MINIMA OF DIGITAL FUNCTIONS RELATED TO LARGE DIGITS IN Q-ADIC EXPANSIONS

PETER J. GRABNER ${ }^{\dagger}$
Dedicated to Professor Helmut Prodinger on the occasion of his $50^{\text {th }}$ birthday

Abstract

We study the extremal values of fractal continuous functions related to the counting function of the q-ary digits larger than d.

1. Introduction

In the recent paper [1] C. Cooper investigated the number $L_{10}(N)$ of digits ≥ 5 occurring in the decimal expansion of the positive integers $<N$. He gave upper and lower bounds for this number. The purpose of this note is to exhibit a periodic continuous function related to this problem and to study its properties. It turns out that this study gives a sharp lower bound for $L_{10}(N)$, which answers a question posed in [1].

Additive functions related to the q-adic expansion of integers and the behavior of their summatory functions have been studied from various points of view, see for instance $[2,9$, 10, 3]. An arithmetic function $f: \mathbb{N} \rightarrow \mathbb{R}$ is called completely q-additive, if it satisfies the relation

$$
\begin{equation*}
f\left(\sum_{k=0}^{K} \varepsilon_{k} q^{k}\right)=\sum_{k=0}^{K} f\left(\varepsilon_{k}\right), \text { for } \varepsilon_{k} \in\{0, \ldots, q-1\} . \tag{1.1}
\end{equation*}
$$

The simplest example of such a function is the q-ary sum-of-digits function $s_{q}(n)$ given by

$$
s_{q}\left(\sum_{k=0}^{K} \varepsilon_{k} q^{k}\right)=\sum_{k=0}^{K} \varepsilon_{k},
$$

which satisfies the following exact formula

$$
\begin{equation*}
\sum_{n<N} s(n)=\frac{q-1}{2} N \log _{q} N+N F\left(\log _{q} N\right), \tag{1.2}
\end{equation*}
$$

where F denotes a continuous, periodic function of period 1 . This function is nowhere differentiable and its minima have been computed in $[4,5,6]$. Asymptotic formulæ involving periodically fluctuating terms are frequently encountered in the context of digital functions, see for instance [3]. Formula (1.2) was one of the first occurrences of such behaviour. It

[^0]was discovered by J. Trollope [12] and later reproved by H. Delange [2], who also gave an elementary derivation of the Fourier-coefficients of the periodic function.

The function $L_{10}(N)$ studied by Cooper can now be seen as the summatory function of the 10 -additive function

$$
\ell_{10}\left(\sum_{k=0}^{K} \varepsilon_{k} 10^{k}\right)=\sum_{k=0}^{K}\left[\varepsilon_{k} \geq 5\right]
$$

where we use Iverson's notation. Since for any completely q-additive function there holds an exact formula similar to (1.2), one can give an exact expression for

$$
L_{10}(N)=\frac{1}{2} N \log _{10} N+N G\left(\log _{10} N\right)
$$

where G is again a continuous periodic function of period 1 . Thus the question asked by Cooper can be translated into finding the minima of G. The periodicity of G reflects the observation made in [1] that $L_{10}(N) / N-\frac{1}{2} \log _{10} N$ attains the smallest value amongst all k-digit integers at $N=4545 \ldots 45$ or $N=45 \ldots 455$.

In this paper we will study a more general question. We introduce the q-additive function

$$
\begin{equation*}
f_{q, d}\left(\sum_{k=0}^{K} \varepsilon_{k} q^{k}\right)=\sum_{k=0}^{K}\left[\varepsilon_{k} \geq d\right] \tag{1.3}
\end{equation*}
$$

which counts the number of occurrences of the digits $\geq d$ in the q-adic expansion of n. We will study the minima of a function on $[0,1]$ related to the summatory function of $f_{q, d}$ and apply these results to find sharp lower bounds for the function $L_{q}(N)$ counting the number of occurrences of digits $\geq \frac{q}{2}$ in the q-adic expansions of the integers $<N$ for even q. Figure 1 shows a plot of the periodic function $G_{10,5}$ occurring in the investigation of $L_{10}(N)$ below compared to the upper and lower bounds derived in this paper.

Finally, we mention that periodicity phenomena of the type shown above do not only occur in this number-theoretic context, but also in in the field of analytic combinatorics, especially in the average case analysis of recursive algorithms. For a recent survey on such phenomena in the analysis of algorithms we refer to [11].

2. Counting the digits $\geq d$

In order to derive a closed expression for

$$
F_{q, d}(N)=\sum_{n<N} f_{q, d}(n)
$$

we use a standard way of rewriting the sum of additive functions:

$$
F_{q, d}(N)=\sum_{k=0}^{K} \sum_{N_{k+1} \leq n<N_{k}} f_{q, d}(n),
$$

where

$$
N_{k}=\sum_{j=k}^{K} \varepsilon_{j} q^{j}, \text { if } N=\sum_{j=0}^{K} \varepsilon_{j} q^{j}
$$

Figure 1. Plot of $G_{10,5}$ compared to upper and lower bounds.
Using the additivity of $f_{q, d}$ we obtain

$$
\begin{equation*}
F_{q, d}(N)=\sum_{k=0}^{K}\left(\varepsilon_{k} q^{k} f_{q, d}\left(N_{k+1}\right)+\sum_{m<\varepsilon_{k} q^{k}} f_{q, d}(m)\right) . \tag{2.1}
\end{equation*}
$$

Thus $F_{q, d}(N)$ can be expressed in terms of the digits of N, if $F_{q, d}\left(\varepsilon_{k} q^{k}\right)$ can be computed. It is a simple exercise to show that

$$
\begin{aligned}
& F_{q, d}\left(\varepsilon_{k} q^{k}\right)=\varepsilon_{k} F_{q, d}\left(q^{k}\right)+\left[\varepsilon_{k} \geq d\right]\left(\varepsilon_{k}-d\right) q^{k} \\
& F_{q, d}\left(q^{k}\right)=q F_{q, d}\left(q^{k-1}\right)+(q-d) q^{k-1},
\end{aligned}
$$

which gives

$$
\begin{equation*}
F_{q, d}\left(\varepsilon_{k} q^{k}\right)=\varepsilon_{k}(q-d) k q^{k}+\left[\varepsilon_{k} \geq d\right]\left(\varepsilon_{k}-d\right) q^{k} . \tag{2.2}
\end{equation*}
$$

Inserting this into (2.1) we obtain

$$
\begin{equation*}
F_{q, d}(N)=\sum_{k=0}^{K} q^{k}\left(\varepsilon_{k}\left(\sum_{j=k}^{K}\left[\varepsilon_{j} \geq d\right]+\frac{q-d}{q} k\right)-d\left[\varepsilon_{k} \geq d\right]\right) . \tag{2.3}
\end{equation*}
$$

Using the function $r_{q, d}:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
r\left(\sum_{k=1}^{\infty} \frac{\varepsilon_{k}}{q^{k}}, q, d\right)=\sum_{k=1}^{\infty} q^{-k}\left(\varepsilon_{k}\left(\sum_{\ell=1}^{k}\left[\varepsilon_{\ell} \geq d\right]-\frac{q-d}{q} k\right)-d\left[\varepsilon_{k} \geq d\right]\right) . \tag{2.4}
\end{equation*}
$$

we can rewrite (2.3) as

$$
F_{q, d}(N)=\frac{q-d}{q}(K+1) N+q^{K+1} r\left(N q^{-K-1}, q, d\right) .
$$

Finally, the expression for $F_{q, d}(N)$ can be given in the form

$$
\begin{array}{r}
F_{q, d}(N)=\frac{q-d}{q} N \log _{q} N+N\left(\frac{q-d}{q}\left(1-\left\{\log _{q} N\right\}\right)+q^{1-\left\{\log _{q} N\right\}} r\left(q^{\left\{\log _{q} N\right\}-1}, q, d\right)\right)= \tag{2.5}\\
\frac{q-d}{q} N \log _{q} N+G_{q, d}\left(\left\{\log _{q} N\right\}\right)
\end{array}
$$

where $\{x\}$ denotes the fractional part of x as usual. It is a simple exercise to check that the function

$$
G_{q, d}(x)=\frac{q-d}{q}(1-x)+q^{1-x} r\left(q^{x-1}, q, d\right)
$$

is continuous on $[0,1]$ and satisfies $G_{q, d}(0)=G_{q, d}(1)=0$. Therefore, this function extends to a continuous periodic function on \mathbb{R}.

3. Study of the function $r(x, q, d)$

In this section we will first collect some simple properties of $r(x, q, d)$ and use these properties to find all minima of $r(x, q, d)$ for given q and d.

Lemma 1. The function $r(x, q, d)$ is continuous on $[0,1]$ and satisfies the following relations:

$$
\begin{align*}
& r(x, q, d)=r(1-x, q, q-d) \tag{3.1}\\
& r(0, q, d)=r(1, q, d)=0 \tag{3.2}\\
& \forall x \in[0,1]: r(x, q, d) \leq \max \left(-\frac{q-d}{q} x,-\frac{d}{q}(1-x)\right) \tag{3.3}\\
& r\left(\frac{\varepsilon}{q}, q, d\right)= \begin{cases}-\frac{\varepsilon(q-d)}{q^{2}} & \text { for } \varepsilon<d \\
-\frac{d(q-\varepsilon)}{q^{2}} & \text { for } \varepsilon \geq d\end{cases} \tag{3.4}
\end{align*}
$$

Furthermore, r satisfies the following functional equation
$r\left(\sum_{k=1}^{L} \frac{\varepsilon_{k}}{q^{k}}+q^{-L} y, q, d\right)=r\left(\sum_{k=1}^{L} \frac{\varepsilon_{k}}{q^{k}}, q, d\right)+q^{-L} r(y, q, d)+q^{-L} y\left(\sum_{k=1}^{L}\left[\varepsilon_{k} \geq d\right]-\frac{q-d}{q} L\right)$.
Proof. The equations (3.1), (3.2), and (3.4) are immediate. The functional equation (3.5) can be proved by inserting the definition of $r(x, q, d)$. The upper bound (3.3) is proved by induction using (3.5) as follows: assume that (3.3) holds for all $x=\sum_{k=1}^{L} \frac{\varepsilon_{k}}{q^{k}}$ (for $L=1$
this is simply (3.4)). Write $y=\sum_{k=1}^{L+1} \frac{\delta_{k}}{q^{k}}=\frac{\delta_{1}}{q}+\frac{x}{q}$. Then we have for $\delta_{1}<d$

$$
r\left(\frac{\delta_{1}}{q}+\frac{y}{q}, q, d\right)=-\frac{q-d}{q} \frac{\delta_{1}}{q}+\frac{1}{q} r(x, q, d)-\frac{q-d}{q} \frac{x}{q} \leq-\frac{q-d}{q}\left(\frac{\delta_{1}}{q}+\frac{x}{q}\right)=-\frac{q-d}{q} y,
$$

where we have used $r(x, q, d) \leq 0$. Similarly, for $\delta_{1} \geq d$ we have

$$
r\left(\frac{\delta_{1}}{q}+\frac{y}{q}, q, d\right)=-\frac{d}{q}\left(1-\frac{\delta_{1}}{q}\right)+\frac{1}{q} r(x, q, d)+\frac{d}{q} \frac{x}{q} \leq-\frac{d}{q}(1-y) .
$$

By continuity of the function $r(x, q, d)$ the inequality holds for all $x \in[0,1]$.
From (3.5) we derive immediately by letting $y \rightarrow 1$ and using continuity

$$
\begin{equation*}
r\left(\sum_{\ell=1}^{L} \frac{\varepsilon_{\ell}}{q^{\ell}}+q^{-L}, q, d\right)=r\left(\sum_{\ell=1}^{L} \frac{\varepsilon_{\ell}}{q^{\ell}}, q, d\right)+q^{-L}\left(\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right]-\frac{q-d}{q} L\right) . \tag{3.6}
\end{equation*}
$$

Similarly, we get for $\varepsilon_{L} \neq 0$:

$$
\begin{equation*}
r\left(\sum_{\ell=1}^{L} \frac{\varepsilon_{\ell}}{q^{\ell}}-q^{-L}, q, d\right)=r\left(\sum_{\ell=1}^{L} \frac{\varepsilon_{\ell}}{q^{\ell}}, q, d\right)-q^{-L}\left(\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right]-\frac{q-d}{q} L-\left[\varepsilon_{L}=d\right]\right) \tag{3.7}
\end{equation*}
$$

and for $\varepsilon_{K} \neq 0, \varepsilon_{K+1}=\cdots=\varepsilon_{L}=0$

$$
\begin{align*}
& r\left(\sum_{\ell=1}^{L} \frac{\varepsilon_{\ell}}{q^{\ell}}-q^{-L}, q, d\right)= \tag{3.8}\\
& \quad r\left(\sum_{\ell=1}^{L} \frac{\varepsilon_{\ell}}{q^{\ell}}, q, d\right)-q^{-L}\left(\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right]-\frac{q-d}{q} L+L-K-\left[\varepsilon_{K}=d\right]\right)
\end{align*}
$$

Now want to study the minima of the function $r(x, q, d)$ for fixed q and d. Thus we make the following two definitions

$$
\begin{aligned}
m_{L}(q, d) & =\min \left\{r(x, q, d) \left\lvert\, x=\sum_{k=1}^{L} \frac{\varepsilon_{k}}{q^{k}}\right.\right\} \\
\mathcal{M}_{L}(q, d) & =\left\{x \mid r(x, q, d)=m_{L}(q, d), \quad x=\sum_{k=1}^{L} \frac{\varepsilon_{k}}{q^{k}}\right\} .
\end{aligned}
$$

In the following we will frequently make use of the notation

$$
Q=\frac{q}{\operatorname{gcd}(q, d)}
$$

Lemma 2. Let $x=\sum_{\ell=1}^{L} \frac{\varepsilon_{\ell}}{q^{t}} \in \mathcal{M}_{L}(q, d)$. Then

- for $Q \nmid L$

$$
\begin{equation*}
\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right]=\left\lceil\frac{q-d}{q} L\right\rceil \text { and } \varepsilon_{L}=d \tag{3.9}
\end{equation*}
$$

- $\operatorname{for} Q \mid L$

$$
\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right]=\frac{q-d}{q} L \text { and }\left\{\begin{array}{l}
\varepsilon_{L-1}=d \text { and } 0 \leq \varepsilon_{L}<d \text { or } \tag{3.10}\\
\varepsilon_{L-1}=d-1 \text { and } d \leq \varepsilon_{L} \leq q-1
\end{array}\right.
$$

or

$$
\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right]=\frac{q-d}{q} L+1 \text { and } \varepsilon_{L-1}=\varepsilon_{L}=d
$$

Furthermore, for $Q \mid L$ we have $m_{L-1}(q, d)=m_{L}(q, d)$.
Proof. Assume $x \in \mathcal{M}_{L}(q, d)$. Then by minimality of $r(x)$ we obtain

$$
\begin{equation*}
\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right] \geq \frac{q-d}{q} L \tag{3.11}
\end{equation*}
$$

from (3.6) and

$$
\begin{equation*}
\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right] \leq \frac{q-d}{q} L-L+K+\left[\varepsilon_{K}=d\right] \tag{3.12}
\end{equation*}
$$

from (3.8).
Assume now that $Q \nmid L$. Then $\frac{q-d}{q} L \notin \mathbb{Z}$ and the two inequalities above are strict. Thus we have $L<K+\left[\varepsilon_{K}=d\right]$, which is only possible, if $K=L$ and $\varepsilon_{L}=d$. Observing that

$$
\frac{q-d}{q} L<\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right]<\frac{q-d}{q} L+1
$$

finishes the first case.
In the second case we have $Q \mid L$. Then $\frac{q-d}{q} L \in \mathbb{Z}$ and we can have equality in the above inequalities. In this case we have $K \leq L \leq K+\left[\varepsilon_{K}=d\right]$, which allows $K=L$ or $K=L-1$, which means that $\varepsilon_{L-1}=d$ and $\varepsilon_{L}=0$. It remains to discuss the case $K=L$. In this case we can have (3.11), which allows $\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right]=\frac{q-d}{q} L$ or $\frac{q-d}{q} L+1$. The second alternative implies $\varepsilon_{L}=d$ by (3.12). Furthermore, we have

$$
\begin{gathered}
r\left(\sum_{\ell=1}^{L-1} \frac{\varepsilon_{\ell}}{q^{\ell}}+\frac{\delta}{q^{L}}\right)=r\left(\sum_{\ell=1}^{L-1} \frac{\varepsilon_{\ell}}{q^{\ell}}\right)+\frac{1}{q^{L-1}} r\left(\frac{\delta}{q}\right)+\frac{\delta}{q^{L}}\left(\sum_{\ell=1}^{L-1}\left[\varepsilon_{\ell} \geq d\right]-\frac{q-d}{q}(L-1)\right)= \\
r\left(\sum_{\ell=1}^{L-1} \frac{\varepsilon_{\ell}}{q^{\ell}}\right)+ \begin{cases}0 & \text { for } 0 \leq \delta \leq d \\
\frac{1}{q^{L}}(\delta-d) & \text { for } \delta>d,\end{cases}
\end{gathered}
$$

where we used that $\sum_{\ell=1}^{L-1}\left[\varepsilon_{\ell} \geq d\right]=\frac{q-d}{q} L-1$. This implies that $\sum_{\ell=1}^{L-1} \frac{\varepsilon_{\ell}}{q^{\ell}} \in \mathcal{M}_{L-1}(q, d)$, since $m_{L-1}(q, d) \geq m_{L}(q, d)$ and the value for $\delta=0$ is an $(L-1)$-digit number. Since $Q \nmid(L-1)$ this implies $\varepsilon_{L-1}=d$ by (3.9).

It remains to discuss the case $\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right]=\frac{q-d}{q} L$. In this case we have

$$
r\left(\sum_{\ell=1}^{L} \frac{\varepsilon_{\ell}}{q^{\ell}}+\frac{1}{q^{L}}\right)=r\left(\sum_{\ell=1}^{L} \frac{\varepsilon_{\ell}}{q^{\ell}}\right)
$$

by (3.6). Assume first that $\varepsilon_{L}<d$. Then we repeat this procedure until we reach $\varepsilon_{L}=d$. Then $\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right]$ increases by 1 and we are in the case $\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right]=\frac{q-d}{q} L+1$, which has been treated above, and which shows that $\varepsilon_{L-1}=d$ and $0 \leq \varepsilon_{L} \leq d$. Finally, assume that $\varepsilon_{L} \geq d$. In this case we can again iterate addition by q^{-L} until $\varepsilon_{L}=q-1$. If we add one more q^{-L} we arrive at the case $\varepsilon_{L}=0$, which by the same arguments as above implies that the $(L-1)$-st digit was d. Since there was a carry in the last step, this means that $\varepsilon_{L-1}=d-1$ for $d \leq \varepsilon_{L} \leq q-1$. This finishes the proof.
Lemma 3. Let $1 \leq k<Q$. Then

- $\left\{\frac{q-d}{q} k\right\} \geq \frac{q-d}{q} \Rightarrow m_{k}(q, d)=m_{k-1}(q, d)-\frac{q-d}{q^{k}}\left(1-\left\{\frac{q-d}{q} k\right\}\right)$.

In this case $\mathcal{M}_{k}(q, d)=\left\{\left.x-\frac{q-d}{q^{k}} \right\rvert\, x \in \mathcal{M}_{k-1}(q, d)\right\}$.

- $\left\{\frac{q-d}{q} k\right\}<\frac{q-d}{q} \Rightarrow m_{k}(q, d)=m_{k-1}(q, d)-\frac{d}{q^{k}}\left\{\frac{q-d}{q} k\right\}$. In this case $\mathcal{M}_{k}(q, d)=\left\{\left.x+\frac{d}{q^{k}} \right\rvert\, x \in \mathcal{M}_{k-1}(q, d)\right\}$.

Proof. Let $x \in \mathcal{M}_{k-1}(q, d)$ and $y=\sum_{\ell=1}^{k} \varepsilon_{\ell} q^{-\ell} \in \mathcal{M}_{k}(q, d)$. Then we compute

$$
\begin{align*}
r\left(x+\frac{d}{q^{k}}, q, d\right) & =m_{k-1}(q, d)+\frac{d}{q^{k}}\left(\frac{d}{q}-\left\{\frac{q-d}{q}(k-1)\right\}\right) \geq m_{k}(q, d) \\
r\left(x-\frac{q-d}{q^{k}}, q, d\right) & =m_{k-1}(q, d)+\frac{q-d}{q^{k}}\left(\left\{\frac{q-d}{q}(k-1)\right\}-\frac{d}{q}\right) \geq m_{k}(q, d) \tag{3.13}
\end{align*}
$$

and (using $\varepsilon_{k}=d$, which follows from $Q \nmid k$ by Lemma 2)

$$
\begin{align*}
r\left(y-\frac{d}{q^{k}}, q, d\right) & =m_{k}(q, d)+\frac{d}{q^{k}}\left\{\frac{q-d}{q} k\right\} \geq m_{k-1}(q, d) \\
r\left(y+\frac{q-d}{q^{k}}, q, d\right) & =m_{k}+\frac{q-d}{q^{k}}\left(1-\left\{\frac{q-d}{q} k\right\}\right) \geq m_{k-1}(q, d) . \tag{3.14}
\end{align*}
$$

We now consider two cases:

- $\left\{\frac{q-d}{q} k\right\} \geq \frac{q-d}{q}$: in this case we have $\left\{\frac{q-d}{q}(k-1)\right\}=\left\{\frac{q-d}{q} k\right\}-\frac{q-d}{q}$. Inserting this into (3.13) it turns out that the left-hand-side of the second inequality is smaller and gives

$$
m_{k-1}(q, d)-\frac{q-d}{q^{k}}\left(1-\left\{\frac{q-d}{q} k\right\}\right) \geq m_{k}(q, d)
$$

The second inequality in (3.14) gives the opposite inequality, which implies that the asserted equality holds in the first case.

- $\left\{\frac{q-d}{q} k\right\}<\frac{q-d}{q}$: the proof in this case works in the same way as in the first case by taking the first inequalities in (3.13) and (3.14).

Lemma 4.

$$
\begin{equation*}
r\left(\sum_{\ell=1}^{L} \frac{\varepsilon_{\ell}}{q^{\ell}}\right) \geq m_{L}(q, d)-q^{-L}\left(\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right]-\frac{q-d}{q} L\right) \tag{3.15}
\end{equation*}
$$

Proof. From (3.5) we have

$$
r\left(\sum_{\ell=1}^{L} \frac{\varepsilon_{\ell}}{q^{\ell}}+\frac{x}{q^{L}}\right)=r\left(\sum_{\ell=1}^{L} \frac{\varepsilon_{\ell}}{q^{\ell}}\right)+q^{-L} r(x)+\frac{x}{q^{L}}\left(\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right]-\frac{q-d}{q} L\right) .
$$

Letting x tend to 1 and using continuity of r we obtain

$$
\begin{aligned}
& r\left(\sum_{\ell=1}^{L} \frac{\varepsilon_{\ell}}{q^{\ell}}\right)=r\left(\sum_{\ell=1}^{L} \frac{\varepsilon_{\ell}}{q^{\ell}}+\frac{1}{q^{L}}\right)-\frac{1}{q^{L}}\left(\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right]-\frac{q-d}{q} L\right) \geq \\
& m_{L}(q, d)-q^{-L}\left(\sum_{\ell=1}^{L}\left[\varepsilon_{\ell} \geq d\right]-\frac{q-d}{q} L\right) .
\end{aligned}
$$

Lemma 5. The minima of $m_{k}(q, d)$ satisfy

$$
\begin{equation*}
m_{k Q+K}(q, d)=m_{k Q}(q, d)+q^{-k Q} m_{K}(q, d) . \tag{3.16}
\end{equation*}
$$

Proof. For any sequence of digits we have by (3.5)
(3.17) $r\left(\sum_{\ell=1}^{k Q+K} \frac{\varepsilon_{\ell}}{q^{\ell}}\right)=$

$$
r\left(\sum_{\ell=1}^{k Q} \frac{\varepsilon_{\ell}}{q^{\ell}}\right)+q^{-k Q} r\left(\sum_{\ell=1}^{K} \frac{\varepsilon_{k Q+\ell}}{q^{\ell}}\right)+q^{-k Q}\left(\sum_{\ell=1}^{K} \frac{\varepsilon_{k Q+\ell}}{q^{\ell}}\right)\left(\sum_{\ell=1}^{k Q}\left[\varepsilon_{\ell} \geq d\right]-\frac{q-d}{q} k Q\right) .
$$

If $\sum_{\ell=1}^{k Q}\left[\varepsilon_{\ell} \geq d\right]-\frac{q-d}{q} k Q>0$, then the right-hand-side can be estimated from below by $m_{k Q}(q, d)+q^{-k Q} m_{K}(q, d)$.

Assume now that $\sum_{\ell=1}^{k Q}\left[\varepsilon_{\ell} \geq d\right]-\frac{q-d}{q} k Q \leq 0$. Then the first sum on the right-hand-side of (3.17) can be estimated from below by $m_{k Q}(q, d)-q^{-k Q}\left(\sum_{\ell=1}^{k Q}\left[\varepsilon_{\ell} \geq d\right]-\frac{q-d}{q} k Q\right)$ by

Lemma 4. Thus we have the lower bound

$$
\begin{aligned}
& r\left(\sum_{\ell=1}^{k Q+K} \frac{\varepsilon_{\ell}}{q^{\ell}}\right) \geq m_{k Q}(q, d)-q^{-k Q}\left(\sum_{\ell=1}^{k Q}\left[\varepsilon_{\ell} \geq d\right]-\frac{q-d}{q} k Q\right)+q^{-k Q} m_{K}(q, d) \\
& \quad+q^{-k Q}\left(\sum_{\ell=1}^{K} \frac{\varepsilon_{k Q+\ell}}{q^{\ell}}\right)\left(\sum_{\ell=1}^{k Q}\left[\varepsilon_{\ell} \geq d\right]-\frac{q-d}{q} k Q\right) \geq m_{k Q}(q, d)+q^{-k Q} m_{K}(q, d) .
\end{aligned}
$$

Since by (3.11) there exists an element of $\mathcal{M}_{k Q}(q, d)$ with $\sum_{\ell=1}^{k Q}\left[\varepsilon_{\ell} \geq d\right]=\frac{q-d}{q} k Q$ we can obtain equality in the estimate

$$
r\left(\sum_{\ell=1}^{k Q+K} \frac{\varepsilon_{\ell}}{q^{\ell}}\right) \geq m_{k Q}(q, d)+q^{-k Q} m_{K}(q, d) .
$$

The next lemma follows immediately from Lemma 5.

Lemma 6.

$$
m_{k Q}(q, d)=m_{Q}(q, d) \frac{1-q^{-k Q}}{1-q^{-Q}} .
$$

Lemma 7. For $q, d \in \mathbb{N} \backslash\{0\}$ and $k \in \mathbb{N}$ the following relation holds

$$
\begin{equation*}
\sum_{\ell=1}^{k}\left[\left\{\frac{d \ell}{q}\right\}<\frac{q-d}{q}\right]=\frac{q-d}{q} k+\left\{\frac{d k}{q}\right\}-\left[\left\{\frac{d k}{q}\right\} \geq \frac{q-d}{q}\right] \tag{3.18}
\end{equation*}
$$

Proof. First we notice that it is enough to prove the Lemma for $\operatorname{gcd}(q, d)=1$. Clearly, (3.18) is equivalent to

$$
\sum_{\ell=0}^{k-1}\left[\left\{\frac{d \ell}{q}\right\}<\frac{q-d}{q}\right]=\frac{q-d}{q} k+\left\{\frac{d k}{q}\right\} .
$$

We use finite Fourier transforms to write the sum as a character sum

$$
\left[\left\{\frac{x}{q}\right\}<\frac{q-d}{q}\right]=\sum_{m=0}^{q-1} \hat{\chi}(m) e\left(\frac{m x}{q}\right)
$$

where we write $e(t)=\exp (2 \pi i t)$ as usual and denote

$$
\hat{\chi}(m)=\frac{1}{q} \sum_{r=0}^{q-d-1} e\left(-\frac{m r}{q}\right)= \begin{cases}\frac{q-d}{q} & \text { if } m=0 \\ -\frac{e\left(\frac{m}{q}\right)}{q} \frac{e\left(\frac{m d}{q}\right)-1}{e\left(\frac{m}{q}\right)-1} & \text { otherwise. }\end{cases}
$$

Then we have

$$
\begin{aligned}
& \sum_{\ell=0}^{k-1}\left[\left\{\frac{d \ell}{q}<\frac{q-d}{q}\right\}\right]=\frac{q-d}{q} k+\sum_{m=1}^{q-1} \hat{\chi}(m) \sum_{\ell=0}^{k-1} e\left(\frac{m d \ell}{q}\right)= \\
& \frac{q-d}{q} k-\sum_{m=1}^{q-1} \frac{e\left(\frac{m}{q}\right)}{q} \cdot \frac{e\left(\frac{m d k}{q}\right)-1}{e\left(\frac{m}{q}\right)-1}=\frac{q-d}{q} k-\frac{1}{q} \sum_{r=1}^{d k} \sum_{m=1}^{\bmod q} e\left(\frac{m r}{q}\right) .
\end{aligned}
$$

The inner sum is now either $q-1$, if $q \mid r$, or -1 , if $q \nmid r$. Thus we can rewrite the last expression as

$$
\frac{q-d}{q} k+\frac{d k \bmod q}{q}
$$

and the Lemma is proved.
Putting Lemma 5 and Lemma 6 together yields
Theorem 1. For any infinite sequence of digits $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)$ there holds

$$
r\left(\sum_{\ell=1}^{\infty} \frac{\varepsilon_{\ell}}{q^{\ell}}\right) \geq \frac{m_{Q}(q, d)}{1-q^{-Q}}=m(q, d)
$$

Equality holds if and only if $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right) \in(\mathcal{B}(q, d))^{\omega}$, where $\mathcal{B}(q, d)$ is given as follows: Let $\varepsilon_{\ell}=d-\left[\left\{\frac{d}{q} \ell\right\} \geq \frac{q-d}{q}\right]$ for $1 \leq \ell \leq Q$. Then

$$
\begin{aligned}
\mathcal{B}(q, d)=\left\{\left(\varepsilon_{1}, \ldots, \varepsilon_{Q}\right),\left(\varepsilon_{1}, \ldots, \varepsilon_{Q}+1\right)\right. & , \ldots\left(\varepsilon_{1}, \ldots, q-1\right) \\
& \left.\left(\varepsilon_{1}, \ldots, \varepsilon_{Q-1}+1,0\right), \ldots,\left(\varepsilon_{1}, \ldots, \varepsilon_{Q-1}+1, d-1\right)\right\} .
\end{aligned}
$$

Furthermore, we have the following expression for $m_{Q}(q, d)$:

$$
m_{Q}(q, d)=-\sum_{\ell=1}^{Q} q^{-\ell}\left(d-\left[\left\{\frac{d}{q} \ell\right\} \geq \frac{q-d}{q}\right]\right)\left(1-\left\{\frac{d \ell}{q}\right\}\right) .
$$

Remark. From Theorem 1 it follows that $r(x, q, d)$ attains its minimum on a set of Hausdorff-dimension $\frac{1}{Q}$.

Lemma 8. The following lower bound holds for all $x \in[0,1]$

$$
\begin{equation*}
r(x, q, d) \geq \max \left(m(q, d), \frac{m(q, d)}{q}-\frac{q-d}{q} x, \frac{m(q, d)}{q}-\frac{d}{q}(1-x)\right) . \tag{3.19}
\end{equation*}
$$

Proof. Applying (3.5) to $x=\frac{\varepsilon+y}{q}$ for $\varepsilon \in\{0, \ldots, q-1\}$ and $y \in[0,1]$ yields the desired estimate, if we use the lower bound $r(y) \geq m$.

4. Application to large digits in even bases

In this section we will study the minima of the function $G_{2 t, t}$ for $t \geq 1$. For $t=5$ this is the function whose minimum is estimated in [1]. We will prove the following theorem.
Theorem 2. Let $t \geq 1$, then the function $G_{2 t, t}$ satisfies the following inequality

$$
\begin{equation*}
-\frac{t}{2 t-1}-\frac{1}{2} \log _{2 t} \frac{t}{2 t+1} \leq G_{2 t, t}(x) \leq 0 . \tag{4.1}
\end{equation*}
$$

Equality on the left hand side holds if and only if $x=\frac{t}{2 t+1}$; equality on the right hand side holds if and only if $x \in\{0,1\}$.
Proof. From Theorem 1 we infer that $m(2 t, t)=-\frac{t^{2}}{4 t^{2}-1}$. From Lemma 8 we get that

$$
\begin{equation*}
G_{2 t, t}\left(1+\log _{2 t} x\right) \geq \max \left(-\frac{t^{2}}{4 t^{2}-1} \frac{1}{x}-\frac{1}{2} \log _{2 t} x,-\frac{t}{4 t^{2}-1} \frac{1}{2 x}-\frac{1}{2}-\frac{1}{2} \log _{2 t} x\right) \tag{4.2}
\end{equation*}
$$

Notice that the first and second entry in the maximum in (3.19) are equal, if $x=\frac{t}{2 t+1}$. For this value of x we also have equality in (3.19) (this occurs only in the case $q=2 d$). Discussing the two functions under the maximum in (4.2) on the interval $\left[\frac{1}{2 t}, 1\right]$ we see that the lower bound of the right hand side is attained exactly at $x=\frac{t}{2 t+1}$. Since there is equality in (4.2) for this value of x, this proves the lower bound in (4.1).

For the upper bound we use the inequality (3.3). Again a discussion of the function $-\frac{1}{2} \min (x, 1-x) / x-\frac{1}{2} \log _{2 t} x$ yields the desired bound.
Remark. Experiments with different values of q and d show that the minima of $G_{q, d}$ are not always attained at the values of x corresponding to the minima of $r(\cdot, q, d)$.
Remark. The example of the digital function $2^{s(n)}$, where $s(n)$ denotes the binary sum-of-digits function, shows that the minimum of the corresponding fractal function need not always be attained in rational values of the argument (cf. [7, 8]).
Remark. For $q=10$ and $d=5$ (the case studied in [1]) we obtain the following sharp bound for $L_{10}(N)$

$$
\frac{1}{2} N \log _{10} N-\left(\frac{5}{9}+\frac{1}{2} \log _{10} \frac{5}{11}\right) N \leq L_{10}(N) ;
$$

the coefficient of N equals $0.38434421514445 \ldots$.
In [1] it was observed numerically for small values of k that $L_{10}(N)-\frac{1}{2} N \log _{10} N$ attains its minima for $10^{k} \leq N<10^{k+1}$ at the point $N=4545 \ldots 45$ (if k is even) or $N=$ $4545 \ldots 455$ (if k is odd). The following theorem shows that this conjecture is indeed true even in the general case.
Theorem 3. Let q be an even positive integer and denote by $L_{q}(N)$ the number of digits $\geq \frac{q}{2}$ occurring in the q-adic representation of the integers less than N. Then for $q^{k} \leq N<q^{k+1}$ the quantity

$$
\frac{L_{q}(N)}{N}-\frac{1}{2} \log _{q} N
$$

attains its minimum value for $N=\frac{q}{2} \frac{q^{k}-1}{q+1}$ for k even and $N=\frac{q}{2} \frac{q^{k}+1}{q+1}$ for k odd.
Proof. Since $f_{q}(x)=r(x, q, q / 2) / x-\frac{1}{2} \log _{q} x$ attains its minimum in $x=\frac{q}{2(2 q+1)}$ by Theorem 2 and the three functions that have been used to estimate $f_{q}(x)$ in the proof of Theorem 2 are monotone, it suffices to compare the values

$$
\begin{equation*}
f_{q}\left(\frac{q}{2(q+1)}\left(1-(-q)^{-k}\right)\right) \text { and } f_{q}\left(\frac{q}{2(q+1)}\left(1-(-q)^{-k}\right)+(-q)^{-k}\right) \tag{4.3}
\end{equation*}
$$

(the arguments of f_{q} above are those two rational numbers with exactly k digits after the decimal point, which come closest to the point $\frac{q}{2(2 q+1)}$, where f_{q} attains its minimum). Using the fact that

$$
r\left(\frac{q}{2(q+1)}\left(1-(-q)^{-k}\right)+(-q)^{-k}, q, \frac{q}{2}\right)=r\left(\frac{q}{2(q+1)}\left(1-(-q)^{-k}\right)\right)+\left\{\frac{k}{2}\right\} q^{-k}
$$

it is a simple exercise to check that the first value in (4.3) is always smaller.

References

[1] C. Cooper, Bounds for the number of large digits in the positive integers not exceeding n, J. Inst. Math. Comput. Sci. Math. Ser. 16 (2003), 13-21.
[2] H. Delange, Sur la fonction sommatoire de la fonction "somme des chiffres", l'Enseignement Math.(2) 21 (1975), 31-47.
[3] P. Flajolet, P. J. Grabner, P. Kirschenhofer, H. Prodinger, and R. F. Tichy, Mellin transforms and asymptotics: digital sums, Theor. Comput. Sci. 123 (1994), 291-314.
[4] D. M. E. Foster, Estimates for a remainder term associated with the sum of digits function, Glasgow Math. J. 29 (1987), 109-129.
[5] \qquad , A lower bound for a remainder term associated with the sum of digits function, Proc. Edinburgh Math. Soc. (2) 34 (1991), 121-142.
[6] , Averaging the sum of digits function to an even base, Proc. Edinburgh Math. Soc. (2) 35 (1992), 449-455.
[7] H. Harborth, Number of odd binomial coefficients, Proc. Amer. Math. Soc. 62 (1977), 19-22.
[8] G. Larcher, On the number of odd binomial coefficients, Acta Math. Hungar. 71 (1996), 183-203.
[9] J.-L. Mauclaire and L. Murata, On q-additive functions, I, Proc. Japan Acad. 59 (1983), 274-276.
[10] _, On q-additive functions, II, Proc. Japan Acad. 59 (1983), 441-444.
[11] H. Prodinger, Periodic oscillations in the analysis of algorithms, preprint available at http://www. wits.ac.za/helmut/postscriptfiles/oscillations.ps, 2004.
[12] J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 (1968), 21-25.
Peter Grabner, Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30, 8010 Graz, Austria

E-mail address: peter.grabner@tugraz.at

[^0]: Date: March 16, 2004.
 1991 Mathematics Subject Classification. Primary: 11A63; Secondary: 11K16.
 Key words and phrases. Partitions.
 ${ }^{\dagger}$ The author is supported by the START-project Y96-MAT of the Austrian Science Fund.

