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Abstract. We study the extremal values of fractal continuous functions related to the
counting function of the q-ary digits larger than d.

1. Introduction

In the recent paper [1] C. Cooper investigated the number L10(N) of digits ≥ 5 occurring
in the decimal expansion of the positive integers < N . He gave upper and lower bounds for
this number. The purpose of this note is to exhibit a periodic continuous function related
to this problem and to study its properties. It turns out that this study gives a sharp lower
bound for L10(N), which answers a question posed in [1].

Additive functions related to the q-adic expansion of integers and the behavior of their
summatory functions have been studied from various points of view, see for instance [2, 9,
10, 3]. An arithmetic function f : N → R is called completely q-additive, if it satisfies the
relation

(1.1) f

(

K
∑

k=0

εkq
k

)

=
K
∑

k=0

f(εk), for εk ∈ {0, . . . , q − 1}.

The simplest example of such a function is the q-ary sum-of-digits function sq(n) given by

sq

(

K
∑

k=0

εkq
k

)

=
K
∑

k=0

εk,

which satisfies the following exact formula

(1.2)
∑

n<N

s(n) =
q − 1

2
N logq N +NF (logq N),

where F denotes a continuous, periodic function of period 1. This function is nowhere dif-
ferentiable and its minima have been computed in [4, 5, 6]. Asymptotic formulæ involving
periodically fluctuating terms are frequently encountered in the context of digital functions,
see for instance [3]. Formula (1.2) was one of the first occurrences of such behaviour. It
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was discovered by J. Trollope [12] and later reproved by H. Delange [2], who also gave an
elementary derivation of the Fourier-coefficients of the periodic function.

The function L10(N) studied by Cooper can now be seen as the summatory function of
the 10-additive function

ℓ10

(

K
∑

k=0

εk10
k

)

=

K
∑

k=0

[εk ≥ 5],

where we use Iverson’s notation. Since for any completely q-additive function there holds
an exact formula similar to (1.2), one can give an exact expression for

L10(N) =
1

2
N log10N +NG(log10N),

where G is again a continuous periodic function of period 1. Thus the question asked by
Cooper can be translated into finding the minima of G. The periodicity of G reflects the
observation made in [1] that L10(N)/N − 1

2
log10N attains the smallest value amongst all

k-digit integers at N = 4545 . . . 45 or N = 45 . . . 455.
In this paper we will study a more general question. We introduce the q-additive function

(1.3) fq,d

(

K
∑

k=0

εkq
k

)

=
K
∑

k=0

[εk ≥ d]

which counts the number of occurrences of the digits ≥ d in the q-adic expansion of n.
We will study the minima of a function on [0, 1] related to the summatory function of fq,d
and apply these results to find sharp lower bounds for the function Lq(N) counting the
number of occurrences of digits ≥ q

2
in the q-adic expansions of the integers < N for even

q. Figure 1 shows a plot of the periodic function G10,5 occurring in the investigation of
L10(N) below compared to the upper and lower bounds derived in this paper.

Finally, we mention that periodicity phenomena of the type shown above do not only
occur in this number-theoretic context, but also in in the field of analytic combinatorics,
especially in the average case analysis of recursive algorithms. For a recent survey on such
phenomena in the analysis of algorithms we refer to [11].

2. Counting the digits ≥ d

In order to derive a closed expression for

Fq,d(N) =
∑

n<N

fq,d(n)

we use a standard way of rewriting the sum of additive functions:

Fq,d(N) =

K
∑

k=0

∑

Nk+1≤n<Nk

fq,d(n),

where

Nk =
K
∑

j=k

εjq
j, if N =

K
∑

j=0

εjq
j .
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Figure 1. Plot of G10,5 compared to upper and lower bounds.

Using the additivity of fq,d we obtain

(2.1) Fq,d(N) =

K
∑

k=0



εkq
kfq,d(Nk+1) +

∑

m<εkq
k

fq,d(m)



 .

Thus Fq,d(N) can be expressed in terms of the digits of N , if Fq,d(εkq
k) can be computed.

It is a simple exercise to show that

Fq,d(εkq
k) = εkFq,d(q

k) + [εk ≥ d](εk − d)qk

Fq,d(q
k) = qFq,d(q

k−1) + (q − d)qk−1,

which gives

(2.2) Fq,d(εkq
k) = εk(q − d)kqk + [εk ≥ d](εk − d)qk.

Inserting this into (2.1) we obtain

(2.3) Fq,d(N) =

K
∑

k=0

qk

(

εk

(

K
∑

j=k

[εj ≥ d] +
q − d

q
k

)

− d[εk ≥ d]

)

.

Using the function rq,d : [0, 1] → R defined by

(2.4) r

(

∞
∑

k=1

εk
qk
, q, d

)

=
∞
∑

k=1

q−k

(

εk

(

k
∑

ℓ=1

[εℓ ≥ d]−
q − d

q
k

)

− d[εk ≥ d]

)

.
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we can rewrite (2.3) as

Fq,d(N) =
q − d

q
(K + 1)N + qK+1r

(

Nq−K−1, q, d
)

.

Finally, the expression for Fq,d(N) can be given in the form

(2.5)

Fq,d(N) =
q − d

q
N logq N +N

(

q − d

q

(

1−
{

logq N
})

+ q1−{logq N}r
(

q{logq N}−1, q, d
)

)

=

q − d

q
N logq N +Gq,d({logq N}),

where {x} denotes the fractional part of x as usual. It is a simple exercise to check that
the function

Gq,d(x) =
q − d

q
(1− x) + q1−xr

(

qx−1, q, d
)

is continuous on [0, 1] and satisfies Gq,d(0) = Gq,d(1) = 0. Therefore, this function extends
to a continuous periodic function on R.

3. Study of the function r(x, q, d)

In this section we will first collect some simple properties of r(x, q, d) and use these
properties to find all minima of r(x, q, d) for given q and d.

Lemma 1. The function r(x, q, d) is continuous on [0, 1] and satisfies the following rela-

tions:

r(x, q, d) = r(1− x, q, q − d)(3.1)

r(0, q, d) = r(1, q, d) = 0(3.2)

∀x ∈ [0, 1] : r(x, q, d) ≤ max

(

−
q − d

q
x,−

d

q
(1− x)

)

(3.3)

r

(

ε

q
, q, d

)

=

{

−ε(q−d)
q2

for ε < d

−d(q−ε)
q2

for ε ≥ d
.(3.4)

Furthermore, r satisfies the following functional equation

(3.5)

r

(

L
∑

k=1

εk
qk

+ q−Ly, q, d

)

= r

(

L
∑

k=1

εk
qk
, q, d

)

+q−Lr(y, q, d)+q−Ly

(

L
∑

k=1

[εk ≥ d]−
q − d

q
L

)

.

Proof. The equations (3.1), (3.2), and (3.4) are immediate. The functional equation (3.5)
can be proved by inserting the definition of r(x, q, d). The upper bound (3.3) is proved by

induction using (3.5) as follows: assume that (3.3) holds for all x =
∑L

k=1
εk
qk

(for L = 1
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this is simply (3.4)). Write y =
∑L+1

k=1
δk
qk

= δ1
q
+ x

q
. Then we have for δ1 < d

r

(

δ1
q
+

y

q
, q, d

)

= −
q − d

q

δ1
q
+

1

q
r(x, q, d)−

q − d

q

x

q
≤ −

q − d

q

(

δ1
q
+

x

q

)

= −
q − d

q
y,

where we have used r(x, q, d) ≤ 0. Similarly, for δ1 ≥ d we have

r

(

δ1
q
+

y

q
, q, d

)

= −
d

q

(

1−
δ1
q

)

+
1

q
r(x, q, d) +

d

q

x

q
≤ −

d

q
(1− y).

By continuity of the function r(x, q, d) the inequality holds for all x ∈ [0, 1]. �

From (3.5) we derive immediately by letting y → 1 and using continuity

(3.6) r

(

L
∑

ℓ=1

εℓ
qℓ

+ q−L, q, d

)

= r

(

L
∑

ℓ=1

εℓ
qℓ
, q, d

)

+ q−L

(

L
∑

ℓ=1

[εℓ ≥ d]−
q − d

q
L

)

.

Similarly, we get for εL 6= 0:

(3.7) r

(

L
∑

ℓ=1

εℓ
qℓ

− q−L, q, d

)

= r

(

L
∑

ℓ=1

εℓ
qℓ
, q, d

)

− q−L

(

L
∑

ℓ=1

[εℓ ≥ d]−
q − d

q
L− [εL = d]

)

and for εK 6= 0, εK+1 = · · · = εL = 0

(3.8) r

(

L
∑

ℓ=1

εℓ
qℓ

− q−L, q, d

)

=

r

(

L
∑

ℓ=1

εℓ
qℓ
, q, d

)

− q−L

(

L
∑

ℓ=1

[εℓ ≥ d]−
q − d

q
L+ L−K − [εK = d]

)

Now want to study the minima of the function r(x, q, d) for fixed q and d. Thus we make
the following two definitions

mL(q, d) = min

{

r(x, q, d) | x =
L
∑

k=1

εk
qk

}

ML(q, d) =

{

x | r(x, q, d) = mL(q, d), x =

L
∑

k=1

εk
qk

}

.

In the following we will frequently make use of the notation

Q =
q

gcd(q, d)
.

Lemma 2. Let x =
∑L

ℓ=1
εℓ
qℓ

∈ ML(q, d). Then

• for Q ∤ L

(3.9)

L
∑

ℓ=1

[εℓ ≥ d] =

⌈

q − d

q
L

⌉

and εL = d
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• for Q | L

(3.10)

L
∑

ℓ=1

[εℓ ≥ d] =
q − d

q
L and

{

εL−1 = d and 0 ≤ εL < d or

εL−1 = d− 1 and d ≤ εL ≤ q − 1

or
L
∑

ℓ=1

[εℓ ≥ d] =
q − d

q
L+ 1 and εL−1 = εL = d.

Furthermore, for Q | L we have mL−1(q, d) = mL(q, d).

Proof. Assume x ∈ ML(q, d). Then by minimality of r(x) we obtain

(3.11)

L
∑

ℓ=1

[εℓ ≥ d] ≥
q − d

q
L

from (3.6) and

(3.12)
L
∑

ℓ=1

[εℓ ≥ d] ≤
q − d

q
L− L+K + [εK = d]

from (3.8).
Assume now that Q ∤ L. Then q−d

q
L /∈ Z and the two inequalities above are strict. Thus

we have L < K + [εK = d], which is only possible, if K = L and εL = d. Observing that

q − d

q
L <

L
∑

ℓ=1

[εℓ ≥ d] <
q − d

q
L+ 1

finishes the first case.
In the second case we have Q | L. Then q−d

q
L ∈ Z and we can have equality in the

above inequalities. In this case we have K ≤ L ≤ K + [εK = d], which allows K = L or
K = L− 1, which means that εL−1 = d and εL = 0. It remains to discuss the case K = L.
In this case we can have (3.11), which allows

∑L

ℓ=1[εℓ ≥ d] = q−d

q
L or q−d

q
L+1. The second

alternative implies εL = d by (3.12). Furthermore, we have

r

(

L−1
∑

ℓ=1

εℓ
qℓ

+
δ

qL

)

= r

(

L−1
∑

ℓ=1

εℓ
qℓ

)

+
1

qL−1
r

(

δ

q

)

+
δ

qL

(

L−1
∑

ℓ=1

[εℓ ≥ d]−
q − d

q
(L− 1)

)

=

r

(

L−1
∑

ℓ=1

εℓ
qℓ

)

+

{

0 for 0 ≤ δ ≤ d
1
qL
(δ − d) for δ > d,

where we used that
∑L−1

ℓ=1 [εℓ ≥ d] = q−d

q
L − 1. This implies that

∑L−1
ℓ=1

εℓ
qℓ

∈ ML−1(q, d),

since mL−1(q, d) ≥ mL(q, d) and the value for δ = 0 is an (L − 1)-digit number. Since
Q ∤ (L− 1) this implies εL−1 = d by (3.9).



MINIMA OF DIGITAL FUNCTIONS 7

It remains to discuss the case
∑L

ℓ=1[εℓ ≥ d] = q−d

q
L. In this case we have

r

(

L
∑

ℓ=1

εℓ
qℓ

+
1

qL

)

= r

(

L
∑

ℓ=1

εℓ
qℓ

)

by (3.6). Assume first that εL < d. Then we repeat this procedure until we reach εL = d.

Then
∑L

ℓ=1[εℓ ≥ d] increases by 1 and we are in the case
∑L

ℓ=1[εℓ ≥ d] = q−d

q
L+ 1, which

has been treated above, and which shows that εL−1 = d and 0 ≤ εL ≤ d. Finally, assume
that εL ≥ d. In this case we can again iterate addition by q−L until εL = q − 1. If we add
one more q−L we arrive at the case εL = 0, which by the same arguments as above implies
that the (L − 1)-st digit was d. Since there was a carry in the last step, this means that
εL−1 = d− 1 for d ≤ εL ≤ q − 1. This finishes the proof. �

Lemma 3. Let 1 ≤ k < Q. Then

•

{

q − d

q
k

}

≥
q − d

q
⇒ mk(q, d) = mk−1(q, d)−

q − d

qk

(

1−

{

q − d

q
k

})

.

In this case Mk(q, d) = {x− q−d

qk
| x ∈ Mk−1(q, d)}.

•

{

q − d

q
k

}

<
q − d

q
⇒ mk(q, d) = mk−1(q, d)−

d

qk

{

q − d

q
k

}

.

In this case Mk(q, d) = {x+ d
qk

| x ∈ Mk−1(q, d)}.

Proof. Let x ∈ Mk−1(q, d) and y =
∑k

ℓ=1 εℓq
−ℓ ∈ Mk(q, d). Then we compute

(3.13)

r

(

x+
d

qk
, q, d

)

= mk−1(q, d) +
d

qk

(

d

q
−

{

q − d

q
(k − 1)

})

≥ mk(q, d)

r

(

x−
q − d

qk
, q, d

)

= mk−1(q, d) +
q − d

qk

({

q − d

q
(k − 1)

}

−
d

q

)

≥ mk(q, d)

and (using εk = d, which follows from Q ∤ k by Lemma 2)

(3.14)

r

(

y −
d

qk
, q, d

)

= mk(q, d) +
d

qk

{

q − d

q
k

}

≥ mk−1(q, d)

r

(

y +
q − d

qk
, q, d

)

= mk +
q − d

qk

(

1−

{

q − d

q
k

})

≥ mk−1(q, d).

We now consider two cases:

•

{

q − d

q
k

}

≥
q − d

q
: in this case we have

{

q−d

q
(k − 1)

}

=
{

q−d

q
k
}

− q−d

q
. Inserting

this into (3.13) it turns out that the left-hand-side of the second inequality is smaller
and gives

mk−1(q, d)−
q − d

qk

(

1−

{

q − d

q
k

})

≥ mk(q, d).

The second inequality in (3.14) gives the opposite inequality, which implies that
the asserted equality holds in the first case.
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•

{

q − d

q
k

}

<
q − d

q
: the proof in this case works in the same way as in the first

case by taking the first inequalities in (3.13) and (3.14).

�

Lemma 4.

(3.15) r

(

L
∑

ℓ=1

εℓ
qℓ

)

≥ mL(q, d)− q−L

(

L
∑

ℓ=1

[εℓ ≥ d]−
q − d

q
L

)

Proof. From (3.5) we have

r

(

L
∑

ℓ=1

εℓ
qℓ

+
x

qL

)

= r

(

L
∑

ℓ=1

εℓ
qℓ

)

+ q−Lr(x) +
x

qL

(

L
∑

ℓ=1

[εℓ ≥ d]−
q − d

q
L

)

.

Letting x tend to 1 and using continuity of r we obtain

r

(

L
∑

ℓ=1

εℓ
qℓ

)

= r

(

L
∑

ℓ=1

εℓ
qℓ

+
1

qL

)

−
1

qL

(

L
∑

ℓ=1

[εℓ ≥ d]−
q − d

q
L

)

≥

mL(q, d)− q−L

(

L
∑

ℓ=1

[εℓ ≥ d]−
q − d

q
L

)

.

�

Lemma 5. The minima of mk(q, d) satisfy

(3.16) mkQ+K(q, d) = mkQ(q, d) + q−kQmK(q, d).

Proof. For any sequence of digits we have by (3.5)

(3.17) r

(

kQ+K
∑

ℓ=1

εℓ
qℓ

)

=

r

(

kQ
∑

ℓ=1

εℓ
qℓ

)

+ q−kQr

(

K
∑

ℓ=1

εkQ+ℓ

qℓ

)

+ q−kQ

(

K
∑

ℓ=1

εkQ+ℓ

qℓ

)(

kQ
∑

ℓ=1

[εℓ ≥ d]−
q − d

q
kQ

)

.

If
∑kQ

ℓ=1[εℓ ≥ d] − q−d

q
kQ > 0, then the right-hand-side can be estimated from below by

mkQ(q, d) + q−kQmK(q, d).

Assume now that
∑kQ

ℓ=1[εℓ ≥ d]− q−d

q
kQ ≤ 0. Then the first sum on the right-hand-side

of (3.17) can be estimated from below by mkQ(q, d) − q−kQ(
∑kQ

ℓ=1[εℓ ≥ d] − q−d

q
kQ) by
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Lemma 4. Thus we have the lower bound

r

(

kQ+K
∑

ℓ=1

εℓ
qℓ

)

≥ mkQ(q, d)− q−kQ

(

kQ
∑

ℓ=1

[εℓ ≥ d]−
q − d

q
kQ

)

+ q−kQmK(q, d)

+ q−kQ

(

K
∑

ℓ=1

εkQ+ℓ

qℓ

)(

kQ
∑

ℓ=1

[εℓ ≥ d]−
q − d

q
kQ

)

≥ mkQ(q, d) + q−kQmK(q, d).

Since by (3.11) there exists an element of MkQ(q, d) with
∑kQ

ℓ=1[εℓ ≥ d] = q−d

q
kQ we can

obtain equality in the estimate

r

(

kQ+K
∑

ℓ=1

εℓ
qℓ

)

≥ mkQ(q, d) + q−kQmK(q, d).

�

The next lemma follows immediately from Lemma 5.

Lemma 6.

mkQ(q, d) = mQ(q, d)
1− q−kQ

1− q−Q
.

Lemma 7. For q, d ∈ N \ {0} and k ∈ N the following relation holds

(3.18)

k
∑

ℓ=1

[{

dℓ

q

}

<
q − d

q

]

=
q − d

q
k +

{

dk

q

}

−

[{

dk

q

}

≥
q − d

q

]

.

Proof. First we notice that it is enough to prove the Lemma for gcd(q, d) = 1. Clearly,
(3.18) is equivalent to

k−1
∑

ℓ=0

[{

dℓ

q

}

<
q − d

q

]

=
q − d

q
k +

{

dk

q

}

.

We use finite Fourier transforms to write the sum as a character sum

[{

x

q

}

<
q − d

q

]

=

q−1
∑

m=0

χ̂(m)e

(

mx

q

)

,

where we write e(t) = exp(2πit) as usual and denote

χ̂(m) =
1

q

q−d−1
∑

r=0

e

(

−
mr

q

)

=







q−d

q
if m = 0

−
e(m

q
)

q

e(md
q

)−1

e(m
q
)−1

otherwise.
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Then we have

k−1
∑

ℓ=0

[{

dℓ

q
<

q − d

q

}]

=
q − d

q
k +

q−1
∑

m=1

χ̂(m)

k−1
∑

ℓ=0

e

(

mdℓ

q

)

=

q − d

q
k −

q−1
∑

m=1

e(m
q
)

q
·
e(mdk

q
)− 1

e(m
q
)− 1

=
q − d

q
k −

1

q

dk mod q
∑

r=1

q−1
∑

m=1

e

(

mr

q

)

.

The inner sum is now either q − 1, if q | r, or −1, if q ∤ r. Thus we can rewrite the last
expression as

q − d

q
k +

dk mod q

q

and the Lemma is proved. �

Putting Lemma 5 and Lemma 6 together yields

Theorem 1. For any infinite sequence of digits (ε1, ε2, . . .) there holds

r

(

∞
∑

ℓ=1

εℓ
qℓ

)

≥
mQ(q, d)

1− q−Q
= m(q, d).

Equality holds if and only if (ε1, ε2, . . .) ∈ (B(q, d))ω, where B(q, d) is given as follows: Let

εℓ = d− [{d
q
ℓ} ≥ q−d

q
] for 1 ≤ ℓ ≤ Q. Then

B(q, d) =
{

(ε1, . . . , εQ), (ε1, . . . , εQ + 1), . . . (ε1, . . . , q − 1),

(ε1, . . . , εQ−1 + 1, 0), . . . , (ε1, . . . , εQ−1 + 1, d− 1)
}

.

Furthermore, we have the following expression for mQ(q, d):

mQ(q, d) = −

Q
∑

ℓ=1

q−ℓ

(

d−

[{

d

q
ℓ

}

≥
q − d

q

])(

1−

{

dℓ

q

})

.

Remark. From Theorem 1 it follows that r(x, q, d) attains its minimum on a set of
Hausdorff-dimension 1

Q
.

Lemma 8. The following lower bound holds for all x ∈ [0, 1]

(3.19) r(x, q, d) ≥ max

(

m(q, d),
m(q, d)

q
−

q − d

q
x,

m(q, d)

q
−

d

q
(1− x)

)

.

Proof. Applying (3.5) to x = ε+y

q
for ε ∈ {0, . . . , q − 1} and y ∈ [0, 1] yields the desired

estimate, if we use the lower bound r(y) ≥ m. �
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4. Application to large digits in even bases

In this section we will study the minima of the function G2t,t for t ≥ 1. For t = 5 this is
the function whose minimum is estimated in [1]. We will prove the following theorem.

Theorem 2. Let t ≥ 1, then the function G2t,t satisfies the following inequality

(4.1) −
t

2t− 1
−

1

2
log2t

t

2t + 1
≤ G2t,t(x) ≤ 0.

Equality on the left hand side holds if and only if x = t
2t+1

; equality on the right hand side

holds if and only if x ∈ {0, 1}.

Proof. From Theorem 1 we infer that m(2t, t) = − t2

4t2−1
. From Lemma 8 we get that

(4.2) G2t,t(1 + log2t x) ≥ max

(

−
t2

4t2 − 1

1

x
−

1

2
log2t x,−

t

4t2 − 1

1

2x
−

1

2
−

1

2
log2t x

)

.

Notice that the first and second entry in the maximum in (3.19) are equal, if x = t
2t+1

.
For this value of x we also have equality in (3.19) (this occurs only in the case q = 2d).
Discussing the two functions under the maximum in (4.2) on the interval [ 1

2t
, 1] we see

that the lower bound of the right hand side is attained exactly at x = t
2t+1

. Since there is
equality in (4.2) for this value of x, this proves the lower bound in (4.1).

For the upper bound we use the inequality (3.3). Again a discussion of the function
−1

2
min(x, 1− x)/x− 1

2
log2t x yields the desired bound. �

Remark. Experiments with different values of q and d show that the minima of Gq,d are
not always attained at the values of x corresponding to the minima of r(·, q, d).

Remark. The example of the digital function 2s(n), where s(n) denotes the binary sum-
of-digits function, shows that the minimum of the corresponding fractal function need not
always be attained in rational values of the argument (cf. [7, 8]).

Remark. For q = 10 and d = 5 (the case studied in [1]) we obtain the following sharp
bound for L10(N)

1

2
N log10N −

(

5

9
+

1

2
log10

5

11

)

N ≤ L10(N);

the coefficient of N equals 0.38434421514445 . . ..

In [1] it was observed numerically for small values of k that L10(N)− 1
2
N log10 N attains

its minima for 10k ≤ N < 10k+1 at the point N = 4545 . . .45 (if k is even) or N =
4545 . . . 455 (if k is odd). The following theorem shows that this conjecture is indeed true
even in the general case.

Theorem 3. Let q be an even positive integer and denote by Lq(N) the number of digits ≥ q

2

occurring in the q-adic representation of the integers less than N . Then for qk ≤ N < qk+1

the quantity
Lq(N)

N
−

1

2
logq N
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attains its minimum value for N = q

2
qk−1
q+1

for k even and N = q

2
qk+1
q+1

for k odd.

Proof. Since fq(x) = r(x, q, q/2)/x − 1
2
logq x attains its minimum in x = q

2(2q+1)
by The-

orem 2 and the three functions that have been used to estimate fq(x) in the proof of
Theorem 2 are monotone, it suffices to compare the values

(4.3) fq

(

q

2(q + 1)

(

1− (−q)−k
)

)

and fq

(

q

2(q + 1)

(

1− (−q)−k
)

+ (−q)−k

)

(the arguments of fq above are those two rational numbers with exactly k digits after the
decimal point, which come closest to the point q

2(2q+1)
, where fq attains its minimum).

Using the fact that

r

(

q

2(q + 1)

(

1− (−q)−k
)

+ (−q)−k, q,
q

2

)

= r

(

q

2(q + 1)

(

1− (−q)−k
)

)

+

{

k

2

}

q−k

it is a simple exercise to check that the first value in (4.3) is always smaller. �
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