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Abstract. Let q ≥ 2 be an integer. Then −q gives rise to a number system in Z, i.e.,
each number n ∈ Z has a unique representation of the form n = c0+c1(−q)+. . .+ch(−q)h,
with ci ∈ {0, . . . , q − 1} (0 ≤ i ≤ h). The aim of this paper is to investigate the sum of
digits function ν

−q(n) of these number systems. In particular, we derive an asymptotic
expansion for

∑

n<N

|ν
−q(n)− ν

−q(−n)|

and obtain a Gaussian asymptotic distribution result for ν
−q(n)−ν

−q(−n). Furthermore,
we prove non-differentiability of certain continuous occurring in this context. We use
automata and analytic methods to derive our results.

1. Introduction and Statement of Results

In this paper we study the sum of digits function of number systems with negative
integer base. These number systems were first studied intensively by Knuth [19]. It is easy
to prove that for an integer q, q ≥ 2, every n ∈ Z has a unique representation of the form

(1.1) n = c0 + c1(−q) + c2(−q)2 + · · ·+ ch(−q)h

with ci ∈ {0, 1, . . . q − 1} (0 ≤ i ≤ h) and ch 6= 0 for h 6= 0. Expression (1.1) is called
the (−q)-adic representation of n. We denote the string of digits c0, c1, . . . , ch of this
representation by (n)−q. The sum of digits function of n is defined by

ν−q(n) = c0 + c1 + . . .+ ch.

The sum of digits function of ordinary q-adic number systems (q ≥ 2) gained interest in
the last thirty years. Delange [6] found an exact formula for its summatory function. He
proved that

∑

n<N

νq(n) =
q − 1

2
N logq N +NF (logq N),

where F is a continuous, nowhere differentiable function of period one. The Fourier co-
efficients of F were computed by elementary methods in [6] and by means of standard
methods from analytic number theory in [11].
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Also for the sum of digits function with respect to negative bases an exact formula for
the sum of digits function is known. One can show that (cf. [12, 25])

(1.2)
∑

|n|<N

ν−q(n) = (q − 1)N logq N +NΦ(logq2 N),

where Φ is again a continuous function of period 1.
The moments of the sum of digits function were calculated in [5, 18, 23] in the case of

positive q and in [15] for negative q. Furthermore, we mention that Gelfond [14] studied
the distribution of νq(n) in residue classes. This result has recently been extended to more
general number systems in [26].

Dumont and Thomas [8] studied the moments of the sum of digits function in generalized
number systems arising from substitutions and finite automata. They study the behaviour
of sums of f(ν(n)), where ν(n) denotes the sum of digits function of a number system
associated to a substitution and f is a real function subject to some growth conditions.
Their results imply that ν(n) is asymptotically normally distributed. Similar results for
number systems whose base sequences satisfy linear recurrences were obtained in [7]. Limit
distributions for the q-adic sum of digits function on polynomial values are derived in [2].

In this paper we prove a result on the asymptotic distribution of ν−q(n)− ν−q(−n). We
use an estimate for certain exponential sums needed for the distribution result to give an
asymptotic expansion for the sum of |ν−q(n)− ν−q(−n)|.

As we will show in Section 2, ν−q(n) − ν−q(−n) can be generated by a finite state
automaton from the q-adic expansion of n. But since its values can be arbitrarily large, it
is no q-automatic function. On the other hand, it is a (−q)-additive function which is not
q-additive, despite of the fact that it satisfies a weaker additivity property, which will be
exploited in the proof of Theorem 2. Thus despite ν−q(n) − ν−q(−n) is closely related to
q-automatic as well as q-additive functions it does not belong to one of these classes.

For a general description of q-automatic and q-additive functions and the asymptotic of
their summatory functions we refer to [4]; for an analytic approach to exact and asymp-
totic formulæ for summatory functions of q-additive functions we refer to [11, 21, 22]. A
discussion of periodicity phenomena and non-differentiability of the remainder functions
occurring in this context is given in [24].

Theorem 1. Let ν−q(n) denote the sum of digits function with respect to the base −q for
an integer q ≥ 2. Then the asymptotic formulæ

(1.3)
∑

n<N

(ν−q(n)− ν−q(−n)) = NG(logq2 N) +O
(

(logN)2
)

and

(1.4)
∑

n<N

(ν−q(n)− ν−q(−n))2 = 2r1(q)N logq N +NH(logq N) +O
(

(logN)3
)



SUM OF DIGITS . . . 3

hold with continuous periodic functions G(x) and H(x) of period 1. G(x) satisfies G(x +
1
2
) = −G(x) and therefore has mean 0. Furthermore,

(1.5)
∑

n<N

|ν−q(n)− ν−q(−n)| = 2

√

r1(q)

π
N
√

logq N +
N

√

logq N
Ψ
(

logq N
)

+O
(

N

(logN)
3
2

)

,

hold, where

(1.6) Ψ(x) =
1

2
√

πr1(q)
H(x) +

r2(q)

2
√

πr1(q)3
− 1

3Q2
√

πr1(q)

and

(1.7)

r1(q) =
1

6

(q − 1)(q2 − 4q + 7)

(q + 1)

r2(q) =
1

180

(q − 1)(q6 − 11q5 + 82q4 − 322q3 + 577q2 − 371q + 76)

(q + 1)3
;

Q = 2 if q is even and Q = 1 if q is odd.

Theorem 2. The functions G(x) and H(x) in (1.3) and (1.4) are nowhere differentiable;
therefore, by (1.6), Ψ(x) in (1.5) is nowhere differentiable.

Corollary 1.

∑

n<N

min(ν−q(n), ν−q(−n)) =
q − 1

2
N logq N −

√

r1(q)

π
N(logq N)1/2 +

1

2
Φ(logq2 N)N

−1

2
Ψ(logq N)

N

(logq N)1/2
+O

(

N

(logN)3/2

)

,

and

∑

n<N

max(ν−q(n), ν−q(−n)) =
q − 1

2
N logq N +

√

r1(q)

π
N(logq N)1/2 +

1

2
Φ(logq2 N)N

+
1

2
Ψ(logq N)

N

(logq N)1/2
+O

(

N

(logN)3/2

)

,

where Φ and Ψ are the periodic functions occurring in (1.2) and (1.5), respectively.

Theorem 3. Let ν−q(n) denote the sum of digits function with respect to the base −q for an
integer q ≥ 2. Then the quantity ν−q(n)− ν−q(−n) is asymptotically normally distributed
with mean 0 and variance 2r1(q) logq N , i.e.

(1.8)
1

N
#







n < N

∣

∣

∣

∣

∣

ν−q(n)− ν−q(−n)
√

2r1(q) logq N
< x







=
1√
2π

∫ x

−∞
e−

ξ2

2 dξ +O
(

1√
logN

)

,

where r1(q) is given by (1.7).
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In order to prove these theorems we construct an automaton that maps the string of
digits of the q-adic representation of n, denoted by (n)q, to a string of digits, whose sum is
ν−q(n)−ν−q(−n). Using the accompanying matrix of this automaton we get an asymptotic
expansion for the sum

(1.9)
∑

n<N

eit(ν−q(n)−ν
−q(−n)).

Starting from this expansion we will derive the result via Fourier transform.

2. Construction of the Automaton

Let δj(n, q) be the j-th digit in the q-adic representation of n. In this section we construct
a transducer A (cf. [9, 20]), which produces the sequence of differences of digits δj(n,−q)−
δj(−n,−q) from the sequence of digits of n. For the use of automata in the study of digital
expansions we refer to [1, 13]

We start with a description of the maps (n)q 7→ (n)−q and (n)q 7→ (−n)−q by means of
transducers. We use the following notation: let P and Q be two states of a transducer.
Then (nδ1)

P = (n)Qδ2 indicates that there is an edge from P to Q, marked with δ1|δ2.
This means, if P is the actual state and the automaton reads δ1 as the next digit, it moves
to state Q writing the digit δ2.

0 0

q-1 0

0    0
δ     δ

q-1   q-1

0   1
δ    δ+1

q-2   q-1

1   q-1
δ        δq-

q-1    1

0   q-1
δ           δq-1-

q-1   0

A B

C D

The automaton A+

0 0

q-1 0

0    0
δ     δ

q-1   q-1

0   1
δ    δ+1

q-2   q-1

1   q-1
δ        δq-

q-1    1

0   q-1
δ           δq-1-

q-1   0

E F

G H

The automaton A−

Figure 1

A+ is the transducer, corresponding to the map (n)q 7→ (n)−q. It has four states A ,B,
C and D (A being the initial state). It is characterized by the following rules:

(nδ)A = (n)Bδ (0 ≤ δ ≤ q − 1), (n0)B = (n)A0,
(nδ)B = (n)Cq − δ (1 ≤ δ ≤ q − 1), (nδ)C = (n)Bδ + 1 (0 ≤ δ ≤ q − 2),
(nq − 1)C = (n)D0, (nδ)D = (n)Cq − 1− δ, (0 ≤ δ ≤ q − 1)

(a+ b indicates that a+b is only one digit). Note that the states correspond to the possible
carries that can occur. Since the sign of (−q)k changes, the automaton has to distinguish
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between even and odd indices of digits: if the j-th digit has to be processed, then the
automaton rests at A or C for odd j and at B or D for even j.

The automaton A−, corresponding to the map (n)q 7→ (−n)−q also consists of four states
E, F,G,H (E being the initial state). It is defined by

(n0)E = (n)F0, (nδ)F = (n)Eδ (0 ≤ δ ≤ q − 1),
(nδ)E = (n)Hq − δ (1 ≤ δ ≤ q − 1), (nδ)H = (n)Eδ + 1 (0 ≤ δ ≤ q − 2),
(nq − 1)H = (n)G0, (nδ)G = (n)Hq − 1− δ, (0 ≤ δ ≤ q − 1).

0|0 0|0 q-1|0q-1|0

0|-1 q-1|1

0|1 q-1|-1

1  q-3
δ q-1-2δ

q-2  3-q

1  3-q
δ 2 -q+1δ

q-2  q-3

1  2-q
δ 2δ-q

q-1  q-2

0  2-q
δ 2δ-q+2

q-2  q-2

1  q-2
δ q-2δ

q-1  2-q

0  q-2
δ q-2δ-2

q-2  2-q

U V W

X Y Z

Figure 2. The automaton A producing ν−q(n)− ν−q(−n)

The transducer A is defined as the product automaton ofA+ andA− defined by Figure 1,
whose outputs are the differences of the outputs of A+ and A−. The states of A are defined
by

U = (A,E), V = (B,H), W = (C,G), X = (B,F ), Y = (C,E), Z = (D,H)

and A is depicted in Figure 2 (the remaining two states are never reached).

Remark 1. It can be immediately read off from this automaton that for odd q the difference
ν−q(n) − ν−q(−n) is always even. This is a consequence of the fact that the sum of the
outputs along any closed path from U to U is even.

In order to get the asymptotic of the sum (1.9) we need certain accompanying matrices

of the automaton A. For 0 ≤ k ≤ q − 1 define the 6 × 6 matrices Mk = (m
(k)
j1,j2

) in the
following way (the states are numbered in their alphabetical order). If there is an edge

from j1 to j2 in A, marked with k|ℓ, then m
(k)
j1,j2

= eitℓ. Otherwise m
(k)
j1,j2

= 0. Furthermore
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we define, using the abbreviation z = eit,

M(t) :=

q−1
∑

k=0

Mk =























0 s1 0 1 0 0

z−1 0 z 0 s2 0

0 s1 0 0 0 1

1 0 0 0 s1 0

0 s2 0 z 0 z−1

0 0 1 0 s1 0























with

s1 = z2−q + z4−q + · · ·+ zq−4 + zq−2 =
sin(q − 1)t

sin t
and

s2 = z3−q + z5−q + · · ·+ zq−5 + zq−3 =
sin(q − 2)t

sin t
.

The eigenvalues of M are given by

λ1 =
(1 + s2) +

√

(1− s2)2 + 8s1 cos t

2
,

λ2 =
−(1 + s2)−

√

(1− s2)2 + 8s1 cos t

2
,

λ3 =
−(1 + s2) +

√

(1− s2)2 + 8s1 cos t

2
,

λ4 = 1,

λ5 =
(1 + s2)−

√

(1− s2)2 + 8s1 cos t

2
,

λ6 = −1.

For t = 0, λ3 = λ4 = 1 and λ5 = λ6 = −1, and the limit of the transformation matrices
S(t), formed by the eigenvectors of M(t), is a singular matrix for t → 0. Since we are
especially interested in values of t close to 0, we replace S(t) by the slightly different
matrix

T (t) =

































1−s2+
√
a1

4 cos t

1−s2+
√
a1

4 cos t

1−s2−
√
a1

4 cos t
1
2
a2

1−s2−
√
a1

4 cos t
1
2
a2

1 −1 −1 − 1
z+1

1 1
z+1

1−s2+
√
a1

4 cos t

1−s2+
√
a1

4 cos t

1−s2−
√
a1

4 cos t
1
2
a3

1−s2−
√
a1

4 cos t
1
2
a3

1−s2+
√
a1

4 cos t
−1−s2+

√
a1

4 cos t
−1−s2−

√
a1

4 cos t
1
2
a2

1−s2−
√
a1

4 cos t
−1

2
a2

1 1 1 − 1
z+1

1 − 1
z+1

1−s2+
√
a1

4 cos t
−1−s2+

√
a1

4 cos t
−1−s2+

√
a1

4 cos t
1
2
a3

1−s2−
√
a1

4 cos t
−1

2
a3
































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with

a1 = (1− s2)
2 + 8s1 cos t,

a2 =
4s1 cos t−4z−1(1+s2) cos t+2i(1−s2−

√
a1) sin t

8 sin2 t cos t
,

a3 =
4s1 cos t−4z(1+s2) cos t−2i(1−s2−

√
a1) sin t

8 sin2 t cos t
.

These matrices satisfy limt→0 T (t) = T (0) with T (0) regular, and furthermore, D =
(dj1,j2) := T (t)−1M(t)T (t) is a diagonal matrix apart from the two nonzero entries d3,4 and
d5,6. Note that for the entries on the diagonal we have dj,j = λj (1 ≤ j ≤ 6). It will be
of importance later that none of the nonzero entries outside the diagonal is located in the
first or second column or row. In fact, the first and the second eigenvalue are the dominant
ones.

3. Asymptotic of an Exponential Sum

In this section we derive an asymptotic expansion of the sum (1.9). To this matter we
use the matrices Mk(t), M(t), and T (t) of the previous section. The method of using
matrices in order to get asymptotic expansions of digital sums is classical. It was for
example applied in [16] in order to compute asymptotic for certain rarefied sums of the
Thue–Morse Sequence. Similar ideas are also used in [23].

Proposition 1. There exists a δ(q) > 0 such that

(3.1)
∑

n<N

ei(t+Qaπ)(ν
−q(n)−ν

−q(−n)) = Nαq(t)
(

F
(1)
t

(

logq N
)

+ itF
(2)
t

(

logq2 N
)

)

+O (logN) ,

for a ∈ Z and |t| ≤ δ(q), where

αq(t) = logq λ1(t) = 1− r1(q)

log q
t2 − r2(q)

log q
t4 +O

(

t6
)

with

r1(q) :=
1

6

(q − 1)(q2 − 4q + 7)

(q + 1)

and

r2(q) :=
1

180

(q − 1)(q6 − 11q5 + 82q4 − 322q3 + 577q2 − 371q + 76)

(q + 1)3
;

furthermore, Q = 2, if q is even, and Q = 1 if q is odd. The functions F
(1,2)
t (x) are

continuous and periodic with period 1 (with respect to x) and are even and C∞ with respect
to t; furthermore, the following expansion around t = 0 holds:

(3.2) F
(1)
t (logq N) + itF

(2)
t (logq2 N) = 1 + itG(logq2 N)− t2

2
H(logq N) +O

(

t3
)

.
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The functions G and H are the same as those occurring in the statement of Theorem 3 in
(1.3) and (1.4). Finally,

∑

n<N

ei(t+Qaπ)(ν
−q(n)−ν

−q(−n)) = O (Nα)

for α = αq(δ(q)) < 1 for δ(q) < |t| < Qπ
2
.

Proof. Since by Remark 1 everything is periodic with period Qπ, we restrict ourselves to
a = 0. A simple discussion of the function |λ1(t)| shows that |λ1(t)| attains its maximum
q precisely for t = 0 in the interval [−Qπ

2
, Qπ

2
]. Thus there exists a δ(q) such that |λ1(t)| ≤

|λ1(δ(q))| for δ(q) ≤ |t| ≤ Qπ
2
.

First we want to represent the sum in terms of the matrices T := T (t), Mj := Mj(t) and

M := M(t). Let n =
∑J

j=1 ηjq
j be the q-adic representation of n. Then

(3.3) eit(ν−q(n)−ν
−q(−n)) = vT

1

(

J
∏

j=0

Mηj

)

M3
0v2

for vT
1 := (1, 0, 0, 0, 0, 0) and vT

2 := (1, 0, 0, 1, 0, 0). Multiplication by M3
0 adds three

leading zeros to the input, which takes care of the fact that the number of digits of (n)−q

and (−n)−q can differ by at most three from the number of digits of (n)q. This also forces
the automaton to either stop at state U or state X. Since we start from state U, the lefthand
side of (3.3) is equal to the sum of the first and fourth entry of the first line in the matrix
product. These entries are extracted by multiplication by the vectors vT

1 and v2.
In order to get a representation for the sum we define

f̃(n) :=

(

J
∏

j=0

Mηj

)

and f(n) :=

(

J
∏

j=0

Mηj

)

M3
0 .

Furthermore, let

(3.4) N =

K
∑

k=0

δkq
k

be the q-adic representation of the integer N and define

Nℓ :=
K
∑

k=ℓ

δkq
k (0 ≤ ℓ ≤ K).
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Since f(Nℓ+1 + n) = f̃(n)f(Nℓ+1) for n < qℓ+1 we have

∑

n<N

f(n) =
K
∑

ℓ=0

∑

Nℓ+1≤n<Nℓ

f(n)

=

K
∑

ℓ=0

∑

n<δℓqℓ

f̃(n)f(Nℓ+1)

=

K
∑

ℓ=0

M ℓ

δℓ−1
∑

j=0

Mj

(

K
∏

k=ℓ+1

Mδk

)

M3
0 .

Here we set
∑−1

j=0Mj = 0. Write M ℓ = TDℓT−1 with D as before. Since D is “almost”
a diagonal matrix, having only two nonzero entries d3,4 and d5,6 apart from the diagonal
entries, we can split it in the following way. Write D := D1 + D2 + D3, where D1 :=
diag(λ1, 0, 0, 0, 0, 0), D2 := diag(0, λ2, 0, 0, 0, 0) and D3 := D−D1 −D2 is a matrix having
only zero entries in the first and second column and row. With that we have

(3.5)
∑

n<N

f(n) =
3
∑

p=1

T
2K
∑

ℓ=0

D̃ℓ
pT

−1

δℓ−1
∑

j=0

Mj

(

2K
∏

k=ℓ+1

Mδk

)

M3
0 = P1 + P2 + P3.

First we deal with the sum P1, corresponding to the matrix D1. In order to extract the
main term, we define for x =

∑∞
ℓ=0

δℓ
qℓ

(3.6) F1,t(logq x) = E
logq x

1

∞
∑

ℓ=0

Eℓ
1T

−1

δℓ−1
∑

j=0

Mj

ℓ−1
∏

k=0

Mδℓ−k−1
M3

0

with E1 := diag(λ−1
1 , 0, 0, 0, 0, 0), where F1,t is a continuous periodic function of period 1;

continuity is proved along the same lines as in [17]. With this definition we get

P1 := TD
logq N

1 F1,t

(

logq N −K
)

.

Further properties of F1,t will be collected in Lemma 1 below.
In order to get an expansion for the sum P2 we have to take into account the fact that

the powers of λ2 have alternating signs for t = 0. This causes a doubling of period lengths
in the occurring periodic functions and yields mean 0 for the fluctuation (cf. [17]). To
derive these fluctuations we write the expansion of N in the form

N =
2L
∑

k=0

δkq
k

with L :=
[

K−1
2

]

+1 (i.e., the representation has a leading zero, if K is odd, and coincides
with the former representation of N in (3.4) if K is even). Now we have

P2 =
∑

n<N

f(n) = T

2L
∑

ℓ=0

Dℓ
2T

−1

δℓ−1
∑

j=0

Mj

(

2L
∏

k=ℓ+1

Mδk

)

M3
0
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Again we define a function F2,t in order to extract the main term. Let for x =
∑∞

ℓ=0
δℓ
qℓ

(3.7) F2,t

(

logq x
)

=
(

E2
2

)logq x
∞
∑

ℓ=0

Eℓ
2T

−1

δℓ−1
∑

j=0

Mj

ℓ−1
∏

k=0

Mδℓ−k−1
M3

0

with E2 := diag(0, λ−1
2 , 0, 0, 0, 0). This definition gives

(3.8) P2 = TD2L
2 F2,t

(

logq2 N − L
)

.

Further properties of F2,t will be collected in Lemma 1.
It remains to deal with the sum

T

2K
∑

ℓ=0

Dℓ
3T

−1

δℓ−1
∑

j=0

Mj

(

2K
∏

k=ℓ+1

Mδk

)

M3
0 .

This sum does not contribute to the leading terms of the expansion. In fact, we can
estimate it in the following way. Since the matrix norms of the matrices Mj (j = 1, .., 6)
are less than or equal to 1 the norm of the product is O (1). Moreover, all the entries of the
matrices T are independent of N and periodic in t. Thus their norms can also be bounded
by an absolute constant. What remains is the matrix Dℓ

3. Since all its eigenvalues are ≤ 1
for |t| < δ(q) and ℓ is less than or equal to logq N , we conclude that ‖Dℓ

3‖ = O (1) for
|t| < δ(q). Taking into account the sum over ℓ we arrive at

‖P3‖ = O (logN)

for |t| < δ(q).

Lemma 1. F1,t(logq x)v2 is an even, F2,t(logq2 x)v2 an odd function of t.

Proof. We start with the function F1,t(logq x). Let

A :=

















eita 0 0 0 0 0
0 0 0 e−itc 0 0
eitb 0 0 0 0 0
0 0 0 e−ita 0 0
eitc 0 0 0 0 0
0 0 0 e−itb 0 0

















and denote by I1,4 the permutation matrix that exchanges the first and fourth columns of a
matrix, if it is multiplied on the righthand side. With this notation the product occurring
in F1,t is of the shape

Mj

ℓ−1
∏

k=0

Mδℓ−k−1
M3

0 = A or Mj

ℓ−1
∏

k=0

Mδℓ−k−1
M3

0 = AI1,4

for a suitable choice of a, b, c. This can easily be proved by induction on the number of
factors and is reflected by the shape of the automaton A. We only deal with the first case,

the second one being totally similar. Next we examine the matrix B := E
logq x

1 Eℓ
1T

−1. Since
each factor of B contains only even functions as entries, the same holds for B. Denote
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the entries of B by (bµ,ρ). Direct calculation yields that bµ,ρ = bµ,ρ+3 for 1 ≤ µ ≤ 6 and
1 ≤ ρ ≤ 3. If we are able to show that the product BAv2 is an even function, we are done,
since F1,t(logq x)v2 is a sum of vectors of this structure and the sum of even functions is
again an even function.

BAv2 = (bµ1(t)e
iat + bµ4(t)e

−iat + b(t)µ3e
ibt + bµ6(t)e

−ibt + bµ5(t)e
ibt + bµ2(t)e

−ibt)µ=1,...,6

= (2bµ1(t) cos(at) + 2bµ3(t) cos(bt) + 2bµ5(t) cos(ct))µ=1,...,6.

Since bµρ (1 ≤ µ, ρ ≤ 6) are even functions, the first assertion is proved. The second
assertion can be proved in the same way. The only difference is that, instead of B, one

uses the matrix C := E
logq x

2 Eℓ
2T

−1. C again consists only of even functions. Furthermore,
for the entries (cµρ) of C, one can show that cµρ = −cµ,ρ+3, where 1 ≤ µ ≤ 6 and 1 ≤ ρ ≤ 3.
Arguing in the same way as before yields

CAv2 = (2ibµ1(t) sin(at) + 2ibµ3(t) sin(bt) + 2ibµ5(t) sin(ct))µ=1,...,6.

Since F2,t(logq x)v2 is a sum of vectors of this shape, we have shown that it is an odd
function. �

Now we are in a position to describe the asymptotic behaviour of the sum in the state-
ment of the proposition. Summing up the amounts contributed by the three sums consid-
ered above and multiplying by vT

1 on the left and by v2 on the right yields
∑

n<N

eit(ν−q(n)−ν
−q(−n)) = Nαq(t)

(

F
(1)
t

(

logq N
)

+ itF
(2)
t

(

logq2 N
)

)

+O (logN) ,

for |t| < δ(q). Since the sums in (3.6) and (3.7) are exponentially convergent for |t| ≤ δ(q),

the functions F1,t and F2,t are C∞ with respect to t. The same holds for F
(1,2)
t . �

4. Proof of the Theorems

Proof of Theorem 1. We derive the expansions (1.3) and (1.4) with help of Proposition 1.
First we differentiate the expansion in Proposition 1 once and twice, respectively. Setting
t = 0 and ignoring the error term O (logN) for the moment, yields (1.3) and (1.4) apart
from the error terms. It remains to determine the contribution of the error term O (logN)
after the differentiation. Equation (3.5) shows that this error term comes from the matrix
P3. From the shape of the matrices Mj it is clear that the product of the matrices Mj

contained in P3 is a matrix containing sums of at most logq N terms of the form exp(itℓ)
with |ℓ| ≤ (q − 1) logq N (cf. the proof of Lemma 1). Each differentiation of such an
expression yields one extra logN . Thus we arrive at the error terms indicated in (1.3) and
(1.4).

So we are left with the sum over the absolute values. In order to derive its asymptotic
expansion we use Fourier transform techniques. First define

g(x) :=

{

1− |x| for |x| < 1

0 for |x| ≥ 1.
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It is easily seen that the Fourier transform of g(x) is

(4.1)

∫ ∞

−∞
g(x)eitx dx =

2− 2 cos t

t2
.

Now we apply the inverse transform. Since |ν−q(n) − ν−q(−n)| ≤ q logq N for n < N ,

substituting x =
|ν

−q(n)−ν
−q(−n)|

q logq N
and summing up yields

L(N) :=
∑

n<N

(

1−
∣

∣

∣

∣

|ν−q(n)− ν−q(−n)|
q logq N

∣

∣

∣

∣

)

(4.2)

=
1

2π

∫ ∞

−∞

2− 2 cos t

t2

∑

n<N

exp

(

it(ν−q(n)− ν−q(−n))

q logq N

)

dt.(4.3)

Now we want to apply the asymptotic expansions of Proposition 1 to the sum in the
integrand. Since these expansions can be used only in the neighbourhood of certain points,
we have to split the line of integration. To this matter we define the sets

Ia = [Qπaq logq N − (logq N)11/16, Qπaq logq N + (logq N)11/16] (a ∈ Z), R = R \
⋃

a∈Z
Ia.

Let

Ja =
1

2π

∫

Ia

2− 2 cos t

t2

∑

n<N

exp

(

it(ν−q(n)− ν−q(−n))

q logq N

)

dt

and let E be the corresponding integral over the range R, then (4.2) reads

L(N) =

∞
∑

a=−∞
Ja + E.

Now we derive the asymptotic of the integrals Ja and E. It will turn out that the main term
comes from J0, and for a 6= 0 the corresponding integrals only affect terms of smaller order.
E turns out to be of smaller order. We start with the integral J0. Applying Proposition 1

and expanding exp
(

−r2(q)
t4

q4 log3q N

)

we arrive at

J0 =
N

2π

∫

I0

2− 2 cos t

t2
exp

(

−r1(q)
t2

q2 logq N

)

×
(

1− r2(q)
t4

q4(logq N)3
+O

(

t6

(logN)5

))

×
(

1 +
it

q logq N
G(logq2 N)− t2

2q2(logq N)2
H(logq N) +O

(

t3

(logN)3

))

dt.
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In order to evaluate the integral, we split it in the following way.

J0 =
N

2π

∫

I0

2− 2 cos t

t2
exp

(

−r1(q)
t2

q2 logq N

)

dt

+i
N

2π

G(logq2 N)

q logq N

∫

I0

2− 2 cos t

t
exp

(

−r1(q)
t2

q2 logq N

)

dt

−N

4π

H(logq N)

q2(logq N)2

∫

I0

(2− 2 cos t) exp

(

−r1(q)
t2

q2 logq N

)

dt

−N

2π

r2(q)

q5(logq N)4

∫

I0

(2− 2 cos t)t2 exp

(

−r1(q)
t2

q2 logq N

)

dt

−i
N

2π

r2(q)G(logq2 N)

q4(logq N)3

∫

I0

(2− 2 cos t)t3 exp

(

−r1(q)
t2

q2 logq N

)

dt

+O
(

1

(logq N)5
N

2π

∫

I0

(2− 2 cos t)t4 exp

(

−r1(q)
t2

q2 logq N

)

dt

)

= J0,1 + J0,2 + J0,3 + J0,4 + J0,5 + J0,6.

We can extend the range of integration of J0,j (1 ≤ j ≤ 6) to infinity making an error of
order O

(

N(logN)−d
)

for d arbitrary. Evaluating the resulting integrals yields

J0,1 = N − 2

√

r1(q)

π

N

q(logq N)1/2
+O

(

N
1− log q

4r1(q)

)

,

J0,2 = 0,

J0,3 = −H(logq N)
1

2
√

πr1(q)

N

q(logq N)3/2
+O

(

N
1− log q

4r1(q)

)

,

J0,4 = − r2(q)

2
√

πr1(q)3
N

q(logq N)3/2
+O

(

N
1− log q

4r2(q)

)

,

J0,5 = 0,

J0,6 = O
(

N

(logN)5/2

)

.

Next we deal with the integrals Ja for a 6= 0. Applying Proposition 1 and substituting
u = (t−Qπaq logq N)/

√

logq N yields

Ja =
N

2π

∫ (logq N)3/16

−(logq N)3/16

2− 2 cos(Qπaq logq N +
√

logq Nu)

(Qπaq logq N +
√

logq Nu)2

× exp

(

−r1u
2

q2
− r2u

4

q4 logq N
+O

(

u6

(logN)2

))

×
(

1 + i
G(logq2 N)u

q
√

logq N
−

H(logq N)u2

2q2 logq N
+O

(

u3

(logN)3/2

)

)

√

logq Ndu.
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Now we expand (Qπaq logq N +
√

logq Nu)−2 and exp(−r2u
4/q4 logq N). Furthermore, we

integrate over the error terms keeping in mind that
∫ α

−α
upe−u2

du is bounded uniformly in
α. This yields

Ja =
N

2π

2
√

logq N

(Qπaq logq N)2

(logq N)3/16
∫

−(logq N)3/16

(

1− cos
(

Qπaq logq N +
√

logq Nu
))

exp

(

−r1u
2

q2

)

×
(

1− 2u

Qπaq
√

logq N
+ i

G(logq2 N)u

q
√

logq N

)

du+O
(

(logN)−5/2
)

.

If we extend the range of integration to the whole real line, the error is smaller than
O ((logN)−3) because of the factor exp(−r1u

2q−2) in the integrand. It is easy to see that
(β > 0)

∫ ∞

−∞
e−βu2

du =

√

π

β
,

∫ ∞

−∞
ue−βu2

du = 0

and
∫ ∞

−∞
cos
(√

logq Nu+Qπaq logq N
)

e−βu2

du = O
(

N−1/4
)

.

Observing that Ja is a sum of integrals of these types enables us to find expressions for the
integral Ja. Summing up over all a 6= 0 finally yields

∑

a6=0

Ja =
1

3Q2q
√

πr1(q)
(logq N)−3/2 +O

(

(logN)−5/2
)

.

It remains to estimate the integral E. Here the range of integration is extended over
intervals Ea = [Qaqπ logq N + (logq N)11/16, Q(a + 1)qπ logq N − (logq N)11/16], where the

exponential sum in (4.3) is bounded by O
(

Nαq((logq N)−5/16)
)

. Thus we have
∣

∣

∣

∣

∣

1

2π

∫

Ia

2− 2 cos t

t2

∑

n<N

exp

(

it(ν−q(n)− ν−q(−n))

q logq N

)

dt

∣

∣

∣

∣

∣

≤

4 logq N

min(|a|, |a+ 1|)2Q2π2(logq N)2
Nαq((logq N)−5/16),

except for a = 0,−1, where the denominator has to be replaced by (logq N)11/8. Since

αq(t) ≤ 1− r1(q)
log q

t2 this yields an error term O
(

N(logN)−d
)

for any d > 0.

Summing up what we proved until now, we get

L(N) = N − 2

√

r1
π

N

q(logq N)1/2
−Ψ(logq N)

N

q(logq N)3/2
+O

(

N

(logN)5/2

)

with

Ψ(x) =
1

2
√

πr1(q)
H(x) +

r2(q)

2
√

πr1(q)3
− 1

3Q2
√

πr1(q)
.
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and the theorem is proved. �

Remark 2. The proof of Theorem 1 shows that one could obtain a full asymptotic expansion
for the sums involving terms of the form N

(logN)k+
1
2
Ψk(logq2 N) for k ≥ 1 with periodic

functions Ψk.

Proof of Corollary 1. We use the representations

∑

n<N

min(ν−q(n), ν−q(−n)) =
1

2





∑

|n|<N

ν−q(n)−
∑

n<N

|ν−q(n)− ν−q(−n)|



 ,(4.4)

∑

n<N

max(ν−q(n), ν−q(−n)) =
1

2





∑

|n|<N

ν−q(n) +
∑

n<N

|ν−q(n)− ν−q(−n)|



 .(4.5)

and the known fact (cf. [12, 25])

(4.6)
∑

|n|<N

ν−q(n) = (q − 1)N logq N +NΦ(logq2 N).

Together with Theorem 1, this gives the desired result. �

Proof of Theorem 2. The proof follows the same lines as the proof of Théorème 3 in [24],
but has to use some additional ideas, because in the present situation the error term is
weaker.

For a fixed x ∈ [0, 1) we write the q-adic expansion of qx as

qx =
∞
∑

j=0

δj
qj
.

Let L(k) = O (log k) be an integer-valued function to be fixed later. With the help of this
function we define xk and Nk by

Nk = qxk+k+L(k) = qL(k)
k
∑

j=0

δjq
k−j.

For a function g(N) with g(N) = o(N) and log3N = o(g(N)) we define yk by

Nk + g(Nk) = qyk+k+L(k).

From these definitions and the requirements for g(N) and L(k) we easily see that xk, yk → x
and

yk − xk =
g(Nk)

Nk log q
+O

(

g(Nk)
2

N2
k

)

.

We first prove the non-differentiability of G(x). For this purpose we use the fact that the
arithmetic function h(n) = ν−q(n)− ν−q(−n) has the property h(q2k+2a+ b) = h(a) + h(b)
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for b < q2k, which can be seen from the automaton in Figure 2. In the following we assume
k and L(k) to be even. This yields

(4.7)
∑

Nk≤n<Nk+g(Nk)

h(n) = g(Nk)h(Nk) +
∑

n<g(Nk)

h(n).

On the other hand, we derive from (1.3) that

(4.8)

∑

Nk≤n<Nk+g(Nk)

h(n) = Nk(G(logq2(Nk + g(Nk)))−G(logq2 Nk))+

g(Nk)G(logq2(Nk + g(Nk))) +O
(

(logNk)
2
)

.

Assume now that G is differentiable at x. Then we can write the difference on the righthand
side of (4.8) in terms of the derivative; combining this with (4.7) and dividing by g(Nk)
we derive
(4.9)

1

g(Nk)

∑

n<g(Nk)

h(n) = h(Nk) +G(logq2 g(Nk)) =
1

log q
G′(x) +G(logq2(Nk + g(Nk))) + o(1).

Letting k tend to infinity in (4.9), the last expression tends to 1
log q

G′(x) +G(x). Taking

g(Nk) = k4 and L(k) = 4[logq k] + 8 we observe that the middle expression in (4.9) is then
the sum h(Nk) + G(4 logq2 k). The first summand takes only integer values, the second
takes values in a dense subset of the image of G. This argument would break down ,if G
would be a constant. Since G is an odd function this would imply that G(x) ≡ 0, which is
easily seen to be impossible (for instance, it would be a contradiction to our distribution
result).

In order to prove the non-differentiability of H(x) we compute using (1.4)

(4.10)

∑

N≤n<N+g(N)

f(n) = 2r1(q)g(N) logq N +N
(

H(logq(N + g(N)))−H(logq N)
)

+

2r1(q)g(N) + g(N)H(logq(N + g(N))) +O
(

(logN)3
)

for f(n) = (ν−q(n)− ν−q(−n))2.
We insert N = Nk and the above estimates into (4.10) and use the periodicity of H(t)

to obtain
∑

Nk≤n<Nk+g(Nk)

f(n) = 2r1(q)g(Nk) logq Nk +Nk (H(yk)−H(xk)) +

2r1(q)g(Nk) + g(Nk)H(yk) +O
(

(logNk)
3
)

.

Assume now that H is differentiable at x. Then we could replace H(yk) − H(xk) in this

last expression by g(Nk)
Nk log q

H ′(x) + o( g(Nk)
Nk

) to obtain

(4.11)
1

g(Nk)

∑

0≤n<g(Nk)

f(Nk + n)− 2r1(q) logq Nk =
1

log q
H ′(x) + 2r1(q) +H(x) + o(1).
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Now we take g(Nk) = k4, suppose that L(k) is even for any k and 4 logq k + 3 < L(k) =
O (log k). This assures, that adding (Nk)−q to the representation (n)−q of an integer n in the
range 0 < n < g(Nk) does not produce any carries. Thus the value of

∑

0<n<g(Nk)
f(Nk+n)

is independent of the choice of L(k) (in the given range). On the other hand, the term
2r1(q) logq Nk on the left hand side of (4.11) depends linearly on L(k).

If (4.11) were true, the limit of its lefthand side should be independent of the choice of
L(k) for k → ∞, since the same is obviously true for its righthand side. This will lead us
to a contradiction: consider the choices

L(k) = 2
[

2 logq k + 3
]

and L(k) = 2
[

3 logq k
]

.

By the above arguments the sum in (4.11) remains the same for both choices of L(k). On
the other hand, 2r1(q) logq Nk depends linearly on L(k). Thus if the limit of the lefthand
side of (4.11) exists for the first choice of L(k) it can not exist for the second choice, and
vice versa. This yields the desired contradiction. �

Proof of Theorem 3. The proof uses Vaaler’s version (cf. [27]) of the Berry-Esseen inequal-
ity (cf. [3], [10]). Since this procedure is totally standard, we will only give a sketched
proof. We use (3.1) for a = 0 and replace t by t√

2r1(q) logq N
. Together with (3.2) this gives

ĝN(t) =
1

N

∑

n<N

exp

(

it
√

logq N
(ν−q(n)− ν−q(−n))

)

=

e−
t2

2

(

1 +O
(

t√
logN

))(

1 +O
(

t4

logN

))

(4.12)

for t = O
(√

logN
)

. The function on the lefthand side is the characteristic function of the
distribution function of

ν−q(n)− ν−q(−n)
√

r1(q) logq N
;

we will denote this distribution function by gN(x). Theorem 13 in [27] implies that

|gN(x)− g(x)| ≤
∫ T

−T

Ĵ(T−1t)
1

2πt

∣

∣

∣
ĝN(t)− e−

t2

2

∣

∣

∣
dt

+
1

2T

(

1 +

∫ T

−T

K̂(T−1t)
(

ĝN(t)− e−
t2

2

)

dt

)

,(4.13)

where g(x) = 1√
2π

∫ x

−∞ e−
ξ2

2 dξ; the functions Ĵ and K̂ are given by

Ĵ(t) =

{

πt(1− |t|) cotπt+ |t| for |t| < 1

0 otherwise,

K̂(t) =

{

1− |t| for |t| ≤ 1

0 otherwise.
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In order to use the full information in the asymptotic of ĝN(t) in (4.12), we have to split

the range of integration in (4.13) at |t| = (logN)
1
6 (this is the point where the two O-terms

in (4.12) change their rôles). We choose T =
√
logN and estimate the integrals trivially

to obtain the desired result. �
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10:17–32, 1998.
[8] J.-M. Dumont and A. Thomas. Digital sum moments and substitutions. Acta Arith., 64:205–225,

1993.
[9] S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press, 1974.

[10] C. G. Esseen. Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian
law. Acta Math., 77:1–125, 1945.

[11] P. Flajolet, P. J. Grabner, P. Kirschenhofer, H. Prodinger, and R. F. Tichy. Mellin transform and
asymptotics: Digital sums. Theoret. Comput. Sci., 123:291–314, 1994.

[12] P. Flajolet and L. Ramshaw. A note on Gray code and odd-even merge. SIAM J. Comput., 9:142–158,
1980.

[13] C. Frougny. Representation of numbers and finite automata. Math. Systems Theory, 25:37–60, 1992.
[14] A. O. Gelfond. Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arith.,

13:259–266, 1968.
[15] B. Gittenberger and J. M. Thuswaldner. The moments of the sum of digits function in number fields.

Canadian Math. Bull., 42(1):68–77, 1999.
[16] S. Goldstein, K. A. Kelley, and E. R. Speer. The fractal structure of rarefied sums of the Thue–Morse

sequence. J. Number Theory, 42:1–19, 1992.
[17] P. J. Grabner. Completely q-multiplicative functions: the Mellin-transform approach. Acta Arith.,

65:85–96, 1993.
[18] P. J. Grabner, P. Kirschenhofer, H. Prodinger, and R. F. Tichy. On the moments of the sum-of-digits

function. In G. E. Bergum, A. N. Philippou, and A. F. Horadam, editors, Applications of Fibbonacci
Numbers, volume 5, pages 263–273. Kluwer Academic Publishers, 1993.

[19] D. E. Knuth. The Art of Computer Programming, Vol 2: Seminumerical Algorithms. Addison Wesley,
London, 1981.

[20] W. Kuich and A. Salomaa. Semirings, Automata, Languages. Springer, Berlin, 1986.
[21] J.-L. Mauclaire and L. Murata. On q-additive functions, I. Proc. Japan Acad., 59:274–276, 1983.
[22] J.-L. Mauclaire and L. Murata. On q-additive functions, II. Proc. Japan Acad., 59:441–444, 1983.



SUM OF DIGITS . . . 19

[23] T. Okada, T. Sekiguchi, and Y. Shiota. Applications of binomial measures to power sums of digital
sums. J. Number Theory, 52:256–266, 1995.
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