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Abstract. We characterize statistical independence of sequences by the L
p-discre-

pancy and the Wiener Lp-discrepancy. Furthermore, we find asymptotic information
on the distribution of the L

2-discrepancy of sequences.

1. Introduction

Let xn and yn be two infinite sequences in the unit interval [0, 1). The pair of
sequences (xn, yn) is called statistically independent if

lim
N→∞

(

1

N

N
∑

n=1

f(xn)g(yn)−
1

N2

N
∑

n=1

f(xn)

N
∑

n=1

g(yn)

)

= 0

for all continuous real functions f , g defined on [0, 1], cf. [11]. In other words,
the double sequence (xn, yn) is called statistically independent if it has statistically
independent coordinate sequences xn and yn.

For (xn, yn) and any p > 0 we define the Lp statistical independence discrep-

ancy SD
(p)
N , the Wiener Lp statistical independence discrepancy SW

(p)
N , and the

statistical independence star discrepancy SD
∗
N by the following: denote

FN (x, y) :=
1

N

N
∑

n=1

χ[0,x)(xn)χ[0,y)(yn),
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where χ[0,x)(t) is the characteristic function of the interval [0, x). Then

SD
(p)
N :=

∫ 1

0

∫ 1

0

∣

∣FN (x, y)− FN (x, 1)FN (1, y)
∣

∣

p
dx dy,

SW
(p)
N :=

∫

C0

∫

C0

∣

∣

∣

∣

1

N

N
∑

n=1

f(xn)g(yn)−
1

N2

N
∑

n=1

f(xn)

N
∑

n=1

g(yn)

∣

∣

∣

∣

p

df dg,

SD
∗
N := sup

x,y∈[0,1]

∣

∣FN (x, y)− FN (x, 1)FN(1, y)
∣

∣,

(1.1)

where df is the Wiener measure on the set C0 of all continuous functions defined

on [0, 1] satisfying f(0) = 0. Furthermore, we write SD
(p)
N = SD

(p)
N (xn, yn) and

similarly for SW
(p)
N and SD

∗
N .

These definitions of discrepancy originate from the theory of uniform distribu-
tion of sequences, where the star discrepancy, the Lp-discrepancy and the Wiener
discrepancy are given by

D∗
N (xn) = sup

x∈[0,1]

|FN (x)− x| ,

D
(p)
N =

∫ 1

0

|FN (x)− x|p dx,

W
(p)
N =

∫

C0

∣

∣

∣

∣

∣

1

N

N
∑

n=1

f(xn)−
∫ 1

0

f(x) dx

∣

∣

∣

∣

∣

p

df,

(1.2)

where FN (x) := 1
N

∑N
n=1 χ[0,x)(xn). Again, a sequence xn is called uniformly

distributed, if D∗
N (xn) tends to 0 for N → ∞. This is equivalent to limN→∞D

(p)
N =

0 and limN→∞W
(p)
N = 0 (cf. [9]).

The following explicit formulæ for statistical independence discrepancies are
known. In [5] the following formula is given:

SD
(2)
N =

1

16π4

∞
∑

k,l=−∞
k,l 6=0

1

k2l2

∣

∣

∣

∣

∣

1

N

N
∑

n=1

e2πi(kxn+lyn) − 1

N2

N
∑

n=1

N
∑

m=1

e2πi(kxn+lym)

∣

∣

∣

∣

∣

2

.

(1.3)
Furthermore, in [13] an alternative expression is presented:

SD
(2)
N =

1

N2

N
∑

m,n

(

1−max(xm, xn)
)(

1−max(ym, yn)
)

+
1

N4

N
∑

m,n,k,l=1

(

1−max(xm, xk)
)(

1−max(yn, yl)
)

− 2

N3

N
∑

m,k,l=1

(

1−max(xm, xk)
)(

1−max(ym, yl)
)

. (1.4)
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For the Wiener L2 statistical independence discrepancy in [13] we have

SW
(2)
N =

1

N2

N
∑

m,n

min(xm, xn)

2

min(ym, yn)

2
+

1

N4

N
∑

m,n,k,l=1

min(xm, xn)

2

min(yk, yl)

2

− 2

N3

N
∑

m,k,l=1

min(xm, xk)

2

min(ym, yl)

2
. (1.5)

These are extensions of classical formulæ, which can be found in [9]. The notion of
Wiener discrepancy was introduced in [13].

In [5] it is proved that limN→∞ SD
∗
N = 0 does not characterize the statistical

independence of (xn, yn). On the other hand, limN→∞ SD
(p)
N = 0 for p = 2 is a

characterization and it has been conjectured that the same is true also for any p > 0.
In Section 2 we will prove this conjecture and we will also prove the same for the

Wiener discrepancy SW
(p)
N . Moreover, we will see that the statistical independence

is fully described by the set of distribution functions of a given sequence (xn, yn).

In [13] it is proved that SW
(2)
N = 1

4SD
(2)
N , but a similar relation for SW

(p)
N , p > 0

is not valid, which we will demonstrate in Section 4.
In Section 3 of this paper we will discuss the asymptotical distribution of L2-

discrepancy. This continues investigations of the star discrepancy due to Kol-
mogorov [8]. It is now well-known that

lim
N→∞

P

(√
ND∗

N (xn) < t
)

=
∞
∑

k=−∞
(−1)ke−2k2t2 . (1.6)

We will make use of a heuristic approach to this result due to Doob [4], which has
been justified by Donsker [3]. The heuristic states that the discrepancy function
FN (x)−x behaves like a trajectory of the Wiener process. Especially this behaviour
holds for continuous functionals of the discrepancy function, as the supremum or
the Lp-norm.

2. Statistical independence

As we have mentioned in the introduction, the equivalence

(xn, yn) is statistically independent ⇐⇒ lim
N→∞

SD
(2)
N = 0

was proved in [5]. We shall extend this characterization of statistical independence
to any p > 0. To do this we need the following notation:

For a given infinite sequence (xn, yn) in [0, 1)2, let G(xn, yn) be the set of all
distribution functions of (xn, yn).

Here g : [0, 1]2 → [0, 1] is a distribution function of (xn, yn) if there exists an
increasing sequence of indices N1 < N2 < . . . such that limk→∞ FNk

(x, y) = g(x, y)
for every point (x, y) ∈ [0, 1]2. Following [9, p. 54] two distribution functions g1
and g2 are considered to be equivalent, if g1(x, y) = g2(x, y) a.e. on [0, 1]2 or
equivalently, g1(x, y) = g2(x, y) for every (x, y) ∈ [0, 1]2 where both g1 and g2 are
continuous.
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Theorem 1. For any sequence (xn, yn) in [0, 1)2 and any p > 0 we have

(xn, yn) is statistically independent ⇐⇒ lim
N→∞ SD

(p)
N = 0.

Proof. By the well known first Helly lemma and the Lebesgue theorem of dominated
convergence we have

lim
N→∞

∫ 1

0

∫ 1

0

∣

∣FN (x, y)− FN (x, 1)FN(1, y)
∣

∣

p
dx dy = 0 ⇐⇒

∀
(

g ∈ G(xn, yn)
)

∫ 1

0

∫ 1

0

|g(x, y)− g(x, 1)g(1, y)|pdx dy = 0.

The right hand side is true for all p > 0, and for p = 2, the left hand side charac-
terizes the statistical independence. Thus the proof is complete. �

The following is an immediate consequence of the above proof:

Theorem 2. For every (xn, yn) ∈ [0, 1)2,

(xn, yn) is statistically independent ⇐⇒
∀
(

g ∈ G(xn, yn)
)

g(x, y) = g(x, 1)g(1, y) a.e. on [0, 1]2.

Using the proof of Theorem 1 with Remark 1 in [13] and observing that any
neighbourhood in the supremum topology in C0 has a positive Wiener’s measure,
we have a condition for statistical independence in terms of the Wiener statistical
independence discrepancy.

Theorem 3. For any p > 0 the sequence (xn, yn) is statistically independent, if

and only if

lim
N→∞ SW

(p)
N = 0.

Using Theorem 2 we can describe the case when the star discrepancy SD
∗
N tends

to 0.

Theorem 4. If G(xn, yn) contain only continuous distribution functions, then

(xn, yn) is statistically independent ⇐⇒ lim
N→∞ SD

∗
N = 0.

Proof. The case ⇐= follows immediately. The implication =⇒ follows from Theo-
rem 2 and the fact that, for continuous g ∈ G(xn, yn), the convergence

lim
k→∞

FNk
(x, y) = g(x, y)

is uniform in [0, 1]2. Hence we have limk→∞ SD
∗
Nk

= 0 and this leads to
limN→∞ SD

∗
N = 0. �

In [14] it is shown that one can use the Wiener-Schoenberg theorem for the proof
of continuity of g ∈ G(xn) (cf. the monograph of L. Kuipers and H. Niederreiter
[9, Th. 7.5, p. 55]). The same method can be used for G(xn, yn).
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3 Uniform distribution

In order to describe the asymptotic distribution function of the L2-discrepancy,
we use a theorem due to Donsker [3] and the well-known Feynman-Kac formula (cf.
[7]). Donsker’s theorem states that for a functional F , which is continuous in the
uniform topology on the space of sample paths of the Wiener process, the following
limit relation holds:

lim
N→∞

P

(

F
(√

N (FN (x)− x)
)

≤ α
)

= P (F (x(.)) ≤ α) , (3.1)

where x(t) is a trajectory of the Wiener process with x(0) = x(1) = 0.
The Feynman-Kac formula relates the Laplace transform of the distribution func-

tion of the integral
∫ t

0
V (x(τ)) dτ (V is a positive function) to the solutions of the

eigenvalue problem

1

2
ψ′′(x)− V (x)ψ(x) = −λψ(x), ψ ∈ L2(−∞,∞). (3.2)

The relation is given by the formula

E

(

exp

(

−
∫ t

0

V (x(τ)) dτ

)
∣

∣

∣

∣

x(t) = 0

)

=
√
2πt

∑

n

e−λntψn(0)
2, (3.3)

where λn are the eigenvalues and ψn are the corresponding normalized eigenfunc-
tions of (3.2).

In order to get information on the distribution function of L2-discrepancy we
have to study equation (3.2) for V (x) = x2. Clearly, this procedure could also be
applied for V (x) = |x|p to study the distribution of Lp-discrepancy, but it is not
enough known to get as precise information as in the L2-case. We will write

Φ(T ) = lim
N→∞

P

(√
ND

(2)
N < T

)

(3.4)

for the limit distribution of the L2-discrepancy.
First, we notice that by the rescaling property of the Wiener process we have

E

(

exp

(

−
∫ t

0

x(τ)2 dτ

)
∣

∣

∣

∣

x(t) = 0

)

= E

(

exp

(

−t2
∫ 1

0

x(τ)2 dτ

)
∣

∣

∣

∣

x(1) = 0

)

.

(3.5)
For the case studied here equation (3.2) has the form

1

2
ψ′′(x)− x2ψ(x) = −λψ(x),

which is the differential equation for the Hermite functions (cf. [10,p.253]). Thus
we have λn = 2n+1√

2
and

ψn(x) =
8
√
2

4
√
π

1

2n
√

(2n)!
e
− x2

√
2Hn

(

4
√
2x
)

,
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where Hn are the Hermite polynomials as defined in [10,p.249]. Hence we derive

E

(

exp

(

−
∫ t

0

x(τ)2 dτ

)
∣

∣

∣

∣

x(t) = 0

)

=

√

2
√
2t

∞
∑

n=0

exp

(

−4n+ 1√
2

t

)

1

4n

(

2n

n

)

=

=

√ √
2t

sinh
√
2t
.

Using (3.5) we obtain

E

(

exp

(

−s
∫ 1

0

x(τ)2 dτ

)
∣

∣

∣

∣

x(1) = 0

)

=

√ √
2s

sinh
√
2s

for the Laplace transform of the distribution function of the limit distribution of

N(D
(2)
N )2. Notice that this function is holomorphic in the region ℜs > −π2

2
. Fur-

thermore, it has a branch cut of the square-root type at the point s = −π2

2 . Thus
using the Laplace inversion theorem and asymptotic techniques for the Laplace
transform (cf. [2]) we obtain

Φ(T ) = 1− 1√
πT

e−
π2

2 T +O

(

1

T
3
2

e−
π2

2 T

)

. (3.6)

We remark here that for the case of Lp-discrepancy the whole procedure also
works. Again the Laplace transform of the distribution function is holomorphic in
a region ℜs > −ε for some ε > 0, but this is a consequence of (1.6). We could
not derive this analytic information from the knowledge of the asymptotics of the
eigenvalues and eigenfunctions (cf. [15], [12]), nor could we find the location of the
singularity of the largest real part, whose type would yield asymptotic information
on the limiting distribution of the Lp-discrepancy.

4. Relation between Wiener’s and Classical L2 Discrepancy

We start with the Paley-Wiener formula (cf. [1]):

∫

C0

F

[
∫ 1

0

f(x) dm(x)

]

df =
1√
π

∫ ∞

−∞
e−u2

F (bu) du, b2 =

∫ 1

0

m2(t)dt,

where F (u) is a (real or complex-valued) measurable function defined on (−∞,∞)

such that e−u2

F (bu) is of class L1 and m(1) = 0. Thus, putting F (u) = |u|p and
m(x) = FN (x)− x, in the classical case we have

W
(p)
N =

1√
π
Γ

(

p+ 1

2

)

(

D
(2)
N

)

p
2

.

Assuming m(x, y) = m1(x)m2(y) on [0, 1]2 and m1(1) = m2(1) = 0, the Paley-
Wiener formula can also be used for computing the two dimensional integral

∫

C0

∫

C0

F

[
∫ 1

0

∫ 1

0

f(x)g(y) dm(x, y)

]

df dg.
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For any x1, x2 and y1, y2 in [0, 1), there exist m1(x) and m2(y), m1(1) = m2(1) = 0,
such that F2(x, y)− F2(x, 1)F2(1, y) = m1(x)m2(y) (x, y ∈ [0, 1]). Hence

SW
(p)
2 =

1

π
Γ2

(

p+ 1

2

)

(

SD
(2)
2

)

p
2

for every p > 0.

The proof of SW
(2)
N = 1

4S
D

(2)
N in [13] is also extremely simple: Using (1.3) we

have

SD
(2)
N (xn, yn) = SD

(2)
N (1− xn, 1− yn)

and using 1−max(xm, xn) = min(1− xm, 1− xn) and (1.5) we have the result.
These results give rise to the question whether there is a relation of the type

SW
(p)
N = cp

(

SD
(2)
N

)

p
2

(4.1)

between the different notions of statistical independence discrepancy. In the fol-
lowing we give explicit formulae for these discrepancies which lead to the negative
answer.

The Paley-Wiener formula is equivalent to

∫

C0

(
∫ 1

0

f(x) dm(x)

)2k

df =
(2k − 1)!!

2k

(

∫ 1

0

dt

(
∫ 1

0

χ[t,1](x) dm(x)

)2
)k

,

where k = 1, 2, . . . , (2k − 1)!! = (2k − 1)(2k − 3) · · ·3 · 1 and for the exponent
2k + 1 the left hand integral is zero. (For this formula the assumption m(1) = 0 is
superfluous.) The formal two-dimensional analogue is the relation A = cB, where

A :=

∫

C0

∫

C0

(
∫ 1

0

∫ 1

0

f(x)g(y) dm(x, y)

)2k

df dg,

B :=

(

∫ 1

0

∫ 1

0

(
∫ 1

0

∫ 1

0

χ[t1,1](x)χ[t2,1] dm(x, y)

)2

dt1 dt2

)k

and c is independent of m(x, y). These integrals can be expressed as

A =

∫ 1

0

· · ·
∫ 1

0

(
∫

C0

f(u1) . . . f(u2k) df

)(
∫

C0

g(v1) . . . g(v2k) dg

)

dm(u1, v1) . . . dm(u2k, v2k),

B =

∫ 1

0

· · ·
∫ 1

0

(min(u1, u2) . . .min(u2k−1, u2k)) (min(v1, v2) . . .min(v2k−1, v2k))

dm(u1, v1) . . . dm(u2k, v2k).

Furthermore, by the well known formula (which can also be proved by applying the
above Paley-Wiener formula)

∫

C0

f(u1) . . . f(u2k) df =
(2k − 1)!!

2k(2k)!

∑

π

min(uπ(1), uπ(2)) . . .min(uπ(2k−1), uπ(2k)),
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where the summation
∑

π ranges over all permutations π of (1, . . . , 2k). For the odd
case 2k+1 the integral vanishes. Next we choose m(x, y) such that dm(ai, bi) = zi
for i = 1, . . .2k, and dm(x, y) = 0 otherwise. Here we shall view zi as independent
variables. Assuming A = cB and comparing the coefficients at z1 . . . z2k, we have
C = c′D, where

C :=
∑

π

(

min(aπ(1), aπ(2)) . . .min(aπ(2k−1), aπ(2k))
)

×

×
∑

π

(

min(bπ(1), bπ(2)) . . .min(bπ(2k−1), bπ(2k))
)

,

D :=
∑

π

(

min(aπ(1), aπ(2)) . . .min(aπ(2k−1), aπ(2k))
)

×

×
(

min(bπ(1), bπ(2)) . . .min(bπ(2k−1), bπ(2k))
)

.

Putting ai = bi, i = 1, . . . , 2k, we have

(

∑

π

(

min(aπ(1), aπ(2)) . . .min(aπ(2k−1), aπ(2k))
)

)2

= c′
∑

π

(

min(aπ(1), aπ(2)) . . .min(aπ(2k−1), aπ(2k))
)2
,

which is impossible, for k > 1 and general ai.

The proof of impossibility of (4.1) is more difficult. First, we have mentioned
that for

m(x, y) = FN (x, y)− FN (x, 1)FN(1, y)

we have A = SW
(2k)
N and B = (SD

(2)
N )k. Moreover, dm(x, y) 6= 0 only for x =

xm and y = yn, where 1 ≤ m,n ≤ N . Precisely, assuming that x1, . . . , xN and
y1, . . . , yN are one-to-one we have

dm(xm, yn) =

{ 1
N − 1

N2 if m = n,

− 1
N2 in other cases.

For brevity, we shall use the following notation:

m := (m1, . . . , m2k),

π(m) := (mπ(1), . . . , mπ(2k)),

xm := (xm1
, . . . , xm2k

),

1 ≤ m ≤ N ⇐⇒ 1 ≤ m1 ≤ N ∧ · · · ∧ 1 ≤ m2k ≤ N,

l(m,n) := #
{

1 ≤ i ≤ 2k;mi = ni},

µ(xm) :=

k
∏

i=1

min(xm2i−1
, xm2i

).
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Computing the integrals A and B for such m(x, y) we can find

SW
(2k)
N =

1

N4k

(

1

22kk!

)2
∑

1≤m≤N
1≤n≤N

µ(xm)µ(yn)×

×
∑

π1,π2

(N − 1)l(π1(m),π2(n)) · (−1)2k−l(π1(m),π2(n)),

(

SD
(2)
N

)k

=
1

N4k

∑

1≤m≤N
1≤n≤N

µ(xm)µ(yn)×

× (N − 1)l(m,n) · (−1)2k−l(m,n).

We can regard x1, . . . , xN and y1, . . . , yN as independent variables. Then we see that

SW
(2k)
N and

(

SD
(2)
N

)k

are homogeneous polynomials of the degree k in x1, . . . , xN

and y1, . . . , yN , respectively.
In the following denote

xa = max
1≤i≤N

xi, xb = max
1≤i≤N,i6=a

xi, yc = max
1≤i≤N

yi, yd = max
1≤i≤N,i6=c

yi,

and let a 6= c and b = d. Next we shall find coefficients of xk−1
a xby

k−1
c yd in SW

(2k)
N

and
(

SD
(2)
N

)k

, respectively.

First, µ(xm) = xk−1
a xb only for

m =

{

(a, . . . , a, b, a, . . . , a) (type I),

(a, . . . , a, b, b, a, . . . , a) (type II),

where the couple (b, b) lies at the place with indices (2i−1, 2i). We have 2k vectors
of type I and k(2k − 1) vectors of type II. If m is of type I and π ranges over all
permutations of (1, . . . , 2k), then all vectors of type I occur in π(m) (2k−1)! times.
If m is of type II, then all vectors of the form

(a, . . . , a, b, a, . . . , a, b, a, . . . , a) (type II’)

occur in π(m) with multiplicity 2.(2k − 2)!. For (m,n) of type (I,I) we have
l(m,n) = 1 in 2k cases and l(m,n) = 0 in (2k)2−k cases. For (m,n) of type (I,II)
we have l(m,n) = 1 in 2k cases and l(m,n) = 0 in 2k2 − 2k cases. For (m,n) of
type (II,II) we have only l(m,n) = 2 in k cases and l(m,n) = 0 in k2 − k cases.
Similarly, for type (I,II’) we have

l(m,n) =

{

1 in 2k(2k − 1) cases,

0 in k(2k − 1)(2k − 2) cases,

and for (II’,II’) we have

l(m,n) =











2 in k(2k − 1) cases,

1 in 2k(2k − 1)(2k − 2) cases,

0 in k(2k − 1)(k − 1)(2k − 3) cases.
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Summing up all of the above we have

∑

1≤m≤N
1≤n≤N

µ(xm)=xk−1
a xb

µ(yn)=yk−1
c yd

(N − 1)l(m,n) · (−1)2k−l(m,n)

= k(N − 1)2 − 6k(N − 1) + 9k2 − 7k,

∑

1≤m≤N
1≤n≤N

µ(xm)=xk−1
a xb

µ(yn)=yk−1
c yd

∑

π1,π2

(N − 1)l(π1(m),π2(n)) · (−1)2k−l(π1(m),π2(n)) =

((2k)!)2
(

(2k2 − k)(N − 1)2 − (8k3 − 4k2 + 2k)(N − 1) + (4k4 − 4k3 + 3k2 − k)
)

which is a contradiction to

SW
(2k)
N = c2k

(

SD
(2)
N

)k

.

5. Examples and Further Results on Statistical Independence

Using the expressions (1.3), (1.4) and (1.5) we immediately have:

Theorem 5.

(i) The sequences (xn, yn), (yn, xn), (1−xn, yn), (1−xn, 1−yn) and (t1xn, t2xn)
are simultaneously statistically independent. Here t1, t2 ∈ (0, 1] and in the

case xn = 0 we reduce 1− xn mod 1.
(ii) (c, yn) is statistically independent with any yn, c ∈ [0, 1), where c is a con-

stant.

Using an example given in [5] we will generalize (ii) in the following way. Define,
for α ∈ [0, 1], the one-jump distribution function cα(x) as

cα(x) =

{

0, for 0 ≤ x < α,

1, for α < x ≤ 1.

Theorem 6. Assume that the sequence xn in [0, 1) has the limit law cα, i.e.

limN→∞ FN (x) = cα(x) a.e. Then for any sequence yn in [0, 1) (xn, yn) is sta-

tistically independent.

Proof. For a continuous g : [0, 1] → R we have

∣

∣

∣

∣

∣

1

N

N
∑

n=1

f(xn)g(yn)−
1

N2

N
∑

n=1

f(xn)

N
∑

n=1

g(yn)

∣

∣

∣

∣

∣

≤ 2 sup
x∈[0,1]

|g(x)| 1
N

N
∑

n=1

|f(xn)−f(α)|,

and for a continuous f : [0, 1] → R we have

lim
N→∞

1

N

N
∑

n=1

|f(xn)− f(α)| =
∫ 1

0

|f(x)− f(α)| dcα(x) = 0. �



L
p-DISCREPANCY AND STATISTICAL INDEPENDENCE OF SEQUENCES 11

Theorem 7. For sequences xn, yn, x
′
n and y′n in [0, 1) we assume that

lim
N→∞

1

N

N
∑

n=1

(|xn − x′n|+ |yn − y′n|) = 0.

Then the sequences (xn, yn) and (x′n, y
′
n) are simultaneously statistically indepen-

dent.

Proof. This follows from the expression (1.5) and from the fact that

||x− y||u− v| − |x′ − y′||u′ − v′|| ≤ |x− x′|+ |y − y′|+ |u− u′|+ |v − v′|

for x, y, u, v, x′, y′, u′, v′ ∈ [0, 1]. �

Motivated by Theorem 2, a trivial example of statistical independence is given by
a sequence (xn, yn) which is uniformly distributed in the square. Another example
is any sequence (xn, yn) which has only one-jump distribution functions. A more
general example:

Let G1 and G2 be any nonempty closed and connected sets of one-dimensional
distribution functions. Denote

G1 ·G2 := {g1(x)g2(y); g1 ∈ G1, g2 ∈ G2}.

Again G1 ·G2 is nonempty closed and connected and thus by R. Winkler [16] there
exists a sequence (xn, yn) in [0, 1)2 such that G(xn, yn) = G1 ·G2. By Theorem 2,
this sequence is statistically independent.

Furthermore, Theorem 2 may be used for a generalization of the notion of sta-
tistical independence to the multidimensional sequence (xn, yn, zn, . . . ) in [0, 1)s

(precisely, the statistical independence of its coordinate sequences xn, yn, zn, . . . )
as follows:

(xn, yn, zn, . . . ) is statistically independent if, for every distribution function g ∈
G(xn, yn, zn, . . . ) we have

g(x, y, z, . . . ) = g(x, 1, 1, . . .)g(1, y, 1, . . .)g(1, 1, z, . . .) . . .

a.e. on [0, 1]s. As an example we give the following sequences described in [6]:
Let xn be defined by

xn =
(

(−1)[[log
(j) n]1/p1 ][log(j) n]1/p1 , . . . , (−1)[[log

(j) n]1/ps ][log(j) n]1/ps

)

mod 1,

where log(j) n denotes the jth iterated logarithm log . . . logn, and p1, . . . , ps are
coprime positive integers. Then, for j > 1, the set of all distribution functions of
xn coincides (under equivalence) with the set of all one-jump distribution functions
on [0, 1]s and thus the sequence xn is statistically independent.
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