|) (2.23)

vanishes identically.

Remark 2.2. The above stated results, formulated for the equation (2.18), with constant coeffi-
cients, remain true with minor changes also for FDE of higher order, with several compressed
arguments and polynomial coefficients:

y(m)(x) =

m−1∑
k=0

∑̀
j=0

r∑
ν=0

ajkνx
νy(k)(αjt+ βj), (2.24)

3. Asymptotic behaviour of the zeros

The central result of this section is the following theorem.

Theorem 3.1. Let y(x) be a solution of (1.3), and 0 < x0 < x1 < x2 < . . . be the zeros of y(x).
Then there exists a positive constant γ, such that:

xn = nqn−1

(
γ +O

(
log n

n

))
. (3.1)

The proof is based on a result of Kato & McLeod [14] and de Bruijn [2] on the asymptotic
behaviour of all solutions of the equation

y′(z) = ay(λz) (3.2)

and Lemma 3.1 below.
According to Kato and McLeod [14, Theorem 7(iii)] and de Bruijn [2, Sections 1.3-1.4] every

solution of (3.2) has the following asymptotic behaviour

y(x) = xA1 log(x)B1 exp

(
− 1

2 log λ
(log(x)− log(log(x)))

2

)
×
(
h

(
1

log λ
(log(x)− log(log(x)))

)
+ o(1)

)
, (3.3)

where

A1 =
1

2
− 1

log λ
− log(−a log λ)

log λ
,

B1 =
log(−a log λ)

log λ
− 1,

(3.4)

and h(x) is a periodic function of period log q = | log λ|, with some additional assumptions on its
Fourier coefficients (see [14, (6.2)–(6.3)]).



8 G. Derfel, P. J. Grabner and R. F. Tichy

Remark 3.1. Notice that this asymptotic behaviour is in accordance with the behaviour stated
in Theorems 2.6 and 2.2. If the value −a log λ is negative, the complex values of the power
(x/ log(x))− log(−a log λ)/ log λ are compensated by complex values of the periodic function h(x)
and a doubling of the period to accommodate the sign change. This is the explanation of the fact
that the periodic function in Theorem 2.6 has period 2.

Lemma 3.1. Let G be a periodic function of period 2, x0 the minimal positive zero of G, and
all zeros of G located at the points: x0 + k; k = 0, 1, 2, . . .. Then the zeros of the function

F (x) := G
(

1
log λ (log(x)− log(log(x))

)
have the following asymptotic behaviour

xn = nqn−1

(
γ +O

(
log n

n

))
(3.5)

Proof of Lemma 3.1. Let us observe first that the zeros of F (x) are located at the points x, such
that

log x− log x log x = (x0 + k) log q (3.6)

We shall seek solutions of (3.6) of the form

xk = x(k) = C(k)kqk, (3.7)

where C(k) is an unknown function of no more than power growth, i.e., there exists α > 0 such
that C(k) = O(kα). To prove Lemma 3.1 it is enough to show that

C(k) = γ +O
(

log k

k

)
, (3.8)

where γ is positive constant. For that, substitute (3.7) in (3.6). It follows from (3.7) that

log x = k log q

(
1 +

log k

k log q
+

logC(k)

k log q

)
, (3.9)

and

log log x = log k +
log k

k log q
+

logC(k)

k log q
+ log log q + o

(
log k

k log q

)
, (3.10)

Combining (3.6), (3.9) and (3.10), after some elementary calculations we obtain that(
1− 1

k log q

)
logC(k) = x0 log q + log log q +

log k

k log q
+ o

(
log k

k log q

)
(3.11)

Next, let k →∞, then from (3.11) we obtain

logC(k) = (x0 log q + log log q) +O
(

log k

k

)
, (3.12)

or

C(k) = qx0 log q

(
1 +O(

log k

k
)

)
. (3.13)

Finally, (3.13) implies (3.8) and (3.5). �

Proof of Theorem 3.1. First, we apply the asymptotic formula (3.3) to the solutions of (1.3). Ob-
serve that in this case a = −1 and log λ = − log q < 0, and therefore the expression log(−a log λ) =
log(log λ) in (3.4) is a complex number.

Having this in mind, we can rewrite (3.3) and (3.4) in the form:

y(x) = xA2 log(x)B2 exp

(
1

2 log q
(log(x)− log(log(x)))

2

)
×
(

cos
π

log q
(log(x)− log(log(x)) + i(sin

π

log q
(log(x)− log(log(x))

)
×
(
h

(
1

log q
(log(x)− log(log(x)))

)
+ o(1)

)
, (3.14)
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where

A2 =
1

2
+

1

log q
+

log(log q)

log q

B2 = −1− log(log q)

log q
,

(3.15)

Both the real part and the imaginary parts of (3.14) provide asymptotic formulas for solutions
of (1.3), and the assumptions of Lemma 3.1 are fulfilled.

Then, in accordance with Lemma 3.1, there exists k0 such that for all k = 0, 1, 2, . . .

xk0+k = kqk−1

(
γ1 +O(

log k

k
)

)
, (3.16)

Now (3.8) follows from (3.16), and from (3.8) finally we obtain (3.1) . �

4. The case b 6= 0

The behaviour of the entire solution of (1.1) changes considerably, if b 6= 0. This is quite obvious
from the observation that the equation can be viewed as a perturbed differential equation y′ = by.
Thus we expect an asymptotic behaviour of the form f(x) ∼ Cebx for <(bx) → +∞. We again
start with an ansatz as a power series

f(z) =

∞∑
n=0

fnz
n,

from which we derive the recurrence formula

(n+ 1)fn+1 = (aλn + b)fn for n ≥ 0.

This gives

fn =
bn

n!

n−1∏
k=0

(
1 +

a

b
λk
)
, (4.1)

if we set f0 = 1. In order to simplify notation, we introduce

Qλ(α) =

∞∏
k=0

(
1 + αλk

)
.

This gives

f(z) = Qλ

(a
b

) ∞∑
n=0

(bz)n

n!Qλ
(
a
bλ

n
) , (4.2)

if a
bλ

n 6= −1 for all n ∈ N. In the case that a
bλ

N = −1 for some N ∈ N, the solution degenerates
to a polynomial

f(z) = Qλ

(a
b

)N−1∑
n=0

(bz)n

n!Qλ
(
a
bλ

n
) ,

In order to derive an expression for f(z), which allows for determining its asymptotic be-
haviour, we recall the well known power series expansion

1

Qλ(α)
=

∞∑
n=0

(−1)n
n∏
k=1

1

1− λkα
n (4.3)

valid for |α| < 1.
We now choose N as the smallest non-negative integer such that |abλN | < 1. Then we rewrite

(4.2) as

f(z) = Qλ

(a
b

)N−1∑
n=0

(bz)n

n!Qλ
(
a
bλ

n
) +Qλ

(a
b

) ∞∑
n=N

(bz)n

n!Qλ
(
a
bλ

n
) . (4.4)
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We replace 1
Qλ

in the second sum by (4.3) to obtain

f(z) = Qλ

(a
b

)N−1∑
n=0

(bz)n

n!Qλ
(
a
bλ

n
) +Qλ

(a
b

) ∞∑
m=0

(−1)m
m∏
k=1

1

1− λk
(a
b

)m ∞∑
n=N

(bλmz)n

n!
, (4.5)

which simplifies to

f(z) = Qλ

(a
b

)N−1∑
n=0

(bz)n

n!Qλ
(
a
bλ

n
)

+Qλ

(a
b

) ∞∑
m=0

(−1)m
m∏
k=1

1

1− λk
(a
b

)m(
ebλ

mz −
N−1∑
n=0

(bλmz)n

n!

)
. (4.6)

Remark 4.1. Notice that the expansion (4.6) converges for all values of a and b (after a suitable
choice of N). This is in contrast to a similar series expansion given in [16], which converges only
for |a| < |b|.
Remark 4.2. In [16] a generalisation of the classical pantograph equation, the multi-pantograph
equation

f ′(z) =
∑̀
k=1

akf(λkz) + bf(z) (4.7)

with 1 > λ` > λ`−1 > · · · > λ1 > 0, a1, . . . , a`, b ∈ R is studied. In [16, Lemma 3.1] a series
expansion for the

solution of (4.7) is given, which is shown to converge for∑̀
k=1

|ak| < |b|.

The truncation method presented above can easily be adapted to provide a series representation
similar to (4.6) for f , which does not require this condition.
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