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We consider statistical properties of random integer partitions. In order to compute means,

variances and higher moments of various partition statistics, one often has to study

generating functions of the form P (x)F(x), where P (x) is the generating function for the

number of partitions. In this paper, we show how asymptotic expansions can be obtained in

a quasi-automatic way from expansions of F(x) around x = 1, which parallels the classical

singularity analysis of Flajolet and Odlyzko in many ways. Numerous examples from the

literature, as well as some new statistics, are treated via this methodology. In addition, we

show how to compute further terms in the asymptotic expansions of previously studied

partition statistics.
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Figure 1. The Ferrers diagram of the partition 9 + 7 + 5 + 5 + 2 + 1 + 1 + 1 and some partition statistics.

1. Introduction

The aim of this paper is to provide a tool for studying statistical properties of random

integer partitions. Formally, a partition of a positive integer n is a representation as a sum

of positive integers, where the order of summands is not taken into account. This means

that one can assume, without loss of generality, that the summands are in decreasing

order:

n = c1 + c2 + · · · + c�, c1 � c2 � · · · � c�. (1.1)

The numbers c1, c2, . . . are called the parts. For instance, the partitions of 5 are

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

Andrews’ classical book [1] provides an introduction to the rich subject of integer

partitions. Partitions are conveniently represented by means of Ferrers diagrams, such as

in Figure 1, which shows the partition 9 + 7 + 5 + 5 + 2 + 1 + 1 + 1 of 31: each summand

is represented by a row of dots. This figure also exhibits a couple of partition statistics,

which are the main subject of this paper. They capture different structural aspects of an

integer partition.

The study of statistics of random partitions has a long and rich history; the earliest

results actually appear in the physics literature [12], since partition statistics occur

naturally in statistical physics. In the following, we will discuss various different instances

of partition statistics that have been investigated in the literature. The first thing to look at

is usually the mean of a certain parameter, followed by the variance and higher moments,

and – if possible – the limiting distribution.

In the analysis of partition statistics, one often has to study generating functions of the

form P (x)F(x), where

P (x) =

∞∏
j=1

(1 − xj)−1
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is the generating function for the number of partitions. In this paper, we develop a general

asymptotic scheme that allows us to derive an asymptotic formula for the nth coefficient

of P (x)F(x) from the behaviour of F(x) as x → 1 in an almost automatic fashion. This

scheme is then applied to a variety of examples of partition statistics: we re-prove (and

extend) known results and also treat some new examples.

It is well known that p(n) = [xn]P (x) essentially behaves like

1

4
√

3n
exp

(
π
√

2n/3
)
,

which is made much more precise by Rademacher’s celebrated formula

p(n) =
1

π
√

2

∞∑
k=1

Ak(n)
√
k
d

dn

sinh
(

π
k

√
2
3

(
n − 1

24

))
√

n − 1/24
, (1.2)

a sum formula that is both exact and asymptotic (in the sense that the asymptotic

order of the summands is decreasing). The coefficients Ak(n) can be expressed in terms

of Dedekind sums. See Rademacher’s original book [18] or Apostol’s book [2] for an

excellent exposition. This result depends heavily on a functional equation for P (x), a

special case of which is given by

P (e−t) =

√
t

2π
exp

(
π2

6t
− t

24

)
P (e−4π2/t). (1.3)

We will make frequent use of this functional equation throughout the paper. Let us now

consider a few examples that lead to generating functions of the form P (x)F(x).

1.1. The length of a partition

The length (number of parts) of a partition has bivariate generating function

∞∏
j=1

(1 − uxj)−1,

where the exponent of u marks the length [8, p. 171, Example III.7]. Differentiating with

respect to u and setting u = 1, we obtain the generating function

∞∏
j=1

(1 − xj)−1 ·
∞∑
j=1

xj

1 − xj

for the total length, summed over all partitions. The coefficient of xn, divided by the

number p(n) of partitions of n, yields the average length of a random partition of n.

This was used by Husimi [12] and Kessler and Livingston [14] to obtain rather precise

asymptotics for the average length: it is given by
√

6n

2π
·
(
log n + 2γ − log(π2/6)

)
+ O(log n). (1.4)

Husimi actually gives two more terms, for an error term of O(n−1/2). In Section 4, we

will use our results to compute arbitrarily many terms of such an expansion. Higher

moments were studied by Richmond in [20]. The length asymptotically follows a Gumbel
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distribution, as was shown by Erdős and Lehner [5]. It is well known that the largest part

follows the same distribution (as can be seen by conjugation of the Ferrers diagram), and

so its mean is the same as well. These two parameters are asymptotically independent, as

shown by Szekeres [22].

1.2. Number of distinct parts

The number of distinct parts is known to follow a normal distribution in the limit, as

proved by Goh and Schmutz [9], with mean asymptotically equal to
√

6n/π. If we are

interested in an asymptotic expansion for the mean, we again have to consider a bivariate

generating function:

∞∏
j=1

(
1 +

uxj

1 − xj

)

(see [8, p. 169, Note III.7]). Differentiating and setting u = 1 yields

∞∏
j=1

(1 − xj)−1 · x

1 − x
,

which is of the form P (x)F(x) as well. A generalization of this parameter, namely the

sum of the mth powers of all distinct parts, was studied by Hwang and Yeh [13]. The

associated generating function is

∞∏
j=1

(1 − xj)−1 ·
∞∑
j=1

jmxj ,

which also belongs to our scheme.

1.3. Moments of a partition

For a partition (c1, c2, . . . , c�) of an integer n, consider the kth moment

�∑
j=1

ckj .

The case k = 0 clearly corresponds to the length, while the above sum is always equal to

n for k = 1 by definition. As before, differentiating the bivariate generating function

∞∏
j=1

(1 − uj
k

xj)−1

with respect to u and setting u = 1 yields

∞∏
j=1

(1 − xj)−1 ·
∞∑
j=1

jkxj

1 − xj
,

see [11, Theorem 6.6]. [11, Corollary 6.5] gives an interesting connection to so-called hook

lengths; see also [24] for an occurrence of the special case k = 2 in graph theory.
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1.4. Number of parts of a given size

The bivariate generating function for the number of parts of size d (in terms of (1.1), the

number of parts cj that are equal to d) is given by

1 − xd

1 − uxd
·

∞∏
j=1

(1 − xj)−1,

so we have to study

xd

1 − xd
·

∞∏
j=1

(1 − xj)−1

for the average number of occurrences of the number d among the parts of a random

partition of n. Note that in the case d = 1, this coincides with the aforementioned

generating function for the number of distinct parts, which is known as Stanley’s theorem

[21, p. 48, Exercise 1.26].

1.5. Number of parts with given multiplicity

The multiplicity of a positive integer d is the number of times it occurs as a summand cj
in a partition (c1, c2, . . .) as in (1.1). If u marks all parts that occur with some prescribed

multiplicity d, we obtain the bivariate generating function

∞∏
j=1

(
1

1 − xj
+ (u − 1)xdj

)

(see [4, Theorem 1]), so that the generating function for the total number of parts of

multiplicity d is given by

∞∏
j=1

(1 − xj)−1 ·
∞∑
k=1

xdk(1 − xk) =

∞∏
j=1

(1 − xj)−1 · (1 − x)xd

(1 − xd)(1 − xd+1)
.

The asymptotic behaviour of the mean was found by Corteel, Pittel, Savage and Wilf

[4]: the average number of parts of multiplicity d is asymptotically
√

6n/(πd(d + 1)). The

limiting distribution is Gaussian for fixed d: see [19]. In Section 4, we will show how to

determine a further asymptotic expansion for the mean. It is also worth mentioning that

the number of parts of multiplicity d almost exactly follows the same distribution as the

number of d-successions (i.e., occurrences of two subsequent parts whose difference is d),

which can be seen by conjugation of the Ferrers diagram. Successions in partitions were

investigated in another recent paper [15]. Another related parameter that also falls under

our scheme is the number of ascents of size d or more, which was studied in [3]. A special

case is the number of gaps (ascents of size 2 or more); see [16].
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1.6. Largest repeated part

It was shown in [10, equation (6.4)] that the generating function for the sum of the largest

repeated part sizes over all partitions of n is given by

∞∏
j=1

(1 − xj)−1 ·
∞∑
j=1

x2j

1 − x2j
,

and this can easily be generalized to yield the generating function for the sum of the

largest part sizes that are repeated at least d times (if no such part exists, it is defined to

be 0):

∞∏
j=1

(1 − xj)−1 ·
∞∑
j=1

xdj

1 − xdj
.

Note that d = 1 corresponds to the maximum of the parts in a partition. Results on the

limiting distributions of the largest repeated part and related parameters can be found in

[26].

1.7. Longest run

The longest run (maximum multiplicity, i.e., the greatest number of times a part gets

repeated in a partition) was shown to follow a rather unusual limit law in [17]; see also

[25], where the mean of the longest run was found to be asymptotically equal to(
4
√

2 − 6
√

6

π

)√
n.

In Section 4 we will considerably improve on this. Since the generating function for the

number of partitions whose longest run is < k (k a positive integer) is easily found to be

[1, p. 3, Theorem 1.1]

∞∏
j=1

1 − xjk

1 − xj
= P (x)P (xk)−1,

we have to study the generating function

P (x) ·
∞∑
k=1

k
(
P (xk+1)−1 − P (xk)−1

)
= P (x) ·

∞∑
k=1

(
1 − P (xk)−1

)
,

or, more generally for the mth moment,

P (x) ·
∞∑
k=1

(km − (k − 1)m)
(
1 − P (xk)−1

)
.

A related question concerns the probability that a certain integer k is one of the parts of

largest multiplicity. The generating function for the number of partitions for which this

is the case is

∞∑
�=1

xk�(1 − xk)

1 − xk(�+1)
·

∞∏
j=1

1 − x(�+1)j

1 − xj
= P (x) ·

∞∑
�=1

xk�(1 − xk)

(1 − xk(�+1))P (x�+1)
,
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which is once again of the form P (x)F(x). In a similar manner, we obtain the following

generating function for the number of partitions with the property that all parts have

strictly smaller multiplicity than k:

∞∑
�=1

xk�(1 − xk)

1 − xk�
·

∞∏
j=1

1 − x�j

1 − xj
= P (x) ·

∞∑
�=1

xk�(1 − xk)

(1 − xk�)P (x�)
.

There are two main approaches to determining the asymptotic behaviour of the

coefficients of generating functions of the form P (x)F(x). The first is to write

[xn]P (x)F(x) =

n∑
k=0

p(k)[xn−k]F(x)

and to use Rademacher’s formula (1.2) to approximate p(k) in this sum, so that it can

be determined by means of the Euler–Maclaurin formula or other techniques (see for

instance [3] or [4]). The second possibility is to work directly with the generating function

and to apply Cauchy’s integral formula (as for instance in [13] or [14]) in combination

with the saddle point method. We will adopt this approach here as well, but we also

add some other ingredients: in particular, the functional equation of P (x) allows us to

transform some of the arising integrals to Bessel functions in the (common) situation that

F(e−t) has an asymptotic expansion into powers of t as t → 0+. This has several benefits.

• The asymptotic behaviour of the coefficients of P (x)F(x) and even asymptotic

expansions can be determined completely automatically (to the extent that the method

can be implemented in a computer algebra system) from the behaviour of F(x)

around x = 1. Knowing further terms in an asymptotic expansion is often desirable,

since cancellations frequently occur in higher moments, in particular the variance.

• For certain statistics (for example the longest run, see Section 4), one can obtain the

asymptotic behaviour of all moments directly from our theorems and thus also the

limiting distribution.

• In some situations (see the discussion of moments of partitions and longest runs in

partitions in Section 4), very strong error estimates (superpolynomial decay) can be

obtained, which lead to excellent approximations of the exact quantities.

The following section gives a more detailed description of our results.

2. A general asymptotic scheme

Let us now develop the general scheme that allows us to obtain asymptotic expansions for

the coefficients of a generating function of the form P (x)F(x). It is based on the classical

saddle point method. The technical conditions we impose on F(x) for this purpose are

rather mild. First of all, we express the coefficient of xn by means of Cauchy’s integral

formula,

[xn]P (x)F(x) =
1

2πi

∮
C
z−n−1P (z)F(z) dz (2.1)

for a closed curve C around 0 inside the unit circle. If we take C to be the circle of

radius e−r around 0, where the choice of r will be specified later and is determined by the
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position of the saddle point, the change of variable z = e−r+iu yields

1

2πi

∮
C
z−n−1P (z)F(z) dz =

1

2π

∫ π

−π

ern−inuP (e−r+iu)F(e−r+iu) du. (2.2)

As usual in applications of the saddle point method, only the central part of the integral

is relevant, while the rest only contributes a very small error term. Therefore, the main

asymptotic information can be determined from the behaviour as z goes to 1. Essentially,

1

p(n)
· [xn]P (x)F(x)

is given by the value of F(z) at the saddle point z = e−π/
√

6n: see Theorem 2.2 below. For

this purpose, it is necessary that F(z) does not grow too quickly as |z| → 1. Specifically,

we assume that

|F(z)| � eC/(1−|z|)η as |z| → 1 for some C > 0 and η < 1. (2.3)

Remark 1. It will be convenient for us throughout this paper to use the Vinogradov

notation f(z) � g(z) interchangeably with f(z) = O(g(z)).

A simple sufficient condition for (2.3) to hold (that will actually be satisfied in all our

examples) is that the coefficients of F(z) grow at most polynomially.

Our main results parallel the classical Flajolet–Odlyzko singularity analysis [7] in many

ways. We first prove a O-result (see [8, p. 390, Theorem VI.3]), mostly as an auxiliary tool,

that reads as follows.

Theorem 2.1. Suppose that the function F(z) satisfies (2.3) and F(e−t) = O(f(|t|)) as t → 0,

Re t > 0. Then we have

1

p(n)
[xn]P (x)F(x) = O

(
exp

(
−n1/2−ε

)
+ f

(
π√
6n

+ O
(
n−1/2−ε

)))

for any fixed 0 < ε < (1 − η)/2 as n → ∞.

With just a little further technical assumption, we get an asymptotic formula with a

o(1) error term, which is useful if we are only interested in first-order asymptotics (for an

example, see the discussion of the position of the longest run at the end of this paper).

Theorem 2.2. Suppose that the function F(z) satisfies (2.3) and that

F(e−t+iu)

F(e−t)
→ 1

if |u| � At1+ε for some A > 0 and for some ε < (1 − η)/2, uniformly in u as t → 0+. Then

we have

1

p(n)
[xn]P (x)F(x) = F

(
e−π/

√
6n

)(
1 + o(1)

)
+ O

(
exp

(
−Bn1/2−ε

))
as n → ∞ for some B > 0.
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Remark 2. The required technical condition on F avoids pathological examples (e.g.,

zeros of F(z) accumulating as z → 1). It is easy to check them for all the examples

described in the Introduction. A sufficient condition is that∣∣∣∣ t1+ε0F ′(e−t)

F(e−t)

∣∣∣∣
remains bounded as t → 0 (Re t > 0) for some ε0 < ε.

In many cases, however, much more is known than in those two theorems, i.e., we know

the asymptotic behaviour of the function F at z = 1 very precisely. Indeed, as will be

shown in Section 4, we often have an asymptotic expansion for F(e−t) into powers of t (and

possibly logarithms) around t = 0. In this case, we can be much more precise by relating

the central part of the saddle point integral (2.2) to classical integral representations of

Bessel functions. The final result is stated in the following theorem.

Theorem 2.3. Suppose that the function F(z) satisfies (2.3) and F(e−t) = atb + O(f(|t|)) as

t → 0, Re t > 0, for real numbers a, b. Then we have

1

p(n)
[xn]P (x)F(x) = a

(
2π√

24n − 1

)b

·
I|b+3/2|

(√
2π2

3

(
n − 1

24

))
I3/2

(√
2π2

3

(
n − 1

24

))
+ O

(
exp

(
−n1/2−ε

)
+ f

(
π√
6n

+ O
(
n−1/2−ε

)))

as n → ∞ for any 0 < ε < (1 − η)/2, where Iν denotes a modified Bessel function of the

first kind. Similarly, if F(z) satisfies (2.3) and

F(e−t) = atb log
1

t
+ O(f(|t|)) as t → 0,

then

1

p(n)
[xn]P (x)F(x) = a

(
2π√

24n − 1

)b

·
(

log

(√
24n − 1

2π

)I|b+3/2|

(√
2π2

3

(
n − 1

24

))
I3/2

(√
2π2

3

(
n − 1

24

))

+

2K∑
k=1

1

k

k∑
j=0

(−1)j
(
k

j

)I|b+j+3/2|

(√
2π2

3

(
n − 1

24

))
I3/2

(√
2π2

3

(
n − 1

24

))
)

+ O

(
n−(b+K+1)/2 + f

(
π√
6n

+ O
(
n−1/2−ε

)))

for any non-negative integer K .

Remark 3. Of course, this theorem generalizes to asymptotic expansions of the form

F(e−t) =

J∑
j=1

ajt
bj + O(f(|t|)),

or even to mixed expansions involving logarithms.
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The absolute value in the index of the Bessel function can actually be dropped, since the

difference Iν(z) − I−ν(z) decreases exponentially as z → ∞. Note further that the modified

Bessel function I|b+3/2| can be written in terms of elementary functions for integer values

of b (see [27, Section 6.22]). For non-negative integer h, we have

Ih+1/2(z) =
1√
2πz

h∑
j=0

(
− 1

2z

)j

· (h + j)!

j!(h − j)!
(ez − (−1)h−je−z),

to the effect that the quotient simplifies, with h = |b + 3/2| − 1/2 and

m =

√
2π2

3

(
n − 1

24

)
,

to

I|b+3/2|

(√
2π2

3

(
n − 1

24

))
I3/2

(√
2π2

3

(
n − 1

24

)) =
m

m − 1
·

h∑
j=0

(h + j)!

j!(h − j)!

(
− 1

2m

)j

+ O(e−2m).

For non-integer values of b, this is at least asymptotically correct, in the sense that

I|b+3/2|

(√
2π2

3

(
n − 1

24

))
I3/2

(√
2π2

3

(
n − 1

24

)) =
m

m − 1
·

J∑
j=0

(
h + j

2j

)
(2j)!

j!

(
− 1

2m

)j

+ O(m−J−1)

for any fixed J , with the same abbreviations as above. This also shows that in the sum

k∑
j=0

(−1)j
(
k

j

)
I|b+j+3/2|(m)

I3/2(m)
,

the power m−� in the asymptotic expansion vanishes for � � �(k − 1)/2	, since its

coefficient is a polynomial of order 2�, and the alternating sum above amounts to

taking kth differences. Therefore, this sum is of asymptotic order m−�(k+1)/2	.

Equipped with these theorems, one can now analyse the asymptotic behaviour of many

partition statistics following a fixed algorithm.

• Determine the generating function for the mean (higher moments, . . . ) and write it in

the form P (x)F(x).

• Make sure that F(x) satisfies the technical conditions (trivial in most cases).

• Theorem 2.2 readily gives the main term, which may already be sufficient.

• If further terms are desired (e.g., because one would like to obtain higher accuracy

approximations, or because cancellations occur), determine an expansion of F(e−t)

into powers of t (and possibly logarithmic terms) if possible.

• Apply Theorem 2.3. Use the asymptotic expansions of the Bessel functions to obtain

asymptotic formulae in terms of powers of n. Those last steps are fully automatic and

can be performed by a computer algebra system.

This process will be illustrated in Section 4 by means of various examples.
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3. Proofs of the main results

For the proofs we need the following technical lemma. Similar estimates are frequently

used in the theory of partitions; see for instance [17].

Lemma 3.1. Uniformly as |u| � π, we have

|P (e−r+iu)|
P (e−r)

� exp

(
− u2

r(u2 + (πr/2)2))
+ O(r)

)

as r → 0+.

Proof. The proof essentially follows the ideas of [17]. First we get

|P (e−r+iu)| =

∣∣∣∣exp
(

−
∞∑
j=1

log(1 − e−jr+iju)

)∣∣∣∣ =

∣∣∣∣exp
( ∞∑

j=1

∞∑
k=1

1

k
e−jkr+ijku

)∣∣∣∣
= exp

( ∞∑
j=1

∞∑
k=1

1

k
e−jkr cos(jku)

)

= P (e−r) exp

(
−

∞∑
j=1

∞∑
k=1

1

k
e−jkr(1 − cos(jku))

)

� P (e−r) exp

(
−

∞∑
j=1

e−jr(1 − cos(ju))

)

= P (e−r) exp

(
−1

2

∞∑
j=1

(2e−jr − e−j(r+iu) − e−j(r−iu))

)

= P (e−r) exp

(
− 1

er − 1
+

1

2(er+iu − 1)
+

1

2(er−iu − 1)

)

= P (e−r) exp

(
− coth

(
r

2

)
· 1 − cos u

2(cosh r − cos u)

)

after a few simplifications. Now, making use of the inequality 1 − cos u � 2(u/π)2, the

exponent can be estimated below by

coth

(
r

2

)
· 1 − cos u

2(cosh r − cos u)
=

1

2
coth

(
r

2

)
·
(

1 +
cosh r − 1

1 − cos u

)−1

� 1

2
coth

(
r

2

)
·
(

1 +
cosh r − 1

2u2/π2

)−1

=

(
1

r
+ O(r)

)
· 2u2(2u2 + π2r2/2 + O(r4))−1

=
u2

r(u2 + π2r2/4)
(1 + O(r2))

=
u2

r(u2 + π2r2/4)
+ O(r).

This completes the proof of our lemma.
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Proof of Theorem 2.1. We start with the integral representation (2.2), where we choose r

to be the saddle point r = π/
√

6n. Now choose ε < (1 − η)/2 and split the integral into a

central part for which |u| � 2r1+ε and the rest. For sufficiently large n and 2r1+ε � |u| � π,

we have

u2

r(u2 + π2r2/4)
=

1

r(1 + π2r2/(4u2))
� 1

r(1 + π2r−2ε/16)
� 3

2
r2ε−1,

and thus, by Lemma 3.1 and the assumptions on F ,∣∣∣∣ 1

2π

∫
2r1+ε�|u|�π

ern−inuP (e−r+iu)F(e−r+iu) du

∣∣∣∣
� sup

2r1+ε�|u|�π

|ern−inuP (e−r+iu)F(e−r+iu)|

� ernP (e−r) exp

(
−3

2
r2ε−1 + C(1 − e−r)−η + O(r)

)

= ernP (e−r) exp

(
−3

2

(
π√
6n

)2ε−1

+ O(nη/2)

)
.

The functional equation (1.3) shows that

enrP (e−r) =

√
r

2π
exp

(
nr +

π2

6r
− r

24

)
P (e−4π2/r) � n3/4p(n),

so that finally ∣∣∣∣ 1

2π

∫
2r1+ε�|u|�π

ern−inuP (e−r+iu)F(e−r+iu) du

∣∣∣∣
� p(n) exp

(
−3

2

(
π√
6n

)2ε−1

+ O(nη/2)

)
� p(n) exp(−n1/2−ε).

Hence it suffices to consider the remaining part of the integral. Since |r − iu| = r + O(r1+2ε)

for |u| � 2r1+ε by an easy calculation, we have

|F(e−r+iu)| � f(|r − iu|) = f
(
r + O(r1+2ε)

)
= f

(
π√
6n

+ O(n−1/2−ε)

)

within this interval. Hence it suffices to show that∫
|u|�2r1+ε

|ern−inuP (e−r+iu)| du � p(n).

To this end, note that by (1.3),

|ern−inuP (e−r+iu)| = ern

√
|r − iu|

2π
exp

(
Re

(
π2

6(r − iu)
− r − iu

24

))
|P (e−4π2/(r−iu))|

� ern
√
r exp

(
π2r

6(r2 + u2)

)
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= ern
√
r exp

(
π2

6r
− π2u2

6r(r2 + u2)

)

� ern
√
r exp

(
π2

6r
− π2u2

30r3

)

for |u| � 2r1+ε, so that∫
|u|�2r1+ε

|ern−inuP (e−r+iu)| du �
√
r exp

(
rn +

π2

6r

)∫
|u|�2r1+ε

exp

(
−π2u2

30r3

)
du

� n−1/4 exp

(
π

√
2n

3

)∫ ∞

−∞
exp

(
−π2u2

30r3

)
du

= n−1/4 exp

(
π

√
2n

3

)√
30r3

π

� n−1 exp

(
π

√
2n

3

)
� p(n),

which completes the proof.

Proof of Theorem 2.2. The proof proceeds in the same way as the previous one. We

split the integral (2.2) into the part for which |u| � Ar1+ε and the remaining two intervals.

The latter only contribute an error term of the form O
(
exp(−Bn1/2−ε)

)
, and the remaining

part of the integral is given by

1

2π

∫
|u|�Ar1+ε

ern−inuP (e−r+iu)F(e−r+iu) du

= F(e−r)
1

2π

∫
|u|�Ar1+ε

ern−inuP (e−r+iu) du

+ o

(
|F(e−r)|

∫
|u|�Ar1+ε

|ern−inuP (e−r+iu)| du
)

= F(e−r)p(n)(1 + o(1)) + o
(
|F(e−r)|p(n)

)
by the same estimates as before.

Proof of Theorem 2.3. Recall the integral representation

[xn]P (x)F(x) =
1

2πi

∮
C
z−n−1P (z)F(z) dz,

where we take C to be the circle of radius e−r around 0. The change of variable z = e−t

yields

[xn]P (x)F(x) =
1

2πi

∫ r+iπ

r−iπ

entP (e−t)F(e−t) dt.

In view of Theorem 2.1 (and its proof), we may now restrict ourselves to the part of the

integral where | Im t| � 2r1+ε, and replace F(e−t) by atb there. We are left with an integral
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of the form

a

2πi

∫ r+2ir1+ε

r−2ir1+ε

entP (e−t)tb dt.

Now we make use of the functional equation (1.3) once again to obtain

a√
2π

· 1

2πi

∫ r+2ir1+ε

r−2ir1+ε

tb+1/2 exp

((
n − 1

24

)
t +

π2

6t

)
P (e−4π2/t) dt.

Since P (z) = 1 + O(z) as z → 0, we can replace the factor P (e−4π2/t) by 1 at the expense

of an error term of order

exp
(
−4π2/r + O(r−1+ε)

)
,

which is negligible. Hence we are left with an integral over an elementary function.

Depending on b, we have to distinguish three cases:

• If b < −3/2, then we complete the integral to obtain

1

2πi

∫ r+i∞

r−i∞
tb+1/2 exp

((
n − 1

24

)
t +

π2

6t

)
dt,

which, after the change of variables (n − 1/24)t = u, yields(
n − 1

24

)−b−3/2

· 1

2πi

∫ L+i∞

L−i∞
ub+1/2 exp

(
u +

π2(n − 1/24)

6u

)
du

for L = (n − 1/24)r. This is a well-known integral representation for the modified

Bessel function I−b−3/2 (see [27]), so we finally get

1

2πi

∫ r+i∞

r−i∞
tb+1/2 exp

((
n − 1

24

)
t +

π2

6t

)
dt

=

(
4π2

24n − 1

)b/2+3/4

I−b−3/2

(√
2π2

3

(
n − 1

24

))
.

It remains to show that the parts of the integral that were added only contribute to

the error term. Consider the integral

I =

∫ r+i∞

r+2ir1+ε

tb+1/2 exp

((
n − 1

24

)
t +

π2

6t

)
dt,

which we estimate as follows:

|I| �
∫ r+i∞

r+2ir1+ε

∣∣∣∣tb+1/2 exp

((
n − 1

24

)
t +

π2

6t

)∣∣∣∣ dt
=

∫ r+i∞

r+2ir1+ε

|t|b+1/2 exp

((
n − 1

24

)
r + Re

(
π2

6t

))
dt

� exp

((
n − 1

24

)
r

)∫ ∞

2r1+ε

ub+1/2 exp

(
Re

(
π2

6(r + iu)

))
du

= exp

((
n − 1

24

)
r

)∫ ∞

2r1+ε

ub+1/2 exp

(
π2r

6(r2 + u2)

)
du
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= exp

((
n − 1

24

)
r +

π2

6r

)∫ ∞

2r1+ε

ub+1/2 exp

(
− π2u2

6r(r2 + u2)

)
du

� exp

((
n − 1

24

)
r +

π2

6r
− 2π2r2+2ε

3r(r2 + 4r2+2ε)

)∫ ∞

2r1+ε

ub+1/2 du

= exp

((
n − 1

24

)
r +

π2

6r
− 2π2

3
r2ε−1 + O

(
r4ε−1 + log(1/r)

))
� p(n) exp(−n1/2−ε),

completing the proof in this case.

• For b = −3/2, we have to be slightly more careful in the estimation of the integral,

but otherwise the proof remains the same. We have to consider

I =

∫ r+i∞

r+2ir1+ε

1

t
exp

((
n − 1

24

)
t +

π2

6t

)
dt,

which we split into two integrals I1 and I2, corresponding to Im t � 1 and Im t � 1

respectively. For I1, the same argument as above yields

|I1| � exp

((
n − 1

24

)
r +

π2

6r
− 2π2r2+2ε

6r(r2 + 4r2+2ε)

)∫ 1

2r1+ε

1

u
du

� p(n) exp(−n1/2−ε),

while I2 can be estimated as follows:

I2 =

∫ ∞

1

(r + iu)−1 exp

((
n − 1

24

)
(r + iu) +

π2

6(r + iu)

)
du

= exp

((
n − 1

24

)
r

)∫ ∞

1

(r + iu)−1 exp

((
n − 1

24

)
iu +

π2

6(r + iu)

)
du

= exp

((
n − 1

24

)
r

)(∫ ∞

1

(iu)−1 exp

((
n − 1

24

)
iu

)
du + O

(∫ ∞

1

u−2 du

))

= exp

((
n − 1

24

)
r

)
· O(1)

� np(n) exp

(
−

√
π2n

6

)
.

• For b > −3/2, the same method would lead to non-convergent integrals, so we have

to use another change of variables first. In the integral

1

2πi

∫ r+iR

r−iR

tb+1/2 exp

((
n − 1

24

)
t +

π2

6t

)
dt,

where R = 2r1+ε, set π2/6t = w to get(
π2

6

)b+3/2

· 1

2πi

∫ s+iS

s−iS

w−b−5/2 exp

(
w +

π2(n − 1/24)

6w

)
dw,

where

s =
π2r

6(r2 + R2)
and S =

π2R

6(r2 + R2)
.
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Now we complete the integral as in the first two cases (note that the exponent −b − 5/2

is less than −1, so the same steps can be applied) to obtain(
4π2

24n − 1

)b/2+3/4

Ib+3/2

(√
2π2

3

(
n − 1

24

))

plus an error term of the desired order. Note in particular that we obtain the first term

of Rademacher’s series (1.2) in the special case b = 0. Dividing by p(n), we finally end

up with the stated formula.

The second part of the theorem can be reduced to the first part quite easily. We now

have to consider the integral

1

2πi

∫ r+2ir1+ε

r−2ir1+ε

tb+1/2 log
1

t
exp

((
n − 1

24

)
t +

π2

6t

)
dt.

For our purposes, it is convenient to take r = 2π/
√

24n − 1 here rather than r = π/
√

6n,

which is only a minor modification and does not alter the rest of the argument. Now

write

log
1

t
= log

1

r
− log

(
1 −

(
1 − t

r

))
= log

1

r
+

L∑
k=1

1

k

(
1 − t

r

)k

+ O(rε(L+1))

= log
1

r
+

L∑
k=1

1

k

k∑
j=0

(−1)j
(
k

j

)
tj

rj
+ O(rε(L+1)).

Noting that the error term can be made arbitrarily small by expanding sufficiently far,

we can now apply the first part of the theorem to each of the resulting summands, which

completes the proof.

4. Examples

To demonstrate the power of our results, we now look at different examples of interesting

partition statistics and apply our general scheme. The order differs slightly from the order

in the Introduction (where the simplest statistics from a combinatorial point of view came

first), since we start with the analytically simplest examples. Let us first consider some

instances in which the asymptotic expansion of F(e−t) can be obtained directly.

4.1. Number of distinct parts

Of all the examples presented in the Introduction, this one is probably the simplest. We

obtain the following result.

Proposition 4.1. The average number of distinct parts (which equals the average number of

ones) in a random partition of n is
√

6n

π
+

6 − π2

2π2
+

2π4 − 3π2 + 216

24π3
√

6n
+

54 − π4

12π4n
+ O(n−3/2).
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Proof. As explained in the Introduction, the function F is in this case

F(e−t) =
e−t

1 − e−t
=

1

et − 1
=

1

t
− 1

2
+

t

12
+ O(t3).

By Theorem 2.3, this directly translates to the following formula for the average number

of distinct parts in a random partition of n:

√
24n − 1

2π

I1/2

(√
2π2

3

(
n − 1

24

))
I3/2

(√
2π2

3

(
n − 1

24

)) − 1

2
+

1

12

2π√
24n − 1

I5/2

(√
2π2

3

(
n − 1

24

))
I3/2

(√
2π2

3

(
n − 1

24

)) + O(n−3/2),

Making use of the asymptotic expansions for Bessel functions mentioned in Remark 3,

this can be further simplified to
√

24n − 1

2π

m

m − 1
− 1

2
+

π

6
√

24n − 1

m

m − 1

(
1 − 3

m
+

3

m2

)
+ O(n−3/2),

with

m =

√
2π2

3

(
n − 1

24

)
.

Finally, one can turn this into an asymptotic expansion in powers of n (which is best done

by means of computer algebra) to obtain the final result.

Remark 4. Of course, it is possible to determine arbitrarily many terms of the asymptotic

expansion in this and later examples.

4.2. Number of parts of a given size

This is only a slight generalization of the previous example. The expansion of F(e−t)

around t = 0 is given by

F(e−t) =
e−dt

1 − e−dt
=

1

edt − 1
=

1

dt
− 1

2
+

dt

12
+ O(t3),

to the effect that we get the following result.

Proposition 4.2. The average number of parts of size d in a random partition of n is
√

6n

πd
+

6 − π2d

2π2d
+

2π4d2 − 3π2 + 216

24π3d
√

6n
+

54 − π4d2

12π4dn
+ O(n−3/2).

4.3. Number of parts with given multiplicity

This is our last example in which the asymptotic expansion of F(e−t) can be determined

in such a direct way, since F(x) is a simple rational function as shown in the Introduction.

As was also mentioned there, the main term of the mean has already been determined

in [4, 15]. For the sake of the example, we also include an asymptotic formula for the

variance, which shows the typical cancellation in the main term.
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Proposition 4.3. The average number of parts of multiplicity d in a random partition of n

is
√

6n

πd(d + 1)
+

3

π2d(d + 1)
+

2π4d(d + 1) − 3π2 + 216

24π3d(d + 1)
√

6n
+

54 + π4d(d + 1)

12π4d(d + 1)n
+ O(n−3/2),

and the variance of this parameter is given by

(4π2d3 + 5π2d2 + π2d − 12d − 6)
√

6n

2π3d2(d + 1)2(2d + 1)

+
3(4π2d3 + 5π2d2 + π2d − 24d − 12)

2π4d2(d + 1)2(2d + 1)
+ O(n−1/2).

Proof. This is again based on Theorem 2.3, making use of the expansion

F(e−t) =
(1 − e−t)e−dt

(1 − e−dt)(1 − e−(d+1)t)
=

1

edt − 1
− 1

e(d+1)t − 1
=

1

d(d + 1)t
− t

2
+ O(t3).

The variance is treated by the same technique.

4.4. Largest part, largest repeated part

Quite frequently, the Mellin transform comes to our aid in the computation of asymptotic

expansions. As our first example, let us study the sum

∞∑
j=1

e−jt

1 − e−jt
=

∞∑
j=1

1

ejt − 1
,

which is needed in the analysis of the statistics ‘largest part’ (equivalently also the

length) and ‘largest repeated part’; see the discussion of the generating functions in the

Introduction. The Mellin transform of this function is easily found to be ζ(s)2Γ(s), which

has poles at 1, 0 and all negative odd integers. By means of a standard technique involving

the Mellin inversion formula (see [6] for details), the behaviour at these poles can be

translated to an asymptotic expansion around t = 0:

∞∑
j=1

1

ejt − 1
=

log(1/t) + γ

t
+

1

4
− t

144
+ O(t3).

Now application of Theorem 2.3 immediately yields an asymptotic expansion for the

mean of the largest part that is repeated at least d times.

Proposition 4.4. The largest part in a random partition of n that is repeated at least d

times is on average equal to
√

6n

2πd

(
log n + 2γ − log

(
π2d2

6

))

+
3

2π2d
log n +

1

4
+

3(1 + 2γ − log(π2d2/6))

2π2d
+ O

(
log n

n

)
.
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The result of Husimi [12] and Kessler and Livingston [14] that was mentioned in the

Introduction is included as a special case (d = 1). For d = 2, the formula agrees with the

asymptotic expansion found in [10].

4.5. Moments of a partition

This example shows an interesting phenomenon: we obtain an asymptotic expansion of

F(e−t) with a particularly strong error term, which in turn leads to strong asymptotic

estimates for the mean of the kth moment in the case that k is odd. Specifically, we

have the following result; note that the error term is much stronger than in all previous

examples.

Proposition 4.5. For any odd integer k > 1, the average kth moment of a random partition

of n is given by

k!ζ(k + 1)

(√
24n − 1

2π

)k+1

·
Ik−1/2

(√
2π2

3

(
n − 1

24

))
I3/2

(√
2π2

3

(
n − 1

24

)) − ζ(−k)

2
+ O

(
exp(−n1/2−ε)

)

for any ε > 0.

Proof. First of all, we find easily that the Mellin transform of

F(e−t) =

∞∑
j=1

jk

ejt − 1

is given by ζ(s)ζ(s − k)Γ(s). For even k, this yields poles at k + 1, 1 and all negative odd

integers, so that

F(e−t) =
k!ζ(k + 1)

tk+1
+

ζ(1 − k)

t
+

ζ(−k − 1)t

12
− ζ(−k − 3)t3

720
+ · · · .

If k is odd, however, the zeros of ζ(s)ζ(s − k) cancel with the poles of Γ(s) at the negative

integers, so that s = k + 1 and s = 0 are the only poles (if k > 1), and the Mellin transform

yields an error term whose order can be any power of t. In fact, one can employ a known

technique (see for instance [23]) to obtain a functional equation for f(t) = F(e−t) as

follows. Shifting the path of integration in the Mellin inversion formula to the left, we

obtain

f(t) =
1

2πi

∫ k+2+i∞

k+2−i∞
ζ(s)ζ(s − k)Γ(s)t−s ds

=
k!ζ(k + 1)

tk+1
− ζ(−k)

2
+

1

2πi

∫ −1+i∞

−1−i∞
ζ(s)ζ(s − k)Γ(s)t−s ds.

Now we replace s by k + 1 − s to obtain

f(t) =
k!ζ(k + 1)

tk+1
− ζ(−k)

2
+

1

2πi

∫ k+2+i∞

k+2−i∞
ζ(k + 1 − s)ζ(1 − s)Γ(k + 1 − s)ts−k−1 ds.
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The functional equations of the ζ-function and the Γ-function now yield

ζ(k + 1 − s)ζ(1 − s)

= 21+k−sπk−s cos

(
π(s − k)

2

)
Γ(s − k)ζ(s − k) · 21−sπ−s cos

(
πs

2

)
Γ(s)ζ(s)

= 22+k−2sπk−2s sin

(
πk

2

)
sin

(
πs

2

)
cos

(
πs

2

)
Γ(s − k)ζ(s)ζ(s − k)Γ(s)

= 21+k−2sπk−2s sin

(
πk

2

)
sin(πs)Γ(s − k)ζ(s)ζ(s − k)Γ(s)

= 21+k−2sπk−2s sin

(
πk

2

)
sin(πs) · π

sin(π(s − k))Γ(k + 1 − s)
· ζ(s)ζ(s − k)Γ(s)

= (2π)k+1−2s sin

(
πk

2

)
sin(πs) · 1

− sin(πs)Γ(k + 1 − s)
· ζ(s)ζ(s − k)Γ(s)

= (−1)(k+1)/2(2π)k+1−2s · 1

Γ(k + 1 − s)
· ζ(s)ζ(s − k)Γ(s),

so that finally

f(t) =
k!ζ(k + 1)

tk+1
− ζ(−k)

2
+

(
2πi

t

)k+1

· 1

2πi

∫ k+2+i∞

k+2−i∞
ζ(s)ζ(s − k)Γ(s)

(
4π2

t

)−s

ds

=
k!ζ(k + 1)

tk+1
− ζ(−k)

2
+

(
2πi

t

)k+1

f

(
4π2

t

)
.

Since

f

(
4π2

t

)
� exp

(
−4π2

t

)
,

Theorem 2.3 now shows that the average kth moment (k odd, k > 1) of a random partition

of n is given by

k!ζ(k + 1)

(√
24n − 1

2π

)k+1

·
Ik−1/2

(√
2π2

3

(
n − 1

24

))
I3/2

(√
2π2

3

(
n − 1

24

)) − ζ(−k)

2
+ O

(
exp(−n1/2−ε)

)

for any ε > 0, completing our proof.

4.6. Longest run

Our final example is also the most complicated one. As in the previous example, we

encounter the situation that the Mellin transform of F(e−t) has only finitely many poles.

The technique to obtain a very precise asymptotic expansion is similar to the previous

example, but the details are somewhat more intricate. The final result is stated in the

following proposition; a weak version (first-order asymptotics only) was given in [25].

Proposition 4.6. The average length of the longest run in a random partition of n is

(2
√

3π − 9)(24n − 1)

3(π
√

24n − 1 − 6)
− 1

2
+ O

(
exp(−Cn1/4)

)
, (4.1)
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and the variance is given by

(24n − 1)3/2((135π − 12
√

3π2 − 7π3)
√

24n − 1 + (18π2 + 144
√

3π − 972))

3π(π
√

24n − 1 − 6)2

+
1

12
+ O

(
exp(−Cn1/4)

)
(4.2)

for some C > 0.

It is actually possible to determine the asymptotic behaviour of all moments and thus

to determine the limiting distribution (different approaches were used in [17] and [25]).

Proposition 4.7. Let Rn denote the longest run of a random partition of n. The random

variable n−1/2Rn converges weakly to a limiting distribution with distribution function

Ψ(x) =

∞∏
j=1

(1 − e−πjx/
√

6).

Proof of Proposition 4.6. Recall the generating function for the mth moment, given by

P (x) ·
∞∑
k=1

(km − (k − 1)m)
(
1 − P (xk)−1

)
.

We are therefore interested in the behaviour of functions of the form
∞∑
k=1

kr
(
1 − P (e−kt)−1

)
as t → 0. In the following, it will be convenient to replace t by 2πt, so we study the

function

Gr(t) =

∞∑
k=1

krH(kt),

where

H(t) = 1 − P (e−2πt)−1 = 1 −
∞∏
j=1

(
1 − e−2πjt

)
.

Let us first consider the Mellin transform H∗(s) of H . By (1.3), H satisfies the functional

equation

1 − H(t) =
1√
t
exp

(
π

12

(
t − 1

t

))(
1 − H

(
1

t

))
.

Therefore, for Re s > 0,

H∗(s) =

∫ ∞

0

ts−1H(t) dt =

∫ 1

0

ts−1H(t) dt +

∫ ∞

1

ts−1H(t) dt

=

∫ ∞

1

t−s−1H

(
1

t

)
dt +

∫ ∞

1

ts−1H(t) dt
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=

∫ ∞

1

t−s−1

[
1 −

√
t exp

(
π

12

(
1

t
− t

))(
1 − H(t)

)]
dt +

∫ ∞

1

ts−1H(t) dt

=
1

s
−

∫ ∞

1

t−s−1/2 exp

(
π

12

(
1

t
− t

))
dt

+

∫ ∞

1

[
t−s−1/2 exp

(
π

12

(
1

t
− t

))
+ ts−1

]
H(t) dt.

Since H(t) decreases exponentially as t → ∞, the integrals converge for any s ∈ C, and so

this gives us a meromorphic continuation of H∗(s) to C (with a simple pole at s = 0). We

may thus replace s by 1 − s to obtain

H∗(1 − s) =
1

1 − s
−

∫ ∞

1

ts−3/2 exp

(
π

12

(
1

t
− t

))
dt

+

∫ ∞

1

[
ts−3/2 exp

(
π

12

(
1

t
− t

))
+ t−s

]
H(t) dt

= −
∫ ∞

1

t−s dt −
∫ ∞

1

ts−3/2 exp

(
π

12

(
1

t
− t

))
dt

+

∫ ∞

1

[
ts−3/2 exp

(
π

12

(
1

t
− t

))
+ t−s

]
H(t) dt

=

∫ ∞

1

ts−3/2 exp

(
π

12

(
1

t
− t

))(
H(t) − 1

)
dt +

∫ ∞

1

t−s
(
H(t) − 1

)
dt

=

∫ ∞

1

ts−3/2 exp

(
π

12

(
1

t
− t

))(
H(t) − 1

)
dt +

∫ 1

0

ts−2

(
H

(
1

t

)
− 1

)
dt

=

∫ ∞

1

ts−3/2 exp

(
π

12

(
1

t
− t

))(
H(t) − 1

)
dt

+

∫ 1

0

ts−3/2 exp

(
π

12

(
1

t
− t

))(
H(t) − 1

)
dt

=

∫ ∞

0

ts−3/2 exp

(
π

12

(
1

t
− t

))(
H(t) − 1

)
dt

for Re s > 1, which is exactly the Mellin transform K∗(s) of

K(t) =
1√
t
exp

(
π

12

(
1

t
− t

))(
H(t) − 1

)
=

1

t

(
H

(
1

t

)
− 1

)
= −1

t

∞∏
j=1

(1 − e−2jπ/t).

Returning to Gr(t), it is clear that the Mellin transform of this function is

G∗
r (s) = H∗(s)ζ(s − r),

and thus

Gr(t) =
1

2πi

∫ r+2+i∞

r+2−i∞
H∗(s)ζ(s − r)t−s ds.

We shift the path of integration to the left, picking up residues at s = r + 1 and s = 0.
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• At s = r + 1, the residue is

H∗(r + 1)

tr+1
.

Since H(t) can also be written as

H(t) =

∞∑
m=1

(−1)m−1(e−m(3m−1)πt + e−m(3m+1)πt)

by virtue of Euler’s pentagonal theorem, we also have

H∗(s) = π−sΓ(s)

∞∑
m=1

(−1)m−1

(
1

(m(3m − 1))s
+

1

(m(3m + 1))s

)

and thus

H∗(r + 1) =
r!

πr+1

∞∑
m=1

(−1)m−1

(
1

(m(3m − 1))r+1
+

1

(m(3m + 1))r+1

)
.

In particular,

H∗(1) =
2
√

3π − 9

3π
and H∗(2) =

54 − 8
√

3π − π2

2π2

after a few manipulations.

• The residue of H∗(s) at s = 0 is 1 by the above calculations, and therefore the residue

of H∗(s)ζ(s − r)t−s at s = 0 is ζ(−r).

Hence we have

Gr(t) =
H∗(r + 1)

tr+1
+ ζ(−r) +

1

2πi

∫ −1+i∞

−1−i∞
H∗(s)ζ(s − r)t−s ds

=
H∗(r + 1)

tr+1
+ ζ(−r) +

1

2πi

∫ 2+i∞

2−i∞
H∗(1 − s)ζ(1 − s − r)ts−1 ds

=
H∗(r + 1)

tr+1
+ ζ(−r)

+
1

(2π)rt
· 1

2πi

∫ 2+i∞

2−i∞
2 cos

(
π(s + r)

2

)
Γ(s + r)ζ(s + r)K∗(s)

(
2π

t

)−s

ds

by the functional equation of the zeta function and the equation for H∗(1 − s) that was

deduced above. This can be written as

Gr(t) =
H∗(r + 1)

tr+1
+ ζ(−r) +

1

(2π)rt

∞∑
k=1

k−rΦr

(
2πk

t

)
,

where Φr is the function whose Mellin transform is

Φ∗
r (s) = 2 cos

(
π(s + r)

2

)
Γ(s + r)K∗(s).
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Noting that Γ(s + r) is the Mellin transform of tre−t, while K∗(s) is the Mellin transform

of

K(t) = −1

t

∞∏
j=1

(1 − e−2jπ/t),

we find that Γ(s + r)K∗(s) is the transform of the convolution

Lr(t) = −
∫ ∞

0

xr e−x x

t

∞∏
k=1

(1 − e−2kπx/t)
dx

x

= −1

t

∫ ∞

0

xr e−x
∑
m∈Z

(−1)m e−m(3m−1)πx/t dx

= − r!

t

∑
m∈Z

(−1)m

(1 + m(3m − 1)π/t)r+1
= −r!tr

∑
m∈Z

(−1)m

(t + m(3m − 1)π)r+1
,

making use of Euler’s pentagonal theorem again. This can be simplified further:

Lr(t) = −(−t)r · dr

dtr

∑
m∈Z

(−1)m

t + m(3m − 1)π
= − (−t)r

3π
· dr

dtr

∑
m∈Z

(−1)m

m2 − m
3

+ t
3π

= − (−t)r

3π
· dr

dtr

∑
m∈Z

(−1)m(
m − 1

6
+

√
1
36

− t
3π

)(
m − 1

6
−

√
1
36

− t
3π

)
= (−t)r · dr

dtr
1

π
√

1 − 12t
π

∑
m∈Z

(−1)m
(

1

m − 1
6

+
√

1
36

− t
3π

− 1

m − 1
6

−
√

1
36

− t
3π

)

= (−t)r · dr

dtr
1

π
√

1 − 12t
π

(
π csc

(
π

6
+

π

6

√
1 − 12t

π

)
− π csc

(
π

6
− π

6

√
1 − 12t

π

))

= (−t)r · dr

dtr
1√

1 − 12t
π

(
csc

(
π

6
+

π

6

√
1 − 12t

π

)
− csc

(
π

6
− π

6

√
1 − 12t

π

))

by virtue of the partial fraction decomposition of the cosecant. This function is mero-

morphic on the entire complex plane, in spite of the square root. Finally, since

2 cos

(
π(s + r)

2

)
= i−s−r + (−i)−s−r,

we find that Φ∗
r (s) is the Mellin transform of

Φr(t) = i−rLr(it) + (−i)−rLr(−it).

To justify this formally, note that the function Lr can be estimated by Lr(z) �
exp(−C

√
|z|) for some constant C inside the cone {z : | arg z| � 3π/4}. The Mellin

transform of Lr(it) is given by∫ ∞

0

ts−1Lr(it) dt = i−s

∫ i∞

0

ts−1Lr(t) dt = i−s lim
R→∞

∫ iR

0

ts−1Lr(t) dt.
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Now replace the line segment from 0 to iR by a line segment from 0 to R and a

quarter-circle with parametrization t = R eiθ . Then we get∫ ∞

0

ts−1Lr(it) dt = i−s lim
R→∞

(∫ R

0

ts−1Lr(t) dt + i1−sRs

∫ π/2

0

eiθsLr(R eiθ) dθ

)
.

The integral along the quarter-circle tends to zero as R → ∞ by the estimate given above.

Hence we end up with i−sL∗
r (s), as claimed. The Mellin transform of Lr(−it) is treated

analogously.

It is not difficult to show now that

Φr(t) = O

(
t(r−1)/2 exp

(
−

√
πt

6

))

as t → ∞, so that we finally obtain

Gr(t) =
H∗(r + 1)

tr+1
+ ζ(−r) + O

(
t−(r+1)/2 exp

(
−

√
π2

3t

))

as t → 0. Now we can return to the study of the moments of the longest run in integer

partitions. As mentioned at the beginning, the generating function for the mth moment is

given by

P (x) ·
∞∑
k=1

(
km − (k − 1)m

)(
1 − 1

P (xk)

)

= P (x) ·
m−1∑
r=0

(−1)m−r−1

(
m

r

)∑
k�1

kr
(

1 − 1

P (xk)

)
,

which is of the form P (x)F(x) with

F(e−t) =

m−1∑
r=0

(−1)m−r−1

(
m

r

)
Gr

(
t

2π

)

=

m−1∑
r=0

(−1)m−r−1

(
m

r

)(
(2π)r+1H∗(r + 1)

tr+1
+ ζ(−r)

)

+ O

(
t−m/2 exp

(
−

√
2π3

3t

))
.

Now we are able to apply Theorem 2.3 and obtain a very strong error term again, as in

the previous example. In particular, we find that the mean is given by

(2
√

3π − 9)(24n − 1)

3(π
√

24n − 1 − 6)
− 1

2
+ O

(
exp(−Cn1/4)

)
,

as stated. The same applies to the variance.

Proof of Proposition 4.7. Going on to higher moments, we also obtain an alternative

approach to the limiting distribution of the longest run that was determined in [17].

Considering only the most significant term, we see that the mth moment of our random
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Table 1. Numerical values of pk .

k 1 2 3 4 5

pk 0.51609432 0.21321189 0.10730957 0.05975045 0.03548875

k 6 7 8 9 10

pk 0.02207159 0.01421668 0.00941619 0.00638121 0.00440862

variable Rn is

E(Rm
n ) = mH∗(m)(24n)m/2 + O(n(m−1)/2).

Therefore, the mth moment of the renormalized random variable n−1/2Rn tends to

mH∗(m)24m/2.

It is not difficult to show that these are exactly the moments associated with the distribution

function

Ψ(x) =

∞∏
j=1

(1 − e−πjx/
√

6).

The moments grow sufficiently slowly for the distribution to be characterized by its

moments. Hence convergence of moments implies weak convergence of n−1/2Rn to this

limiting distribution (see for example [8, p. 778, Theorem C.2]).

Let us finally consider the problem of determining the probability that k is one of the

parts of largest multiplicity. This problem leads to a discrete limiting distribution.

Proposition 4.8. The probability that no part in a random partition of n has greater or

equal multiplicity than k and the probability that no part has strictly greater multiplicity

than k both tend to

pk =

∫ 1

0

kxk−1

1 − xk

∞∏
j=1

(1 − xj) dx.

In particular, the probability that there are two or more longest runs tends to 0. Numerical

values of pk are given in Table 1. Asymptotically, we have

pk = π
√

2ke−π
√

2k/3

(
1 + O

(
1

k

))
.

Remark 5. The probabilities pk add up to 1. We have the rather curious identity

1 =

∞∑
k=1

pk =

∞∑
k=1

∫ 1

0

kxk−1

1 − xk

∞∏
j=1

(1 − xj) dx =

∫ 1

0

( ∞∑
k=1

σ(k)xk−1

) ∞∏
j=1

(1 − xj) dx,



A General Asymptotic Scheme for the Analysis of Partition Statistics 27

where σ(k) denotes the sum of all divisors of k. This follows directly from the fact that

− d

dx

∞∏
j=1

(1 − xj) =

∞∑
k=1

kxk−1

1 − xk

∞∏
j=1

(1 − xj),

as can be seen by logarithmic differentiation.

Proof. Recall the generating function for all partitions that have the first property, which

is given by

P (x) ·
∞∑
�=1

xk�(1 − xk)

(1 − xk(�+1))P (x�+1)
.

We have to study the behaviour of the second factor as x → 1. Substitute x = e−t and

simplify to obtain

Fk(e
−t) =

∞∑
�=1

e−k�t(1 − e−kt)

(1 − e−k(�+1)t)P (e−(�+1)t)

=

∞∑
�=1

ekt − 1

(ek(�+1)t − 1)P (e−(�+1)t)

= (kt + O(t2))

∞∑
�=2

Mk(�t),

where

Mk(t) =
1

(ekt − 1)P (e−t)
.

The Mellin transform of Mk(t),

M∗
k (s) =

∫ ∞

0

ts−1

(ekt − 1)P (e−t)
dt,

exists for all complex s, since P (e−t) tends to ∞ faster than any power of t as t → 0

(by (1.3)) and to 1 as t → ∞. Therefore, the Mellin transform of the sum

∞∑
�=2

Mk(�t)

is (ζ(s) − 1)M∗
k (s), which only has a simple pole at s = 1 with residue 1. Applying the

inverse Mellin transform, we thus find that

∞∑
�=2

Mk(�t) ∼ M∗
k (1)

t

as t → 0, so that finally

Fk(e
−t) ∼ kM∗

k (1) =

∫ ∞

0

k

(ekt − 1)P (e−t)
dt =

∫ 1

0

kxk−1

1 − xk

∞∏
j=1

(1 − xj) dx.
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Hence, by Theorem 2.2, the probability that no part in a random partition of n has larger

multiplicity than k tends to pk = kM∗
k (1). The same is true for the probability that all

parts have strictly smaller multiplicity than k (by a similar argument).

It is natural to ask how the sequence pk would behave for k → ∞. This can be done by

adopting ideas that are frequently used in the theory of partitions. We write

pk =

∫ ∞

0

k

(ekt − 1)P (e−t)
dt (4.3)

=

∫ ∞

0

k e−kt

P (e−t)
dt +

∫ ∞

0

k e−2kt

P (e−t)
dt +

∫ ∞

0

k

e2kt(ekt − 1)P (e−t)
dt.

The third integral can be estimated using the functional equation (1.3):

∫ ∞

0

k

e2kt(ekt − 1)P (e−t)
dt =

∫ ∞

0

k

e2kt(ekt − 1)P (e−4π2/t)

√
2π

t
exp

(
−π2

6t
+

t

24

)
dt

�
∫ ∞

0

√
2π

t3
exp

(
−π2

6t
−

(
2k − 1

24

)
t

)
dt

= 2
√

3 exp

(
−π

6

√
48k − 1

)
= O

(
exp

(
−2π

√
k

3

))
.

The remaining integrals are again treated by using the functional equation (1.3):

∫ ∞

0

k e−kt

P (e−t)
dt =

∫ ∞

0

k e−kt

P (e−4π2/t)

√
2π

t
exp

(
−π2

6t
+

t

24

)
dt

=

∫ ∞

0

k e−kt

√
2π

t
exp

(
−π2

6t
+

t

24

)
dt

+

∫ ∞

0

k e−kt

√
2π

t

(
1

P (e−4π2/t)
− 1

)
exp

(
−π2

6t
+

t

24

)
dt.

The first of these two integrals evaluates to

4π
√

3k exp
(
− π

6

√
24k − 1

)
√

24k − 1
,

whereas the second integral is estimated as

O

(√
k exp

(
−5π

√
2k

3

))

using

1 − 1/P (x) � 3

2
x.

The middle integral in (4.3) can be treated analogously, and it gives a contribution of

O

(√
k exp

(
−2π

√
k

3

))
.
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Thus we have found

pk =
4π

√
3k exp

(
− π

6

√
24k − 1

)
√

24k − 1
+ O

(√
k exp

(
−2π

√
k

3

))

= π
√

2ke−π
√

2k/3

(
1 + O

(
1

k

))
.

It is clear that the above computations can be extended to yield an asymptotic expansion

of pk .

5. Conclusion

As the examples in the previous section show, our results are widely applicable to a

variety of different partition statistics, and there are certainly many more examples. Once

an asymptotic expansion of F(e−t) has been found, everything else is essentially automatic

and can be done by a computer algebra system. It is remarkable that one obtains very

precise asymptotic formulae with error terms that decrease superpolynomially in certain

cases (as in (4.1) and (4.2)). In some instances, as we have seen, limiting distributions

can be determined as well. Let us finally mention that our method should also apply to

partitions into distinct parts and other families of partitions.
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