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Abstract. Given a ≥ b, let G0 = 1, G1 = a+ 1, and Gn+2 = aGn+1 + bGn for n ≥ 0. For
each choice of a and b, we have a linear recurrence that defines a numeration system. Every
positive integer n may be written as the sum of the Gn, with alphabet A = {0, 1, . . . a},
in one or more different ways. Let R(a,b)(n) be the function that counts the number of
distinct representations of an integer as a sum of the Gn. We extend results of J. Berstel,
P. Kocábová, Z. Masáková, and E. Pelantová, and M. Edson and L. Q. Zamboni and give
two distinct methods for calculating R(a,b)(n). One formula involves products of 2 × 2
matrices and the other sums of binomial coefficients modulo 2. For the main result, we
consider the limiting measure µβ of a convergent infinite convolution of measures (Bernoulli
convolutions), where β is the dominating root of the characteristic equation of the recurrence
above. We study the Garsia entropy of these measures and calculate explicitly the limiting
entropy associated with µβ . This result extends those of J. Alexander and D. Zagier, and
P. J. Grabner, P. Kirschenhofer, and R. F. Tichy. We then see that all these results can be
generalized further to confluent numeration systems.

1. Introduction and Preliminaries

In this paper, we study the sequence-based numeration systems given by the linear recur-
rence

(1.1)
Gn+2 = aGn+1 + bGn for n ≥ 0,

G0 = 1, G1 = a+ 1 where a, b ∈ N, a ≥ b.

The most well known of these is the Fibonacci numeration system, obtained when a = b = 1.

Each positive integer n may be expressed as a sum of the following form,

(1.2) n =
k∑
i=0

diGi

where di ∈ {0, 1, . . . , a}, for 0 ≤ i ≤ k and dk > 0. We call the associated word dkdk−1 . . . d0

a representation of n over the alphabet A = {0, 1, . . . a}. We may obtain a unique rep-
resentation for each n via the greedy algorithm. Let k be the unique integer such that
Gk ≤ n < Gk+1. Then n = dkGk + nk, where 0 ≤ nk < Gk. Generally, let ni+1 = diGi + ni,

Date: July 4, 2011.
The author is supported by the Austrian Science Foundation FWF, project S9605, part of the Austrian

National Research Network “Analytic Combinatorics and Probabilistic Number Theory”.
1



2 MARCIA EDSON

where Gi ≤ ni+1 < Gi+1 and 0 ≤ ni < Gi. Iterating this process for 0 ≤ i ≤ k, we may
obtain a unique expression of the form (1.2). We call the representation obtained by the
greedy algorithm, the greedy representation. While this particular representation is unique
for all n, not all positive integers have only one representation in the Gk-based numeration
system. However, the greedy representation has the property that it is the largest with re-
spect to the lexicographic order. General information about representations in various bases
is given in [8] and [17] while results about Fibonacci representations and representations in
more generalized settings can be found, for example, in [2, 5, 6, 11, 14].

Define the sets S = {00, 01, . . . , 0(a − b)} and T = {aa, a(a − 1), . . . , ab}, and suppose
that a word w is the representation of an integer n in base Gk. If w avoids elements of T ,
then w is the greedy representation of n. In order to see how to get one representation from
another, let s ∈ S, and x be such that 1 ≤ x ≤ a. Then any occurrence of a subword of the
form xs in w may be replaced by the word (x− 1)t, for some t ∈ T , to obtain an equivalent
representation of n, and vice versa. If two words w and v are representations of the same
positive integer n, we write w ≡ v. Words avoiding elements of the sets S and T have exactly
one representation, and we call these words ST -free.

Example 1. Let a = 5, b = 2. Then G0 = 1, G1 = 6, G2 = 32, G3 = 172, G4 = 924, G5 =
4964, G6 = 26, 668 . . . . The set S = {00, 01, 02, 03} and the set T = {55, 54, 53, 52}. The
integer 5481 = 4964 + 3(172) + 1 leading to the greedy representation 103001. Using the
replacement rule above, xs ≡ (x− 1)t, we obtain the following four representations for 5481.

103001
102521
055001
054521

Consider the sequence R(a,b)(n) that counts the number of distinct partitions of n in the
Gk base. Denote by A∗ the set of all words over A, including the empty word, and set

Ω(a,b)(n) = {w = w0w2 . . . wk ∈ A∗ : w0 > 0 and n =
k∑
i=0

wiGk−i}.

Then R(a,b)(n) = #Ω(n). Further, consider the natural decomposition of Ω(a,b)(n) given
as follows. Let G be the largest term in the sequence {Gk} less or equal to n, and let
m be the largest integer such that mG remains less or equal to n. Let Ω+(n) be the set
of representations of n involving mG and Ω−(n) the set of representations that do not.
Then set R+

(a,b)(n) = #Ω+(n) and R−(a,b)(n) = #Ω−(n). Clearly, R(a,b)(n) = R+
(a,b)(n) +

R−N,(a,b)(n). For simplicity, when no ambiguity exists, we simply write R+(n) and R−(n).

Using the previous example, we see that Ω(5,2)(5481) = {103001, 102521, 055001, 054521}
so that R(5,2)(5481) = 4, Ω+

(5,2)(5481) = {103001, 102521} so that R+
(5,2)(5481) = 2, and

Ω−(5,2)(5481) = {055001, 054521} so that R−(5,2)(5481) = 2 Note that with a slight abuse of

notation, we will sometimes write R(a,b)(w) instead of R(a,b)(n) for w ∈ Ω(n). Furthermore,
we will simply write R(n) instead of R(a,b)(n) when there is no possible ambiguity.
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The function that counts the number of representations in a given base has been studied
by many authors; some references include [2,4,5,6,14]. In section 2, we will give two formulas
for the number of representations in these Gk-based numeration systems. These results make
use of formulas previously established in [2, 6].

Recurrence (1.1) is such that the dominating root β(a,b) of its characteristic equation
satisfying

β2
(a,b) = aβ(a,b) + b

is a Pisot number. This follows directly from a result of A. Brauer in [3] as a ≥ b ≥ 1. We
simply write β in place of β(a,b) unless there is a chance for ambiguity.

We consider sums of the form
N∑
n=1

anβ
−n where an ∈ A = {0, 1, . . . , dβe − 1}. Let AN =

{x|x =
N∑
n=1

anβ
−n}, and define a measure µN = (a + 1)−N

∑
x∈AN

r(x)δx, where r(x) is the

number of representations of x of length N in base β and δx denotes the unit point mass at
x. Then these measures converge weakly to a measure µβ. Jessen and Wintner [13] show
that any convergent infinite convolution is either purely singular or absolutely continuous. In
particular, we have that the measures µβ are either purely singular or absolutely continuous.

In [7], Erdős proved that for β = 1+
√

5
2

, µβ is purely singular. For further results, we refer
to [15,18,19]. Garsia in [10], in order to study the measures µβ further, introduced the idea
of the Garsia entropy which is defined as

H(An) = −
∑
x∈An

p(x) ln p(x)

where p(x) = r(x)
(a+1)n

is the weight assigned to x by µn. Then set

Hβ = lim
N→∞

H(AN)

N ln β
.

Garsia proved for general β (not just β satisfying recurrence (1.1)) that if Hβ < 1, then µβ
is purely singular. Additionally, he showed that Hβ < 1 for any Pisot number β. Though
Garsia proved significant results involving Hβ and µβ, he did not give numerical values for
Hβ.

Alexander and Zagier in [1] consider the case a = b = 1, so that β = 1+
√

5
2

. Usually the
problem of computing entropies is quite difficult but through a graph-theoretical argument,

Alexander and Zagier give an explicit value for Hβ, where β = 1+
√

5
2

. They make use of the
Fibonacci graph, which can be built from the Euclidean tree. The Euclidean tree begins with
one node at level 0 labeled with the pair (1, 1) and one node at level 1 labeled with the pair
(2, 1). Then the nodes at level n are defined inductively as follows. Given a node at level n
labeled (a, b), there are two edges (left and right) to nodes at level n + 1 labeled (a + b, a)
and (a + b, b), respectively. Therefore this tree corresponds to the subtractive Euclidean
algorithm, the Euclidean algorithm without division.
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For any pair of relatively prime integers (k, i), we define the length e(k, i) of the pair (k, i)
to be the number of steps in the subtractive Euclidean algorithm applied to the pair k and
i. In other words, e(i, i) = 0 and e(i+ k, i) = e(i+ k, k) = e(i, k) + 1.

Grabner, Kirschenhofer, and Tichy [11] give an explicit value for Hβ in the case β is the
dominating characteristic root of the m-bonacci recurrence which satisfies

βm = βm−1 + · · ·+ β + 1,

extending the results given in [1]. The graph-theoretic approach taken by Alexander and
Zagier becomes significantly more complicated in this case. Therefore, they abandon this
approach in favor of one using generating functions and the method of Guibas and Odlyzko
for counting strings with forbidden subwords [12].

A generalization of the results of Grabner, Kirschenhofer, and Tichy [11] can be found in
the doctoral dissertation of M. Lamberger, see [16]. Here, the case that is treated is given
by the recurrence

Gn+m = aGn+m−1 + · · ·+ aGn+1 + aGn for n ≥ 0,

G0 = 1, Gi = (a+ 1)i, for 1 ≤ i ≤ m− 1, where a ∈ N.

Therefore, when we discuss the Garsia entropy, we assume that a > b. We note here that
the counting is necessarily more complicated in the case where a > b, due to the number of
forbidden subwords. In the case a = b, the sets S and T only contain one element each.

In the situation of the general a and b we discuss in this paper, a graph-theoretic approach
would lead to a non-planar graph. Therefore, we will abandon the more complicated graph-
theoretical setting in favor of arguments using combinatorics on words. This leads to the
use of generating functions and the method of Guibas and Odlyzko [12]. In Section 3, we
prove the main result, which is as follows.

Theorem 1. Let

κn =
∑

0<i<k
gcd(k,i)=1
e(k,i)=n

k ln k and α̃n(x) =
∑

0<i<n
gcd(n,i)=1

x2e(n,i).

Furthermore, let

T (x) = ln (a+ 1)− M̂(x)
∞∑
N=1

κNx
2N ,

where

M̂(x) =
(a− b+ 1)(1− x)γ(x)(1− 3x2)2

(a+ 1)(1 + x)3(1− (3 + 2a− 2b)x2)2
,

and

γ(x) = a+ 2ax− (2 + 3a+ 2a2 − 2b− 2ab)x2 + (2 + 4a+ 2a2 − 6b− 6ab+ 4b)x3.
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Then

Hβ(a,b) =
1

ln β(a,b)

T
(

1

a+ 1

)
.

2. Counting Representations

Suppose W is a greedy representation of a positive integer n. What follows is a factor-
ization of W , whereby we eliminate subwords of W that may not be replaced by equivalent
representations. We shall call it the principal factorization of W , as in [6]. We may write

W = V1U1V2U2 . . . VJUJZ

where

• V1, V2, . . . , VJ , Z are ST -free
• If Vi ends in 0, then Ui begins in a letter greater than a− b+ 1
• If Vi ends in a, then Ui begins in a letter less than b
• Each Ui is of the form

Ui = r0xk0xk−1 . . . 0x00y

with 1 ≤ r ≤ a, 0 ≤ y ≤ a− b, and xi ∈ {0, 1, . . . , a− b+ 1}.

Observe that the Vi and Z do not contribute to the number of ways to rewrite W using
the replacement rule. Since the Vi and Z are all ST -free, there are no replacements to be
made within these factors. Furthermore, with the restrictions placed on the ending of the
Vi, we are guaranteed that no Vi “moves” into the Ui beside it. More precisely, if Vi ends
in 0, then we may write Vi = vx0 where x > 0, and concatenating Vi and Ui, we obtain
vx0r0xk0xk−1 . . . 0x00y where r > a − b + 1. But we may not employ the replacement rule
for the subword x0r, since r > a− b+ 1. A similar argument holds when Vi ends in a. This
leads us to the following result.

Lemma 1. The number of representations of W is the product of the number of representa-
tions of the Ui.

R(a,b)(W ) =
J∏
i=1

R(a,b)(Ui).

Example 2. Let a = 5 and b = 2. We have that W = 4341002451110300112121212
is the greedy representation of some positive integer in the numeration system generated
by the pair (5, 2). Note that W = (434)(100)(24511)(10300)(112121212) = V1U1V2U2Z.
We have that R(U1) = 2 since 100 ≡ 052, and R(U2) = 4 from Example 1. Therefore,
R(W ) = R(U1)R(U2) = 8.

The lemma that follows is essentially Lemma 2, in [6].
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Lemma 2. Let w be a greedy representation of an integer n, in base Gk, having a− b+ 1 as
its first letter. Let 1 ≤ r1, r2 ≤ a. Then(

R−(r10`w)
R+(r10`w)

)
=

(
1 1
0 1

)(
R−(r20`−2w)
R+(r20`−2w)

)
for ` ≥ 3,(2.1) (

R−(r100w)
R+(r100w)

)
=

(
1 1
1 1

)(
R−(w)
R+(w)

)
,(2.2) (

R−(r10w)
R+(r10w)

)
=

(
1 0
1 1

)(
R−(w)
R+(w)

)
.(2.3)

Proof. Consider equation (2.1). Since R−(r10`w) counts the number of representations of the
form (r1− 1)ab0`−2w, R−(r10`w) = R(b0`−2w) = R(r20`−2w) = R−(r20`−2w) +R+(r20`−2w).
And, since R+(r10`w) and R+(r20`−2w) count the number of representations fixing r1 and
r2, respectively, R+(r10`w) = R(w) = R+(r20`−2w).

Similar arguments hold for the remaining equations. �

Using the identities (
1 1
0 1

)d−1(
1 1
1 1

)
=

(
d d
1 1

)
(

1 1
0 1

)d(
1 0
1 1

)
=

(
d+ 1 d

1 1

)
we obtain that for any word of the form U = r0`w, with w beginning in a− b+ 1,(

R−(U)
R+(U)

)
=

(
d `

2
e b `

2
c

1 1

)(
R−(w)
R+(w)

)
for ` ≥ 1.

This gives the following result originally proven by Berstel in [2] for the case of Fibonacci.

Proposition 1. Let U = r0d1x10d2x2 . . . xk0
dk−1y, where xi ∈ {0, a−b+1} and 0 ≤ y ≤ a−b.

Then

R(U) =
(

1 1
)( k∏

i=1

(
ddj

2
e bdj

2
c

1 1

))(
0
1

)
.

We consider now the more general case where for U = r0d1x10d2x2 . . . xk0
dk−1y, some

xi ∈ {1, . . . , a− b}. Denote such xi as y1, y2, . . . , yj with 1 ≤ j ≤ m, and rewrite

U = yj+1tjyjtj−1yj−1 . . . y1t0y0

where yi+1ti is as in Proposition (1). We now “inflate” U with a second copy of the yi in

order to apply the formula. Let Ũ = (rtjyj)(yjtj−1yj−1) . . . (y1t0y0) = LjLj−1 . . . L0. The
following lemma shows that the number of representations of U is equal to the number
of representations of the inflated copy of U since the Li are independent. Since we may
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apply Berstel’s formula to each factor Li, we may use it to calculate R(U) where U =
r0xk0xk−1 . . . 0x00y with 1 ≤ r ≤ a, 0 ≤ y ≤ a − b, and xi ∈ {0, 1, . . . , a − b + 1}, as in
the principal factorization. Note that when a = b, Proposition (1) yields the number of
representations R(U), and the inflation rule is not defined in this case.

Lemma 3. Let Ũ = (rtjyj)(yjtj−1yj−1) . . . (y1t0y0) = LjLj−1 . . . L0. Then R(Ũ) = R(U).

Proof. We begin with the observation that since each yk ≤ (a − b) for 0 ≤ k ≤ j, each yk
can be used to write a new representation of Ui by applying the exchange rule with yk in the
rightmost position. In other words, since yk is preceded by 0, and 0yk ∈ S, we can obtain a
new representation in which 0yk is exchanged with a(yk + b). Similarly, since yk ≥ 1, each
yk can be used to write a new representation of ui by applying the exchange rule with yk in
the leftmost position. Furthermore, these two ways of creating a new representation of Ui
involving yk, from the left or to the right, are independent of one another. So we may insert
the extra copy of yk without affecting the frequency. �

Berstel’s approach gives us one method to calculate the number of representations of an
integer in base Gk. We now discuss another approach considered in [6] for the m-bonacci
base.

Lemma 4. Let U = r0xk0xk−1 . . . 0x00y where r = a−b+1, xi ∈ {0, a−b+1} for 0 ≤ i ≤ k,
and 0 ≤ y ≤ a− b. Suppose that 1 ≤ z ≤ a. Then

R+(z0r0xk0xk−1 . . . 0x00y) = R(U) = R+(U) +R−(U)

R−(z0r0xk0xk−1 . . . 0x00y) = R−(U)

R+(z000xk0xk−1 . . . 0x00y) = R+(U)

R−(z000xk0xk−1 . . . 0x00y) = R(U) = R+(U) +R−(U)

Proof. Note that w ∈ Ω+(z0U) if and only if w = z0w′ for some w′ ∈ Ω(U). Therefore,
R+(z0U) = R(U). Next, we can see that w ∈ Ω−(z0U) if and only if w = (z − 1)aw′ for
some w′ ∈ Ω−(U). It follows that R−(z0U) = R−(U). A similar argument holds for the
remaining identities. �

We may use Lemma (4) to compute the number of representations of an integer n whose
representation is of the form U = r0xk0xk−1 . . . 0x00y where 1 ≤ r ≤ a, xi ∈ {0, a − b + 1}
for 0 ≤ i ≤ k, and 0 ≤ y ≤ a − b. We construct a tower of k + 2 levels L0, L1, · · · , Lk+1,
where each level Li consists of an ordered pair (a, b) of positive integers. We begin by
setting x′i = 0 if xi = 0 and x′i = 1 if xi = a − b + 1, and then fixing the positive integer
s = 1 ·2k+1 +x′k ·2k + · · ·+x′1 ·2 +x′0. We start with level 0 by setting L0 = (1, 1). Then Li+1

is obtained from Li according to the value of xi. Suppose that Li = (a, b). If xi = 0, then
Li+1 = (a, a+ b) and if xi = a− b+ 1, then Li+1 = (a+ b, b). It follows from the Lemma (4)
that Lk+1 = (R+(U), R−(U)). Hence R(U) is the sum of the entries of level Lk+1.

We note that, in the following proposition, each binomial coefficient is taken modulo 2 so
that the formula for R(U) simply is a sum of 0’s and 1’s. Because R(U) is the sum of the
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entries of level Lk+1, the proof of Proposition 2 is essentially identical to that of Corollary 1
in [6], with only minor changes necessary. Therefore, the proposition will be stated without
proof.

Proposition 2. Let U = r0xk0xk−1 . . . 0x00y where 1 ≤ r ≤ a, xi ∈ {0, a − b + 1} for
0 ≤ i ≤ k, and 0 ≤ y ≤ a− b. Further let s = 1 · 2k+1 + x′k · 2k + · · ·x′1 · 2 + x′0. Then

R(U) =
s∑
j=0

[(
2s− j
j

)
(mod 2)

]
.

Lemma 5. Suppose U = r0xk0xk−1 . . . 0x00y where 1 ≤ r ≤ a, xi ∈ {0, 1, . . . a − b + 1} for

0 ≤ i ≤ k, and 0 ≤ y ≤ a−b, and let Ũ = L`L`−1 . . . L0 be the inflated form of U , so that each
Li is of the form Li = ri0xk,i0xk−1,i . . . 0x0,i0yi. If si = 1 · 2k+1 + x′k,i · 2k + · · ·+ x′1,i · 2 + x′0,i,
then

R(U) =
∏̀
i=0

R(Li) =
∏̀
i=0

si∑
j=0

[(
2si − j
j

)
(mod 2)

]
.

Proof. The proof follows directly from Proposition 2 and Lemma 1. �

Given a positive integer n, with principal factorization W = V1U1V2U2 . . . VjUjZ, we may

calculate R(n) as follows. Let Ũi = LijLij−1
. . . Li0 be the inflated version of Ui. It follows

from Lemma 1 and Lemma 5 that

R(W ) =

j∏
`=1

R(U`) =

j∏
`=1

i∏̀
M=0

R(LiM ) =

j∏
`=1

i∏̀
M=0

siM∑
N=0

[(
2siM
N

)
(mod 2)

]
.

As with Proposition (1), if a = b, Lemma (5) yields R(U) and the inflated version of U is
undefined.

3. The Garsia Entropy

Denote by A∗ the set of all words over A, including the empty word and define an equiv-
alence class of words on A∗ as follows. We say two finite words v and w are equivalent if
they are of the same length and represent the same number. We write v ∼ w. Note that we
allow leading zeros here. For a given word w, we define the frequency of the class represented
by w as the size of the equivalence class of w. For example, for the word w = 103001, the
frequency of the class of length six represented by w is 4. However, the frequency of the class
represented by 55001 is 2, though the words 55001 and 103001 are representations of the
same integer n = 5481. We set ϕ(w) to be the frequency of the equivalence class represented
by w. Then, we have that ϕ(103001) = 4 and ϕ(55001) = 2.

In Section 2, we consider the function that counts the size of the equivalence class of a
word w obtained by the equivalence relation ≡w. Now if w is the greedy representation of n,
we have that R(n) is the size of the equivalence class of w obtained via ≡w. Note that ϕ(w)
is the size of the equivalence class of w obtained via ∼w. Since leading zeros are allowed in
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our discussion of the Garsia entropy, we have that R(n) and ϕ(w) are not equal unless w has
length greater or equal to the length of the greedy representation of w. So for each positive
integer n, there is a positive integer m so that if w is a representation of n with |w| ≥ m,
then ϕ(w) = R(n).

We now make use of generating functions to obtain results for the Garsia entropy. Let
FN(k) denote the number of classes of words in A∗ of length N having frequency k. Then
∞∑
k=1

kFN(k) = (a+ 1)N , and

H(AN) = −
∞∑
k=1

kFN(k)(a+ 1)−N ln

(
k

(a+ 1)N

)
= N ln (a+ 1)−

∞∑
k=1

kFN(k)(a+ 1)−N ln(k).

Set

fk(x) =
∞∑
N=0

FN(k)xN and Φ(x, s) =
∞∑
k=1

ksfk(x).

Then we have,

(3.1) Φ(x, 1) =
∞∑
k=1

kfk(x) =
∞∑
N=0

(a+ 1)NxN =
1

1− (a+ 1)x
,

and

∂Φ(x, s)

∂s

∣∣∣∣
s=1

=
∑
k≥1
N≥1

kFN(k) ln(k)xN .

Therefore the generating function for the quantities H(AN) is given as

(3.2) H(x) =
∞∑
N=0

H(AN)xN =
x ln (a+ 1)

(1− x)2
− ∂Φ(x/(a+ 1), s)

∂s

∣∣∣∣
s=1

.

The generating function G(x) of all ST -free words (including the empty word) is straight-
forward to obtain using the method of Guibas and Odlyzko (see [12]). It is given by

G(x) =
x+ 1

1− ax+ (a− 2b+ 1)x2
.

Furthermore, the classes of frequency 1 can be generated by appending an ST -free string to
any word in {0}∗ ∪ {a}∗, so that we obtain the generating function

f1(x) =
1

1− x
G(x) +

x

1− x
G(x) =

1 + x

1− x
G(x).
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We call the class of a word relational, as in [11], if it has a representative ending in xs,
for 1 ≤ x ≤ a and s ∈ S. So all relational word classes have frequency greater than 1.
Consider all relational classes of frequency 2. We call these classes relational prefix classes.
A relational prefix class has a representative of the form vzx0y where vz is ST -free (so
possibly empty), 1 ≤ x ≤ a, and 0 ≤ y ≤ a − b, but we must exclude those classes vzx0y
with zx ∈ S, zx ∈ T , and zx = 0(a− b+ 1).

We denote by Gd the generating function for all ST -free strings ending in d for d ∈ {0, a}.
Again using the method of Guibas and Odlyzko, we have that

Gd(x) =
xG(x)

x+ 1
.

Let P (x) be the generating function of all relational prefix classes. To compute P (x), we
begin with all classes having a representative of the form vzx0y where vz is ST -free and take
away those that we excluded in the preceding paragraph. To account for the prefixes from
the set {0}∗ ∪ {a}∗, we must multiply by a factor of 1+x

1−x . Note that we add back the words
0xoy and axoy which are members of relational prefix classes. Therefore, we have that

P (x) =
1 + x

1− x

[
G(x)x3a(a− b+ 1)− x3(a− b+ 1)2(G0(x) +Ga(x)) +

2x4(a− b+ 1)2

x+ 1

]
=
x3(a− b+ 1)γ(x)

1− x2
G(x).

Denote by rk(x) the generating function of all strings in relational classes of frequency
k. Since we may append an ST -free string to the end of a relational class representative
without affecting frequency, we have that

fk(x) = G(x)rk(x), k ≥ 2.

We now look further at the generating function rk(x).

Suppose that w is the greedy representative (lexicographically largest) of a relational
word class such that ϕ(w) = k. We consider a factorization of w that will enable us to
write an expression for the frequency of the class of w related to the subtractive Euclidean
algorithm. This factorization is essentially the same as the principal factorization of w, with
the exception of v1. It is written differently to facilitate the use of generating functions and
for reference purposes, we call it the secondary factorization of w. Factor w as

w = v1e1u1v2e2u2 . . . vJeJuJ ,

where

• each vi is ST -free (1 < i ≤ J),
• each ei is of the form r0x where r ∈ {1, . . . , a}, x ∈ {0, . . . , a− b+ 1},
• vir is ST -free and does not end in 0(a− b+ 1),
• v1 is of the form zg, where z ∈ {0}∗ ∪ {a}∗ and g is an ST -free word,
• and eiui is of the form r0xm0xm−1 . . . 0x00y where r ∈ {1, . . . , a}, x` ∈ {0, . . . , a −
b+ 1} for 0 ≤ ` ≤ m, and 0 ≤ y ≤ (a− b).
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Considering this factorization, a similar argument as is used for Lemma (1) will show that
ϕ(w) is simply the product of the frequencies of the factors eiui as the vi contribute nothing
to the frequency of [w].

So, if we set Ui = eiui, we have that

w = v1U1v2U2 . . . vJUJ

and

(3.3) ϕ(w) =
N∏
i=1

ϕ(Ui).

We now focus on the frequency ϕ(Ui) where the word Ui = r0xm0xm−1 . . . 0x00y is the
greedy representation of some positive integer in the numeration system generated by the
pair (a, b). Note that we are able to find a representative in [Ui] of the form

νη1 . . . ηm+1 where η` ∈ S ∪ T,
and ν = r0xm if xm ≤ a − b and ν = r0(xm − 1) if xm = a − b + 1. We use the exchange
rule xs ≡ (x − 1)t for s ∈ S and t ∈ T to achieve this. Next, define two functions on this
representative of [Ui] as follows.

(3.4)

ϕ1(νη1 . . . ηm+1) = ϕ1(νη1 . . . ηm) + ϕ2(νη1 . . . ηm),

ϕ2(νη1 . . . ηm+1) =

{
ϕ2(νη1 . . . ηm) if both ηm, ηm+1 ∈ T or ηm, ηm+1 ∈ S
ϕ1(νη1 . . . ηm) otherwise,

ϕ1(ν) = 1 = ϕ2(ν)

where ν ∈ {rs : s ∈ S}.

Lemma 6. Suppose U = r0xm0xm−1 . . . 0x00y such that U ∼ u1s ∼ u2t, s ∈ S, t ∈ T . Then,
ϕ(U) = ϕ(u10) + ϕ(u2a).

Proof. We simply note that ϕ(u1) counts the number of representatives in [U ] having length
|U | with a suffix belonging to the set S, and that ϕ(u2) counts the number of representatives
in [U ] having length |U | with a suffix belonging to the set T . �

Lemma 7. Let U = r0xm0xm−1 . . . 0x00y ∼ νη1 . . . ηm+1, where each x` ∈ {0, a− b+ 1} for
` ∈ {0, . . . ,m}, and ν ∈ {r00, r0(a− b)}. Then ϕ(U) = ϕ1(U) + ϕ2(U).

Proof. We proceed by induction on m. When m = 1, U ∼ νη1. If η1 ∈ S, then U ∼ ν0y
with 0 ≤ y ≤ a− b and ν ∈ {r00, r0(a− b)}. If ν ∼ r00, then we have that

U ∼ r000y ∼ (r − 1)ab0y ∼ (r − 1)a(b− 1)a(y + b).

If ν ∼ r0(a− b), then

U ∼ r0(a− b)0y ∼ (r − 1)aa0y ∼ (r − 1)a(a− 1)a(y + b).

Therefore, ϕ(νη1) = 3, and similarly if η1 ∈ T . From the definitions in (3.4), ϕ1(νη1) = 2
and ϕ2(νη1) = 1 so that ϕ(νη1) = ϕ1(νη1) + ϕ2(νη1).



12 MARCIA EDSON

Now suppose that U ∼ νη1 . . . ηm+1 with ηm+1 ∈ S, and further that ηm−k+1, ηm−k+2, . . . , ηm+1

are all contained in the set S, and ηm−k ∈ T . We define

w1 = ν1η1 . . . ηm0 and w2 = ν2η1 . . . ηm−k−1[a(b− 1)]k+1a,

so that u1 = ν1η1 . . . ηms ∼ U and u2 = ν2η1 . . . ηm−k−1[a(b− 1)]k+1t ∼ U for the appropriate
choice of s ∈ S and t ∈ T . Note that we can find such a word u2 by the exchange rule.

Using the inductive hypothesis and definitions in (3.4), we have

ϕ(w1) = ϕ(νη1η2 . . . ηm0)

= ϕ(νη1η2 . . . ηm)

= ϕ1(νη1η2 . . . ηm) + ϕ2(νη1η2 . . . ηm)

= ϕ1(νη1η2 . . . ηm+1)

= ϕ1(U)

and

ϕ(w2) = ϕ(νη1 . . . ηm−k−1[a(b− 1)]k+1a)

= ϕ(νη1 . . . ηm−k−1)

= ϕ1(νη1 . . . ηm−k−1) + ϕ2(νη1 . . . ηm−k−1)

= ϕ1(νη1 . . . ηm−k)

= ϕ2(νη1 . . . ηm−k+1)

= ϕ2(νη1 . . . ηm−k+2)

...

= ϕ2(νη1 . . . ηm+1)

= ϕ2(U).

Therefore, by Lemma (6), we have that ϕ(U) = ϕ1(U) +ϕ2(U). If ηm+1 ∈ T , define words
w1 = ν1η1 . . . ηma and w2 = ν2η1 . . . ηm−k−1[0(a − b + 1)]k+10. Then, an analogous proof
holds. �

We must consider now the case where for Ui = r0xm0xm−1 . . . 0x00y, there are some
xi ∈ {1, . . . , a − b}. Denote such xi as y1, y2, . . . , yj, where 1 ≤ j ≤ m and rewrite Ui =
rtjyjtj−1yj−1 . . . y1t0y0. We now “inflate” Ui with a second copy of the yk in order to calculate
the frequency.

Proposition 3. Let Ui = r0xm0xm−1 . . . 0x00y and Ũi = LjLj−1 . . . L0, as in Lemma (3).
The frequency ϕ(Ui) is given by

j∏
l=0

ϕ(L`),

where ϕ(L`) = ϕ1(L`) + ϕ2(L`).

Proof. This follows directly from the preceding lemmas. �
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Let e(k, i) denote the number of steps in the subtractive Euclidean algorithm applied to
the pair (k, i), so that e(i, i) = 0 and e(k + i, i) = e(k, i) + 1. We define a labeled complete
binary tree (as in [1, 11]) as follows. Following the rules given in (3.4), we start with the
root labeled (1, 1) at level 0, and for each node labeled (a, b), we label its left successor
by (a + b, a) and its right successor by (a + b, b). For level 1, we have one node labeled
(2, 1). Then at level k, each node is labeled with a pair (ϕ1(νη1 . . . ηk), ϕ2(νη1 . . . ηk)). To
arrive at the node corresponding to the frequency of ϕ(ην1 . . . ηk+1), to move from level k
to level k + 1, we choose the left node if ηk and ηk+1 are not both in S or both in T , and
we choose the right node if ηk and ηk+1 are in the same set S or T . We note that by
Lemma (7), the frequency of a word U is accurately obtained via a path on this tree when
U = r0xm0xm−1 . . . 0x00y ∼ νη1 . . . ηm+1, where each x` ∈ {0, a − b + 1}, and ν = r0xm
if xm ≤ a − b or r0(xm − 1) if xm = a − b + 1. Therefore, the classes of words having a
representative of this form have a generating function given by the expression

a(a− b+ 1)x3
∑

0<i<k
gcd(k,i)=1

x2e(k−i,i) = a(a− b+ 1)
∑

0<i<k
gcd(k,i)=1

x1+2e(k,i).

Let Ak = {(n0, . . . , nj) :

j∏
`=0

n` = k, j ≥ 0, n` > 1}, and set αk(x) to be the generating

function of all words of frequency k having the form U = r0xm0xm−1 . . . 0x00y where r ∈
{1, . . . , a}, x` ∈ {0, . . . , a− b+ 1} for 0 ≤ ` ≤ m, and 0 ≤ y ≤ (a− b). Now we have in mind

Ũ = LjLj−1 . . . L0, the “inflated” version of U as in Proposition (3), so that ϕ(U) = ϕ(Ũ).

If ϕ(U) = k, then

j∏
`=0

ϕ(L`) = k, and we can associate to U an element of A so that

ϕ(L`) = n` for each 0 ≤ ` ≤ j. Denote by α(n0,...,nj)(x) the part of αk(x) obtained from the
tuple (n0, . . . , nj) ∈ A . Then by Proposition (3), we have that

α(n0,...,nj)(x) =
1

xj

∑
0<i<nj

gcd(nj ,i)=1

ax1+2e(nj ,i)
∑

0<i<nj−1

gcd(nj−1,i)=1

(a− b)x1+2e(nj−1,i) . . .
∑

0<i<n0
gcd(n0,i)=1

(a− b)(a− b+ 1)x1+2e(n0,i)

= a(a− b+ 1)(a− b)jx
j∏
`=0

∑
0<i<n`

gcd(n`,i)=1

x2e(n`,i).

Thus

αk(x) =
∑

{j:(n0,...,nj)∈Ak}

a(a− b+ 1)(a− b)jx
j∏
`=0

∑
0<i<n`

gcd(n`,i)=1

x2e(n`,i)

=
∑

{j:(n0,...,nj)∈Ak}

a(a− b+ 1)(a− b)jx
j∏
`=0

α̃n`
(x),
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if we define α̃n(x) =
∑

0<i<n
gcd(n,i)=1

x2e(n,i).

We now discuss the generating functions for the vi in the factorization

w = (v1e1)u1(v2e2)u2 . . . (vJeJ)uJz.

First, we observe that if ei ends in a − b + 1, then we may rewrite eiui ∼ e′iu
′
i so that e′i

ends in a− b and u′i = η1 . . . ηnki
, with η` ∈ S ∪ T for 1 ≤ ` ≤ ki. Consequently, we have an

equivalent factorization of w given by w ∼ (v1e
′
1)u′1(v2e

′
2)u′2 . . . (vJe

′
J)u′Jz where e′iu

′
i = eiui

if ei ends in a letter less than a− b+ 1 and is as just described if ei ends in a− b+ 1.

Now observe that the subwords vie
′
i are representatives of relational prefix classes. This

leads us to the generating functions for the vi. Since v1 can be preceded by a string of 0’s or
a’s while the other vi can not, the generating function for v1 is given by

P (x)

a(a− b+ 1)x3
=

γ(x)

a(1− x2)
G(x),

while the generating function for vi, 2 ≤ i ≤ N , is given by

g(x) =
(1− x)P (x)

(1 + x)a(a− b+ 1)x3
=

γ(x)

a(1 + x)2
G(x).

Taking into account the generating function for v1, we obtain a refinement of the function
fk as

fk(x) =
γ(x)

a(1− x2)
G(x)2`k(x), for k ≥ 2

where `k(x) is the generating function for classes of words of the form w = U1v2U2 . . . vJUJ
as in the secondary factorization.

By (3.3), `k(x) satisfies the recurrence

(3.5)

`k(x) =
∑
d|k
d6=1,k

αd(x)` k
d
(x)g(x) + αk(x), k ≥ 2

`1(x) = 1.

As in [11], we introduce the following two Dirichlet generating functions

(3.6)

A(x, s) =
∞∑
k=2

ksαk(x)g(x),

L(x, s) = 1 +
∞∑
k=2

ks`k(x)g(x).

Because of (3.5), we have

(3.7) L(x, s) =
1

1−A(x, s)
.
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So that we are able to evaluate H(x), we consider ∂Φ
∂s

.

(3.8)

∂Φ

∂s
(x, 1) =

γ(x)

a(1− x2)g(x)
G(x)2∂L

∂s
(x, 1)

=
γ(x)

a(1− x2)g(x)
G(x)2 1

(1−A(x, 1))2

∂A
∂s

(x, 1)

=
1− ax+ (1 + a− 2b)x2

1− x
G(x)2L(x, 1)2∂A

∂s
(x, 1).

Next, using (3.1), we have

Φ(x, 1) =
1

1− (a+ 1)x
= f1(x) +

∞∑
k=2

kfk(x)

=
1 + x

1− x
G(x) +

γ(x)

a(1− x2)g(x)
G(x)2(L(x, 1)− 1),

which gives that

G(x)L(x, 1) =
1− x

(1 + x)(1− (a+ 1)x)
.

Inserting this expression into (3.8), we obtain

∂Φ

∂s
(x, 1) =

(1− x)(1− ax+ (1 + a− 2b)x2)

(1 + x)2(1− (a+ 1)x)2

∂A
∂s

(x, 1).

Now

A(x, s) =
∞∑
k=2

ksαk(x)g(x) =
a(a− b+ 1)xg(x)

a− b

∞∑
j=1

(
∞∑
n=2

(a− b)nsα̃n(x)

)j

= a(a− b+ 1)xg(x)
∞∑
N=2

N sα̃N(x)
1

1−
∞∑
n=2

(a− b)nsα̃n(x)

,

so that

∂A
∂s

(x, 1) =
a(a− b+ 1)xg(x)(

1−
∞∑
n=2

(a− b)nα̃n(x)

)2

∞∑
N=1

κNx
2N .
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From [11], we have that
∞∑
k=2

kα̃k(x) =
2x2

1− 3x2
, so that

∂A
∂s

(x, 1) =
(a− b+ 1)xγ(x)(1− 3x2)2

(1 + x)(1− ax+ (1 + a− 2b)x2)(1− (3 + 2a− 2b)x2)2

∞∑
N=1

κNx
2N .

Let

M̂(x) =
(a− b+ 1)(1− x)γ(x)(1− 3x2)2

(a+ 1)(1 + x)3(1− (3 + 2a− 2b)x2)2
.

Then

H(x) =
x

(1− x)2

(
ln (a+ 1)− M̂

(
x

a+ 1

) ∞∑
N=1

κN

(
x

a+ 1

)2N
)

=
x

(1− x)2
T
(

x

a+ 1

)
.

Since T
(

x
a+1

)
has radius of convergence greater than 1, the Cauchy Integral Formula and

the Residue Theorem give us

H(An) =
1

2πi

∮
|z|= 1

2

H(z)

zn+1
dz

=
1

2πi

∮
|z|=1+ε

H(z)

zn+1
dz − Res

(
H(z)

zn+1
, z = 1

)
=

1

2πi

∮
|z|=1+ε

H(z)

zn+1
dz + nT

(
1

a+ 1

)
− 1

a+ 1
T ′
(

1

a+ 1

)
.

= nT
(

1

a+ 1

)
+O(1)

Therefore,

Hβ = lim
N→∞

H(AN)

N ln β
=

1

ln β
T
(

1

a+ 1

)
.

This completes the proof of Theorem 1.

4. Computations and Bounds

Though we now have a formula for computing Hβ, the series
∞∑
N=1

κN(a+ 1)−2N converges

too slowly for efficient computation. We make note here that the definition of κn in this
paper differs slightly from the definitions in both [1] and [11] by a factor of ln 2, and so the
statements regarding the results from these papers have been adjusted accordingly. In [1],
Alexander and Zagier show that 2 · 3N−1 ln(N + 1) < κN < 2 · 3N−1N lnφ, where φ is the



ON PROPERTIES OF REPRESENTATIONS IN CERTAIN LINEAR NUMERATION SYSTEMS 17

golden ratio. However, by rearranging the series, they put useful bounds on the terms of the
series. They show that for µn = 1

2
(κn+1 − 3κn),

ln
3

2
<

µn
3n−1

<
2

3
.

In [11], Grabner, Kirschenhofer, and Tichy give a different rearrangement that produces
sharper bounds. In this rearrangement, a factor of 3n is eliminated, producing a series
that converges much faster. We will use the arrangement of the series given by Grabner,
Kirschenhofer, and Tichy to give more precise estimates for Hβ(a,b) .

Let ν1 = κ1 = 2 ln 2, ν2 = κ2−6κ1 = 6 ln 3−12 ln 2, and set νn+2 = 9κn−6κn+1 +κn+2, for

n ≥ 1. Then the terms of this sequence are the coefficients of the function (1−3x)2

∞∑
n=1

κnx
n.

In [11], it is shown that the νn can be bounded by

−0.00104665 . . . = (−0.00151 . . .)(ln 2) ≤ νn ≤
2

15
= 0.1333 . . . , for n ≥ 3.(4.1)

Using the rearrangement, we have that

Hβ(a,b) ln β(a,b) = ln(a+ 1)− M̂
(
(a+ 1)−1

) ∞∑
N=1

κN(a+ 1)−2N

= ln(a+ 1)− M̃
(
(a+ 1)−1

) ∞∑
N=1

νN(a+ 1)−2N ,(4.2)

where

M̃(x) =
(a− b+ 1)(1− x)γ(x)

(a+ 1)(1 + x3)(1− (3 + 2a− 2b)x2)2
.

If (4.2) is truncated after n terms, the error En can be bounded using (4.1). We have

−0.00151(ln 2)
M̃((a+ 1)−1)(a+ 1)−2(n+1)

1− (a+ 1)−2
≤ En ≤

2

15

M̃((a+ 1)−1)(a+ 1)−2(n+1)

1− (a+ 1)−2
.

By computing 21 values of the coefficients κN , the following numerical values for Hβ(a,b) are
obtained. Since the error is controlled, the digits obtained are exact.
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a b Hβ(a,b) a b Hβ(a,b)

2 1 0.907239671946427 7 1 0.985758606618629
3 1 0.954793492781010 7 2 0.989976326292009
3 2 0.997142593457004 7 3 0.993150242017613
4 1 0.971203731303039 7 4 0.995514201769271
4 2 0.990977711532539 7 5 0.997251333028757
4 3 0.990977711532539 7 6 0.998505846704918
5 1 0.978770306059569 8 1 0.987684168154986
5 2 0.989445577788253 8 2 0.990626303869694
5 3 0.995467621876660 8 3 0.993001403430024
5 4 0.998564900299892 8 4 0.994911765281798
6 1 0.983023920211140 8 5 0.996441971239801
6 2 0.989461539079558 8 6 0.997662188044302
6 3 0.993808941080083 8 7 0.998630796133262
6 4 0.996661307600303
6 5 0.998448622874396

5. A Generalization and Final Remarks

All results in this paper may be generalized in a straightforward way to confluent numer-
ation systems. Since the proofs and calculations are very similar to those given thus far in
the paper, only some key results and formulas will be given in this section. Introduced and
studied by Frougny in [9], she shows that confluent numeration systems are precisely those
with a sequence base given by the linear recurrence

(5.1)
Gn+m = aGn+m−1 + · · ·+ aGn+1 + bGn for n ≥ 0,

G0 = 1, Gi = (a+ 1)i, for 1 ≤ i ≤ m− 1, where a, b ∈ N, a ≥ b.

It is clear that the dominant root of the characteristic polynomial, call it βm,a,b, for this
recurrence is a Pisot number, see [3]. The sets Sm and Tm, containing the forbidden sub-
words, are Sm = {0m−10, 0m−11, . . . , 0m−1(a−b)} and Tm = {am−1a, am−1(a−1), . . . , am−1b}.
As before, suppose a word w is the representation of an integer n in base Gk, defined by
recurrence (5.1). If we let s ∈ Sm, and x be such that 1 ≤ x ≤ a, then any occurrence of
a subword of the form xs in w may be replaced by the word (x − 1)t, for some t ∈ Tm, to
obtain an equivalent representation of n, and vice versa.

In the principal factorization of a greedy representation W of a positive integer n, all
points remain the same except for the form of the Ui. Each Ui is of the form

Ui = r0m−1xk0
m−1xk−1 . . . 0

m−1x00m−1y

with 1 ≤ r ≤ a, 0 ≤ y ≤ a− b, and xi ∈ {0, 1, . . . , a− b+ 1}.
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The following is a restatement of Proposition 1 in this general setting. When a = b = 1,
Theorem 2.6 of Kocábová, Masáková, and Pelantová in [14] is recovered, where a formula
for the number of representations of an integer in the m-bonacci base is given.

Proposition 4. Let U = r0d1x10d2x2 . . . xk0
dk−1y, where xi ∈ {0, a−b+1} and 0 ≤ y ≤ a−b.

Then

R(U) =
(

1 1
)( k∏

i=1

( [
dj+1

m

] [
dj
m

]
1 1

))(
0
1

)
.

The next proposition is a generalization of Proposition 2. When a = b = 1, we recover
Corollary 1 in [6] where the numeration system is m-bonacci.

Proposition 5. Let U = r0m−1xk0
m−1xk−1 . . . 0

m−1x00m−1y where 1 ≤ r ≤ a, xi ∈ {0, a −
b+ 1} for 0 ≤ i ≤ k, and 0 ≤ y ≤ a− b. Further, let s = 1 · 2k+1 + x′k · 2k + · · ·+ x′1 · 2 + x′0.
Then

R(U) =
s∑
j=0

[(
2s− j
j

)
(mod 2)

]
.

We now define the sets Am,N = {x|x =
N∑
n=1

anβ
−n}, and the measures µm,N = (a +

1)−N
∑

x∈Am,N

r(x)δx, where r(x) is the number of representations of x of length N in base

βm,a,b. For calculating the Garsia entropy in this generalized setting, the first key generating
function is Gm(x), the generating function for the STm-free words. It is given by

Gm(x) =
xm − 1

(a− 2b+ 1)xm+1 + (2b− 2a− 1)xm + (a+ 1)x− 1
.

Next, we give the generating function, Pm(x), of the analogous relational prefix classes. Here
it is assumed, as before, that a > b. Let

γm(x) = a+ (4 + 8a+ 4a2 − 8b− 8ab+ 4b2)x2m−1

− (2 + 6a+ 2a2 − 2b− 2ab)xm + (2 + 4a+ 2a2 − 2b− 2ab)xm+1

− (6 + 11a+ 6a2 − 14b− 14ab+ 8b2)x2m + (2 + 4a+ 2a2 − 6b− 6ab+ 4b2)x2m+1.

Then

Pm(x) =
(a− b+ 1)xm+1(1 + x)γm(x)

(1− x)(1− xm)2
Gm(x).

Using Pm(x), we obtain a refinement of fk, which is defined in the same manner as before,
since the definition of FN(k) does not depend on m. We have that

fk(x) =
(1 + x)γm(x)

a(1− x)(1− xm)2
Gm(x)2`k(x), for k ≥ 2.
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Additionally, we have from Pm(x) the function gm(x) which is the generating function for
the vi, (i ≥ 2) in the secondary factorization. We have that

gm(x) =
γm(x)

a(1− xm)2
Gm(x).

By similar methods to those used to find ∂Φ
∂s

(x, 1), we may obtain an analogous result for
∂Φm

∂s
(x, 1). Then

∂Φm

∂s
(x, 1) = M(x)

∞∑
N=1

κNx
mN ,

where

M(x) =
(a− b+ 1)x(1− x)(1− 3xm)2γm(x)

(1 + x)(1− (a+ 1)x)2(1− xm)2(1− (3 + 2a− 2b)xm)2
.

Let

M̂m(x) =
(a− b+ 1)(1− x)(1− 3xm)2γm(x)

(a+ 1)(1 + x)(1− xm)2(1− (3 + 2a− 2b)xm)2
.

Then the generating function

Hm(x) =
∞∑
N=0

H(Am,N)xN =
x

(1− x)2

(
ln (a+ 1)− M̂

(
x

a+ 1

) ∞∑
N=1

κN

(
x

a+ 1

)mN)
.

Now, let

Tm(x) = ln (a+ 1)− M̂
(

x

a+ 1

) ∞∑
N=1

κN

(
x

a+ 1

)mN
.

If we let
H(Am,n) = −

∑
x∈Am,n

p(x) ln p(x),

where p(x) = r(x)
(a+1)N

is the weight assigned to x by µm,n, and

Hm,β = lim
N→∞

H(AN)

N ln βm,a,b
,

then

Hm,β =
1

ln βm,a,b
Tm
(

1

a+ 1

)
.

Remark 1. A further generalization seems possible using a recurrence of the form

Gn+m = a1Gn+m−1 + a2Gn+m−2 + · · ·+ am−1Gn+1 + amGn for n ≥ 0,

G0 = 1, Gi =
i∑

k=1

akGi−k + 1, for 1 ≤ i ≤ m− 1, where a1 ≥ a2 ≥ . . . am ≥ 1.

Since the combinatorics are different in the cases a = b and a > b, a natural concern in this
more general setting would be a combination of these cases, as in the example a1 > a2 =
a3 > a4. However, it seems quite possible that the equality a2 = a3 does not significantly
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change the counting, much the same as the counting in the generalization (5.1) is very similar
as in the case for (1.1).
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[14] P. Kocábová, Z. Masáková, and E. Pelantová, Ambiguity in the m-bonacci numeration system, Discrete
Math. Theor. Comput. Sci. 9 (2007), no. 2, 109–123.

[15] S.P. Lalley, Random series in powers of algebraic integers: Hausdorff dimension of the limit distribution,
J. London Math. Soc., 57 (1998), p. 629–654.

[16] M. Lamberger, Probabilistic and Dynamical Properties of Number Systems (Doctoral dissertation), Graz
University of Technology, 2002.

[17] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, 2005.
[18] Y. Peres, W. Schlag, B. Solomyak, Sixty years of Bernoulli convolutions, Fractal Geometry and Stochas-
tics, II, Progr. Probab. 46 (1999) p. 39–65.

[19] B. Solomyak, On the random series
∑
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