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1. Introduction

Different types of constructions have been used to find “good” configurations of N points
XN = {x1, . . . ,xN} on a manifold M , especially the unit sphere S

d in R
d+1. Of course the

construction depends on what quantitative measure is used for the configuration. In this
survey we will discuss two such measures and their interrelation. We will mostly emphasise
on the discussion of the latest results and developments in the context of minimal energy
point configurations.

Discrepancy of a point set XN is given by

(1.1) D(XN) = sup
C

∣

∣

∣

∣

∣

1

N

N
∑

n=1

χC(xn)− σ(C)

∣

∣

∣

∣

∣

,

where the supremum is extended over a system of Riemann-measurable subsets of M (for
instance all spherical caps in the case of the sphere), χC denotes the indicator function
of the set C, and σ is a normalised measure on M (the normalised surface area measure
in the case of the sphere). This is a classical measure for the quality of a finite point
distribution approximating a measure, which has been studied intensively in the theory of
uniform distribution (cf. [20, 30]) as well as in the theory of irregularities of distribution
(cf. [2]).

Energy of a point set XN is defined as

(1.2) Es(XN) =
N
∑

i,j=1
i 6=j

‖xi − xj‖−s

for a positive real parameter s. This is a discrete version of the energy integral

(1.3) Is(µ) =

∫∫

M×M

‖x− y‖−s dµ(x) dµ(y).
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The discrete distributions of point sets X∗
N minimising Es,

νN =
1

N

N
∑

n=1

δx∗

n
,

are studied then for N → ∞. The minimisation of such discrete energy expressions is a
problem attributed to Fekete. Minimal energy point sets are thus called Fekete-points.
The case s < dim(M) can be investigated by methods from classical potential theory

(cf. [31]). In this case the unique minimiser µ
(s)
M of Is(µ) is the weak limit of the measures

νN (cf. [31]). For s ≥ dim(M), the situation changes completely. The corresponding energy
integral diverges for all probability measures. Techniques from geometric measure theory

could be applied in [6, 7, 26, 27] to show that the limiting distribution µ
(s)
M of the minimal

energy distributions is the normalised dim(M)-dimensional Hausdorff measure on M , if M
is rectifiable.

2. Generalised energy and uniform distribution on the sphere

Using mutually repelling forces on N particles to distribute them on a surface M is a
rather compelling idea. The motivation for this could be taken from physical experiments,
where electric charges distribute themselves in a way that minimises the sum of the mutual
energies (1.2) for s = dim(M)−1 (cf. [21,38]). The study of the precise distribution of the
charges is the subject of classical potential theory (cf. [31]), which shows that the energy
integral (1.3) has a unique minimiser amongst all Borel probability measures supported
on M ; in the case s = dim(M) − 1 this is the harmonic measure on M . The minimising
measure depends highly on the curvature of the surface and the value of the parameter s,
and thus differs from the surface measure, except for surfaces with high symmetry, like the
sphere. For values of s 6= dim(M)−1 (and dim(M) 6= 2, 3), there is no physical experiment,
which can be used to describe the charge distribution, nevertheless, the intuition and the
result remain the same – there exists a unique equilibrium measure depending on s on M
– if s < dim(M).

In the following we will study the general potential theoretic situation of a strictly
positive definite continuous kernel g : [−1, 1) → R (cf. [31]). Here a function g is called
positive definite, if the energy integral

(2.1) Ig(µ) =

∫∫

Sd×Sd

g(〈x,y〉) dµ(x) dµ(y)≥ 0,

for all signed Borel measures µ on S
d, and Ig(µ) is finite for at least one Borel measure µ.

It is called strictly positive definite, if equality in (2.1) only occurs for the zero measure.
Let g be given by its Laplace expansion (cf. [34])

(2.2) g(t) =
∞
∑

n=0

anZ(d, n)P
(d)
n (t)



POINT SETS OF MINIMAL ENERGY 3

in terms of the Legendre-Gegenbauer polynomials P
(d)
n . These are the orthogonal poly-

nomials with respect to the weight function (1 − t2)
d−2
2 normalised so that P

(d)
n (1) = 1.

Then the requirement of strict positive definiteness is expressed by the strict positivity of
all coefficients an (cf. [41]). Furthermore, Z(d, n) denotes the dimension of the space of
spherical harmonics of degree n on S

d;

Z(d, n) =
2n + d− 1

d− 1

(

n+ d− 2

d− 2

)

.

Assume further that g is integrable,

∀y ∈ S
d :

∫

Sd

g(〈x,y〉) dσd(x) = a0ωd,

where σd denotes the surface measure on S
d and ωd = σd(S

d).
Under the assumptions of continuity on [−1, 1) and integrability, the function g is rep-

resented by (2.2) in the sense of Abel-summability, namely

(2.3) lim
r→1−

∞
∑

n=0

rnanZ(d, n)P
(d)
n (t) = g(t);

this relation holds uniformly on any interval [−1, 1 − ε] for ε > 0 by positivity of the
Poisson-kernel

∞
∑

n=0

rnZ(d, n)P (d)
n (〈x,y〉) = 1− r2

‖x− ry‖d+1
.

Remark 2.1. Notice that the series (2.2) can diverge for certain kernel functions; for
instance, the series diverges for g(t) = (1 − t)−s/2 for d+1

2
< s < d, which corresponds to

the classical Riesz kernels. Thus we had to use a summation method, in order to ensure
convergence. We chose Abel-summation for simplicity. For a comprehensive discussion of
applications of summation methods to Laplace series, we refer to [3].

In general g will have a singularity at t = 1, namely

lim
t→1−

g(t) = +∞,

which also means that the series
∞
∑

n=0

Z(d, n)an

diverges. If g is continuous on [−1, 1], we call g a regular kernel, whereas if it has a
singularity at t = 1 but is still integrable, we call g singular.

For a regular or singular kernel g, the energy integral (2.1) is uniquely minimised by
1
ωd
σd amongst all Borel probability measures on S

d. By our assumptions on g we have for
every probability measure ν

a0 ≤ lim
r→1−

∫∫

Sd×Sd

∞
∑

n=0

rnanZ(d, n)P
(d)
n (〈x,y〉) dν(x) dν(y) =

∫∫

Sd×Sd

g(〈x,y〉) dν(x) dν(y),
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where the second equality follows from the uniform convergence in (2.3). Equality holds,
if and only if

∫∫

Sd×Sd

P (d)
n (〈x,y〉) dν(x) dν(y) = 0

for n ≥ 1, which is equivalent to ν = 1
ωd
σd.

For a finite set XN = {x1, . . . ,xN} ⊂ S
d of N (pairwise distinct!) points we define the

g-energy as

(2.4) Eg(XN) =
∑

i 6=j

g(〈xi,xj〉).

Furthermore, we denote by

Eg(Sd, N) = min
XN

Eg(XN)

the minimal g-energy of an N -point set on the sphere Sd. We denote point sets minimising
the energy by X∗

N (suppressing the dependence on g in this notation). To any point set
XN we associate the measure

νN =
1

N

N
∑

i=1

δxi
.

Theorem 2.1. Let g be a strictly positive definite regular or singular integrable kernel

function, which is continuous on [−1, 1). Let (XN)N be a sequence of point sets on the unit

sphere S
d such that

(2.5) lim
N→∞

1

N2
Eg(XN) =

1

ωd

∫

Sd

g(〈x,y) dσd(x) = a0.

Then the associated measures νN tend weakly to the normalised surface measure 1
ωd
σd. Es-

pecially, the measures associated to a sequence of energy minimising configurations (X∗
N)N

tend to 1
ωd
σd.

Proof. We first notice that Ig(µ) is uniquely minimised amongst all Borel probability mea-
sures by the normalised surface measure 1

ωd
σd. This is an immediate consequence of the

addition theorem for spherical harmonics (cf. [34]) and the fact that every measure on S
d

is characterised by its Fourier coefficients.
We will only give a proof of the theorem for singular g; the case of regular kernels can be

treated in a much simpler way by harmonic analysis. Assume that we have a sequence of
point sets (XN)N such that the associated measures νN weakly tend to a limiting measure
ν. Then we also have

1

N2

∑

i 6=j

δ(xi,xj) ⇀ ν ⊗ ν.
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For M > 0, let gM(t) = min(g(t),M). Then (gM)M is a pointwise monotonically increasing
family of continuous functions; we have

lim
M→∞

lim
N→∞

1

N2

∑

i 6=j

gM(〈xi,xj〉) = lim
M→∞

∫∫

Sd×Sd

gM(〈x,y〉) dν(x) dν(y)

=

∫∫

Sd×Sd

g(〈x,y〉) dν(x) dν(y).

On the other hand, by the monotonicity of (gM)M , we have

lim
N→∞

1

N2

∑

i 6=j

gM(〈xi,xj〉) ≤ lim inf
N→∞

1

N2

∑

i 6=j

g(〈xi,xj〉),

from which we derive
∫∫

Sd×Sd

g(〈x,y〉) dν(x) dν(y) ≤ lim inf
N→∞

1

N2

∑

i 6=j

g(〈xi,xj〉).

Now take a sequence (XN)N satisfying the assumptions of the theorem and assume that
ν is cluster point of the sequence of measures (νN )N ; such a cluster point exists by the
Banach-Alaoglu theorem. Since Ig(ν) = a0 = Ig(

1
ωd
σd) and the fact that the energy integral

(2.1) is uniquely minimised by 1
ωd
σd, we obtain ν = 1

ωd
σd. Since this is the only possible

cluster point and under our assumptions, we have νN ⇀ 1
ωd
σd. Applying this argument to

a sequence (X∗
N)N of energy minimising point sets gives the second assertion. �

We recall an averaging argument from [37], which shows the existence of point sets XN

with Eg(XN) ≤ a0N
2. Let (Di)

N
i=1 be an area regular partition of Sd, namely a collection

of closed subsets of Sd satisfying

(i)
N
⋃

i=1

Di = S
d,

(ii) D◦
i ∩D◦

j = ∅ for 1 ≤ i < j ≤ N,

(iii) σd(Di) =
ωd

N
for 1 ≤ i ≤ N,

(iv) σd(∂Di) = 0 for 1 ≤ i ≤ N.

Then integrating
∑

i 6=j

g(〈xi,xj〉)
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with respect to the product of the measures σ∗
i = N

ωd
σd|Di

(restriction of σd to Di) gives

∫

D1

· · ·
∫

DN

∑

i 6=j

g(〈xi,xj〉) dσ∗
1(x1) · · · dσ∗

N(xN )

= N2Ig

(

1

ωd
σd

)

− N2

ω2
d

N
∑

i=1

∫∫

Di×Di

g(〈x,y〉) dσd(x) dσd(y).

Since the value on the right hand side is smaller than a0N
2, this shows the existence of

point sets with small energy.

Remark 2.2. Notice that Bondarenko, Radchenko, and Viazovska [4] in the course of
proving the existence of well-separated spherical designs of optimal asymptotic growth
order [5] showed the existence of area regular partitions with geodesically convex sets Di

and diameter diam(Di) = O(N−1/d) (the optimal order).

Remark 2.3. Notice that the classical Riesz kernels gs(〈x,y〉) = ‖x− y‖−s for 0 < s < d
satisfy the hypotheses of Theorem 2.1. Thus in the classical potential theoretic situation the
discrete minimising configurations are asymptotically uniformly distributed (see also [31]).
Furthermore, the cases s = 0 with the modified kernel function g0(〈x,y〉) = log 1

‖x−y‖
and

−2 < s < 0 with gs(〈x,y〉) = 2−s − ‖x− y‖−s are covered by this theorem.

Remark 2.4. Discrete energies on the sphere Sd have also been studied for negative values
of s > −2, i.e. positive exponents of the distance (cf. [35,43,44,46]). For the case s ≤ −2,
the kernel has to be modified further, to ensure the positivity of all coefficients in its
Laplace expansion; furthermore, in the case of s = −2k being a negative even integer, the
kernel g−2k(〈x,y〉) = ‖x−y‖2k log 1

‖x−y‖
+pk(〈x,y〉) is used instead, where the function pk

has to be added to ensure positive definiteness; its Laplace series is given in [11]. Without
the logarithmic factor the kernel would be a polynomial in this case.

Remark 2.5. Discrete energies for negative values of s play an important rôle in the study
of numerical integration errors for certain Sobolev spaces H . In this context the energy
can be interpreted as the square of the worst case error of integration on the underlying
function space H

wceH(XN) = sup
f∈H
‖f‖≤1

∣

∣

∣

∣

∣

1

N

N
∑

n=1

f(xn)−
1

ωd

∫

Sd

f(x) dσd(x)

∣

∣

∣

∣

∣

.

It is a general feature of reproducing kernel Hilbert spaces that the square of the worst
case error can be expressed in terms of a generalised discrete energy. This can be seen as a
generalisation of Stolarsky’s invariance principle (cf. [?, 12, 43, 44]), which relates the sum
of distances of the point set XN (this is the case s = −1) to the L2-discrepancy defined in
(4.4) below. In turn the L2-discrepancy and similar energy functionals with regular kernels
can be interpreted as the mean square integration error, if the function space is equipped
with an appropriate Wiener measure (cf. [24]). Furthermore, the relation between the
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worst case integration error in Sobolev spaces and general energy functionals is used in [15]
to define sequences of QMC-designs (XN)N as sequences of point sets achieving optimal
order of magnitude for the integration error.

3. Hyper-singular energies and uniform distribution

For s ≥ dim(M), the situation changes completely. The energy integral (1.3) diverges
for all measures µ. But minimising point configurations of the energy sum (1.2) can still be
studied. By a result of Hardin and Saff [26, 27] from 2004, the energy mimimising points
distribute asymptotically according to the normalised surface measure for a rectifiable
manifold. In the following, Hd will denote the d-dimensional Hausdorff measure, normalised
so that Hd([0, 1]

d) = 1.

Theorem 3.1 (Theorems 2.1 and 2.2 in [27]). Let A ⊂ R
d be a compact set and s > d.

Let

Es(A,N) = min
XN⊂A

Es(XN)

be the minimal s-energy of a point set XN ⊂ A. Then the limit limN→∞ Es(A,N)N−1− s
d

exists and is given by

(3.1) lim
N→∞

1

N1+ s
d

Es(A,N) =
Cd(s)

Hd(A)
s
d

,

where Cd(s) is a positive constant depending only on s and d; the constant occurs as the

limit for the case A = Ud = [0, 1]d,

Cd(s) = lim
N→∞

E(Ud, N)

N1+ s
d

.

Furthermore, if A has positive d-dimensional Hausdorff-measure Hd(A) > 0 and (XN)N
(XN = {x1, . . . ,xN} ⊂ A) is a sequence of point sets with

lim
N→∞

1

N1+ s
d

Es(XN) =
Cd(s)

Hd(A)
s
d

,

then the corresponding measures νN tend weakly to the normalised Hausdorff measure on
A,

(3.2)
1

N

∑

i=1N

δxi
⇀

Hd|A
Hd(A)

.

Remark 3.1. In the case s = d a similar result holds with N1+s/d replaced by N2 logN .
In this case also the constant C ′

d(d) is explicitly known, namely

C ′
d(d) = Hd(Bd) =

π
d
2

Γ
(

d
2
+ 1
) ,

where Bd is the d-dimensional unit ball in R
d.

This result has several interesting features that we shall discuss briefly:
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• the limiting measure is independent of s, which is in obvious contrast to the case s <
d, where the measure depends highly on s (except for manifolds of high symmetry
such as the sphere; this is the reason that we restricted to the sphere in Section 2);

• the limiting measure has a geometrical interpretation (“surface”);
• the proof shows that in contrast to the situation for s < d only local (short range)
interactions contribute to the asymptotic behaviour of Es(XN).

The proof of the existence of the limit

lim
N→∞

1

N1+ s
d

Es(N)

for s > d and the fact that the corresponding distribution measures tend to the normalised
surface area measure, the normalised Hausdorff measure Hd on A, is rather intricate and
technical; we refer the reader to [27]. Furthermore, there is an excellent survey in [26] on
the result, which recollects the proof of the result for the unit cube.

Facts and conjectures about energy. In [9,29,37,39,47,49] the asymptotic behaviour
of the minimal energy of N point configurations on the sphere S

d for all positive values of
the parameter s has been studied. For the case 0 < s < d, it was shown that there exist
positive constants C1, C2 such that

(3.3) Is

(

1

ωd
σd

)

N2 − C1N
1+s/d ≤ Es(Sd, N) ≤ Is

(

1

ωd
σd

)

N2 − C2N
1+s/d.

For s = d, a phase change occurs, namely

Ed(Sd, N) ∼ CN2 logN,

this could be explained by the “collapse” of the two terms in the lower and upper bounds
in (3.3) (1+s/d = 2 in this case). The coincidence of two asymptotic terms often produces
phase change phenomena. The behaviour of the minimal energy for s ≥ d – the hyper-
singular case – was only understood after the work of Hardin and Saff [27] which we stated
as Theorem 3.1. The proof shows the existence of the constant Cd(s), the exact value of
this constant is still conjectural.

For d = 2, the value C2(s) (s > 2) is conjectured to be

C2(s) =

(√
3

2

)s/2

ζA2(s),

where ζA2 denotes the Epstein zeta function,

ζA2(s) =
∑

z∈A2
z6=0

‖z‖−s,

of the hexagonal lattice A2 spanned by the vectors (1, 0) and (1
2
, 1
2

√
3). The conjecture is

supported by the fact that the hexagonal lattice is the solution of the two-dimensional best
packing problem, as well as the fact that this lattice is universally optimal (cf. Section 5)
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among two-dimensional lattices by [33]. Furthermore, it has been conjectured in [14] that
the inequality (3.3) can be sharpened to an asymptotic relation

Es(Sd, N) = Is

(

1

ωd
σd

)

N2 − Cd(s)

Hd(Sd)
s
d

N1+ s
d + o

(

Nmin(2,1+ s
d
)
)

,

valid for s ∈ (−2, 0)∪ (0, d)∪ (d, d+1); the constant Cd(s) for s in this range is conjectured
to be the analytic continuation of Cd(s) for s > d to the complex plane; the value Is(

1
ωd
σd)

has to be interpreted as the analytic continuation of the expression Is(
1
ωd
σd) for s < d to

complex values of s. This was coined “the principle of analytic continuation” in [14]. Notice
that the two first asymptotic terms change their rôle at s = d; for this value of s, Is(

1
ωd
σd)

and Cd(s) have a singularity, which is mirrored by a N2 logN term in the asymptotic
expression. The conjecture includes the value of the constant Cd(s) in terms of the Epstein
zeta function of a lattice minimising the energy (for s ≥ 0, s 6= d). It is supported by the
fact that a corresponding principle holds for d = 1 (cf. [13]). Moreover, for d = 2, 4, 8, 24,
it is conjectured that Cd(s) = |Λd|s/dζΛd

(s), where Λd denotes, respectively, the hexagonal
lattice A2, D4, E8, and the Leech lattice Λ24.

For dimensions d ≥ 3, the situation seems to be much more complicated. In general it
is known that the limit

lim
s→∞

Cd(s)
1/s

exists and is related to the best-packing constant in dimension d.
Of course, not all Voronöı cells of a minimal energy configuration on the sphere S

2

can be hexagonal; there have to be at least 12 pentagons by Euler’s polyhedral formula.
Numerical experiments with large numbers of points show that not only pentagonal cells,
but also structures of pentagons and heptagons occur, which seem to organise themselves
along curves, called “scars” (cf. [1, 8, 26]).

4. Discrepancy estimates

Discrepancy given by (1.1) is an easy to understand concept; D(XN) just measures the
maximal deviation of the discrete distribution from the limiting distribution σ (in statistics
this is called the Kolmogorov-Smirnov statistics). On the other hand, the precise value of
the discrepancy of a point set is rather difficult to compute. Thus discrepancy is usually
estimated rather than computed directly. In the simplest one-dimensional case there are
two classical estimates for discrepancy, namely the Erdős-Turán inequality and LeVeque’s
inequality (cf. [30]). Both inequalities have been generalised to the spherical case and used
for estimating the discrepancy of point sets constructed by the various methods.

The Sd version of the Erdős-Turán inequality has been given independently by the author
[23] and Li and Vaaler [32] and reads as

(4.1) D(XN) ≤
C1(d)

M
+

M
∑

ℓ=1

C2(d)

ℓ

Z(d,ℓ)
∑

m=1

1

N

∣

∣

∣

∣

∣

N
∑

n=1

Yℓ,m(xn)

∣

∣

∣

∣

∣

,
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valid for all positive integer values of M . Here C1(d) and C2(d) denote (explicitly known)
constants, Yℓ,m (m = 1, . . . , Z(d, ℓ)) denote an orthonormal system of real spherical har-
monics of order ℓ, and Z(d, ℓ) denotes the dimension of the space of these spherical har-
monics.

Only recently, a spherical version of the LeVeque inequality was found (cf. [35]):

(4.2) D(XN) ≤ A(d)





∞
∑

ℓ=0

ℓ−(d+1)

Z(d,ℓ)
∑

m=1

(

1

N

N
∑

n=1

Yℓ,m(xn)

)2




1
d+2

with an explicit constant A(d). Both inequalities (4.1) and (4.2) specialise to their classical
versions for d = 1. It is interesting to mention that the LeVeque inequality also has an
opposite version providing a lower bound (cf. [35])

(4.3) D(XN) ≥ B(d)





∞
∑

ℓ=0

ℓ−(d+1)

Z(d,ℓ)
∑

m=1

(

1

N

N
∑

n=1

Yℓ,m(xn)

)2




1
2

with some explicit positive constant B(d). It should also be mentioned that the expression
raised to the d+ 2 power in (4.2) is equivalent to the L2-discrepancy

(4.4)

∫ π

0

∫

Sd

(

1

N

N
∑

n=1

1C(xn,ϕ)(x)−
1

ωd
σd(C(·, ϕ))

)2

sin(ϕ)d−1 dσd(x) dϕ,

where C(x, ϕ) = {y ∈ S
d | 〈x,y〉 ≥ cos(ϕ)} denotes the spherical cap centered at x with

angle ϕ. A similar inequality relating the discrepancy D(XN) to the L2-discrepancy has
been given in [36] in the Euclidean case and in [45] in the general case of a metric space,
which specialises to a similar inequality as (4.2) in the case of the sphere.

Although the limiting distribution of minimal energy point sets X∗
N for s ≥ d on the

sphere has been determined in [27], almost nothing is known about quantitative results.
The only – and very weak – estimate for the discrepancy of minimal energy point sets in
the singular case is due to Damelin and the author [19] and gives

(4.5) D(X∗
N) = O

(
√

log logN

logN

)

for s = d. This estimate is proved by approximating the d-energy by a limiting process
s → d−.

In the harmonic case s = d−1, Götz [22] could prove that minimal energy configurations
X∗

N satisfy

D(X∗
N) ≪ N− 1

d logN,

solving a conjecture of Korevaar (cf. [28]) – up to the logarithmic factor. This improves
the exponent − 1

2d
given by Sjögren [42].
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In [35] the LeVeque type inequality (4.2) for the spherical cap discrepancy was proved
and applied to minimal energy point sets X∗

N for gs with −1 < s < 0. This gives bounds
for the discrepancy

(4.6) D(X∗
N) ≪ N− d−s

d(d+2) .

For s = 0, in [10] the bound

(4.7) D(X∗
N) ≪ N− 1

d+2

had been obtained before.
It should be mentioned that from the theory of irregularities of distribution [2] it is

known that for all sets XN ⊂ S
d the inequality

(4.8) D(XN) ≫ N− 1
2
− 1

2d

holds for the spherical cap discrepancy. Inequality (4.3) together with lower bounds for
the energy from [47] was used to reprove this result in [35]. This indicates the sharpness of
the inequality (4.3) as a lower bound for the discrepancy in terms of sums over spherical
harmonics.

It is also known that inequality (4.8) is best possible up to a factor
√
logN . The existence

of point sets XN with

D(XN) ≪ N− 1
2
− 1

2d

√

logN

uses a probabilistic argument resembling the averaging argument that we used to prove the
existence of point sets of small energy; up to now no explicit construction of such a point
set is known. All the known estimates for the discrepancy of point sets differ from the
lower bound (4.8) by a power of N . The bounds (4.5), (4.6), and (4.7) should be compared
to (4.8).

Remark 4.1. Discrepancy estimates for point sets of minimal energy are known in the
case of −2 < s ≤ 0 (giving sums of positive powers of the distance) from the work of
Wagner [48]. These results have been partly rediscovered and refined in [35]. Estimates for
the discrepancy in terms of g-energy of the point set for singular g satisfying an additional
technical hypothesis have been given in [19]. This gives estimates for the discrepancy of
point sets minimising the Riesz s-energy for −2 < s ≤ d. All these estimates have the
disadvantage that they have been derived via harmonic analysis and that this method has
to use estimates for the Fourier coefficients of certain functions in an unfavourable way;
thus it can be expected that these estimates for the discrepancy of minimal energy point
sets are far away from the correct order of magnitude. Furthermore, nothing is known
about the discrepancy of energy minimising point sets for s > d. This is due to the fact
that harmonic analysis is not applicable in that case.

5. Some remarks on lattices

As was pointed out in the discussion of the local structure of minimal energy point
configurations at the end of Section 3, there seems to be an intricate connection to lattices
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which minimise a corresponding energy functional. Therefore, we add a short description
of the appropriate notions for lattices and the state of knowledge about them.

The optimal density of sphere packings in R
d is a classical question that found new

interest by Hales’s proof of the Kepler conjecture [25]. In [16] new upper bounds for
the density of sphere packings in dimensions 3 < d ≤ 36 could be derived from linear
programming bounds based on Fourier transform. This led to the definition of universally
optimal lattices as those lattices Λ, which minimise

∑

λ∈Λ

e−t‖λ‖2

for all real parameters t > 0 amongst all lattices of covolume 1.
As was pointed out in Section 3 the conjectured local structure of minimal energy point

sets in the case s > dim(M) is related to lattices Λ of covolume 1 which minimise the Riesz
energy

(5.1)
∑

λ∈Λ\{0}

‖λ‖−s

for s > d; this equals the classical Epstein zeta function of the lattice Λ. For recent progress
on minimisation of values of the Epstein zeta function we refer to [40]. By Mellin transform
universally optimal lattices also minimise the Riesz energy (5.1).

The sphere packing problem is naturally related to the study of periodic point sets with
minimal energy. As in the case of spherical codes, one may ask if there exist universally

optimal periodic sets, that is, periodic sets that minimise the energy

(5.2)
∑

λ∈Λ

f(‖λ‖)

for all completely monotonic functions f . Up to now, no such universally optimal periodic
set is known. However, exceptional lattices as the hexagonal lattice A2, the root lattice E8,
and the 24-dimensional Leech lattice Λ24 are conjectured to be examples (see [17]). Some
candidates for universally optimal lattices have been found numerically (cf. [18]), proofs
are still missing.

Acknowledgement. The author is grateful to an anonymous referee for many valuable
remarks, which greatly improved the presentation of the material.
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